

Kaon Production in Pion-Induced Reactions at 1.7 GeV/c

Joana Wirth, Laura Fabbietti, Steffen Maurus and Alessandro Scordo for the HADES Collaboration

(Anti)Kaon in Medium

Kaon-Nucleon Potential

 K_{s}^{0} properties: Ar + KCl, p + p, p + Nb Agakishiev et al. Phys. Rev. C82, 044907 (2010) Agakishiev et al. Phys. Rev. C90, 054906 (2014)

Scattering effects of (anti)kaons inside nuclear matter:

- → Kaon-Nucleon Potential
- → Coulomb-Scattering

Antikaon can be absorbed in nuclear environment:

 $K^-N \rightarrow Y\pi \quad K^-NN \rightarrow YN$

No conventional mechanism for kaon absorption:

 $K^{+/0}N \longrightarrow K^{+/0}N(\pi \,/\, \eta \,/\, ...)$

Pion-Induced Kaon Production

$$\lambda = 1.5 fm \ (p_{\pi} = 1.7 \ GeV/c)$$

 $d_{C/Pb} = 5.5/14.2 fm$

 π is likely to undergo reactions with nucleus on the surface of the target nucleus Benabderrahmane et al. Phys. Rev. Lett. Bd. 102, 182501 (2009)

→ K⁰ production scales with the surface of the nucleus in pioninduced reactions (@ 1.15 GeV/c)

Pion-Induced Kaon Production

$$\lambda = 1.5 fm \ (p_{\pi} = 1.7 \ GeV/c)$$

 $d_{C/Pb} = 5.5/14.2 fm$

 π is likely to undergo reactions with nucleus on the surface of the target nucleus (Anti)Kaon:

- → Rapidity distribution
- → Momentum distribution
- $\rightarrow K^{-}$ absorption:

$$\frac{K^{-}}{K^{+}}(W) \Big/ \frac{K^{-}}{K^{+}}(C)(y, p_{T} / \Theta, p) \Big|$$

→ Phi:
$$\Phi \rightarrow K^-K^+$$
, BR ~ 49%
→ K⁻ from ϕ feed-down:

(Anti)Kaon and Phi with HADES

Secondary Pion Beam @ 1.7 GeV/c

- → CEntRal BEam TRacker for PiOnS @ TU Munich
 - \rightarrow High π^- rates (up to 10⁷ part./s)
 - \rightarrow Self-triggering and $\sigma(p_{\pi}) < 0.5 \%$

Wirth et al. Nucl. Inst. and Meth., Phy. Res. A, 243-244 (2016)

→ $3 \cdot 10^5 K^+$, $6.5 \cdot 10^3 K^-$ and 300Φ in π^- + W → $2.5 \cdot 10^5 K^+$, $1 \cdot 10^4 K^-$ and 500Φ in π^- + C

(Anti)Kaons

Kaon Selection

Applied cuts:

- Primary vertex:
 - - 85 < z vertex < 5 mm
 - - 10 < x,y vertex < 10 mm
- Energy loss: $0 < dE/dx_{MDC} < 50$
- Velocity: $0 < \beta < 1$
- Particle identification via dE/dx and p Energy loss and magnetic field correction

Kaon yield:

- Signal: SIM(PID) $\rightarrow \sigma$ from gauss \rightarrow "gauss (fixed σ) + polN"
- Background: "exp" left tail (π^+) + "exp" right tail (p)
- Signal + Background:
 - "gauss(σ) + exp_p + exp_π (+ polN)"

55. International Winter Meeting on Nuclear Physics

Joana Wirth

MDC dE/dx [a.u]

Kaon Selection

r.+clw **Applied cuts**:

- Primary vertex:
 - - 85 < z vertex < 5 mm
 - - 10 < x,y vertex < 10 mm
- Energy loss: $0 < dE/dx_{MDC} < 50$
- Velocity: $0 < \beta < 1$
- Particle identification via dE/dx and p Energy loss and magnetic field correction

MDC III/

Antikaon yield:

- Signal: SIM(PID) $\rightarrow \sigma$ from gauss \rightarrow "gauss (fixed σ) + polN"
- Background: "exp" left tail (π -)
- Signal + Background:
 - "gauss(σ) + exp_{π} (+ polN)"

8

Corrected Yields: K⁺/K⁻

Acceptance and efficiency correction based on simulation (GiBUU):

$$F_{corr}(p_T, y) = \frac{O_{sim}(p_T, y)}{I_{sim}(p_T, y)}$$

$$\begin{split} F_{corr}(p_T,y) &\coloneqq correction \ factor\\ I_{sim}(p_T,y) &\coloneqq input \ from \ simulation\\ O_{sim}(p_T,y) &\coloneqq output \ of \ sim. \ (acc., \ tracking, \ analysis) \end{split}$$

р _т -у		тот	
С	K ⁺	415456	
	K -	22542	
w	K ⁺	<i>K</i> ⁺ 585961	
	<i>K</i> ⁻	11963	

р-Ө		тот	
С	K +	404294	
	K -	19215	
W	K +	581318	
	K -	10862	

Ratio: K⁻/K⁺(W)/K⁻/K⁺(C)

rix CIN

55. International Winter Meeting on Nuclear Physics

Joana Wirth

10

Ratio: K⁻/K⁺(W)/K⁻/K⁺(C)

Inside HADES acceptance

K*CIM

p_T-y Distribution: **K**+

Yield extrapolation in p_T

T.XC

Cross-Section: K⁺/K⁻

Inside HADES acceptance 0 < y < 1.2

	Particle	σ [mb]
С	<i>K</i> +	37.8
	<i>K</i> ⁻	2.5
W	<i>K</i> +	296.9
	K ⁻	8.1

n'r clw

Phi

Φ Reconstruction

Applied cuts:

N'XCIN

- Primary vertex:
 - - 65 < z vertex < 5 mm
 - - 10 < x,y vertex < 10 mm
- Kaon mass: $400 < M_K < 600 \text{ MeV/}c^2$
- \bullet Particle identification via β and p
 - (β≶(p/√(p²+m_K²) ± 0.5)
- Energy loss and magnetic field correction

Phi yield:

- Signal: "gauss + gauss"
 - + σ_1 : finite resolution effects
 - σ_2 : multiple scattering
- Background: "polN \cdot (1 gauss(x, threshold, σ))"

Antikaons from Phi Feed-Down

р _т -у		тот
С	K⁻	22542
W	K⁻	11963

r.*chw

р _т -у		тот
С	ф	9146
W	ф	5297

р-Ө		тот
С	K⁻	19215
W	K⁻	10862

р-Ө		тот
С	ф	11310
W	ф	5467

π⁻+C

$$\sqrt{s_{\pi^- N}} = 1.99 \ GeV$$

 $\Phi / K^{-}(p_T, y) = 0.41 \pm 0.01 \text{ (stat)}$ $\Phi / K^{-}(p, \Theta) = 0.59 \pm 0.01 \text{ (stat)}$

π⁻+W

 $\Phi / K^{-}(p_T, y) = 0.44 \pm 0.02 \text{ (stat)}$ $\Phi / K^{-}(p, \Theta) = 0.50 \pm 0.02 \text{ (stat)}$

Summary

Summary:

Kaons

- p-Θ and p_T-y analysis almost compatible in terms of reconstructed kaons
- *K*⁻ absorption in four kinetic observables
- Rapidity distribution of *K*⁺ different for C and W
- Rapidity distribution of K^- very similar for C and W
- **σ**(*K*⁺/*K*⁻,**C**/**W**) inside HADES acceptance

Phi

- p- Θ and p_T -y analysis almost compatible in terms of reconstructed phis
- **K**⁻ from **\Phi** feed-down: $\Phi/K^{-}(C) = 0.50 \pm 0.01$ (stat) $\Phi/K^{-}(W) = 0.47 \pm 0.01$ (stat)

Thank you for your attention!

p_T-y Distribution: K⁺

Joana wirth	Jc	ana	۱V	Vir	ťh
-------------	----	-----	----	-----	----

T. W

p_T-y Distribution: K⁻

Gibuu

GiBUU/Urqmd scaled in each rapidity bin seperatly to discribe the p_T -distribution

J	oa	na	W	irtł	า
×	~ ~				

n.xW

p_T-y Distribution: K⁻

Gibuu

GiBUU/Urqmd scaled in each rapidity bin seperatly to discribe the p_T -distribution

r.xc

Rapidity Distribution: K⁺/K⁻

rt*Clw

Statistic and Systematic Error

n'+clw

Phi

Corrected Yield: Φ

Event-by-event acceptance and efficiency correction based on simulation (Pluto):

rx N

Corrected Yield: Φ

Event-by-event acceptance and efficiency correction based on simulation (Pluto):

n.xM

Corrected Yield: Φ

