The continuing story of two-photon exchange: results from the OLYMPUS experiment

Axel Schmidt

Massachusetts Institute of Technology

January 27, 2017

Prologue:

Measurements of the proton's form factors are discrepant.

Prologue:

Measurements of the proton's form factors are discrepant.

Prologue:

Measurements of the proton's form factors are discrepant.

OLYMPUS measured:

$$\frac{e^+ p \longrightarrow e^+ p}{e^- p \longrightarrow e^- p}$$

The continuing story of two-photon exchange

• Chapter I: Why measure $\sigma_{e^+p}/\sigma_{e^-p}$?

Chapter II: The experiments:

- 1 CLAS at Jefferson Lab
- 2 VEPP-3 at Novosibirsk
- 3 OLYMPUS at DESY
- Chapter III: The results
- Epilogue: What have we learned?

Elastic scattering kinematics are fixed by two parameters.

Experiment

Theory

Elastic scattering kinematics are fixed by two parameters.

Elastic scattering kinematics are fixed by two parameters.

The form factors are well-approximated by: $(1 + Q^2/0.71)^{-2}$

(A sample of) world form factor data

(A sample of) world form factor data

 $\sigma_{e^+p}/\sigma_{e^-p}$ is sensitive to two-photon exchange.

$$\mathcal{M} = + \mathcal{O}(\alpha^3)$$

 $\sigma_{e^+p}/\sigma_{e^-p}$ is sensitive to two-photon exchange.

 $\sigma_{e^+p}/\sigma_{e^-p}$ is sensitive to two-photon exchange.

$$\frac{\sigma_{e^+\rho}}{\sigma_{e^-\rho}} \approx 1 + \frac{4\text{Re}\{\mathcal{M}_{2\gamma}\mathcal{M}_{1\gamma}\}}{|\mathcal{M}_{1\gamma}|^2}$$

Upcoming plots show this contour.

A few percent effect is large enough to resolve the discrepancy.

A few percent effect is large enough to resolve the discrepancy.

A few percent effect is large enough to resolve the discrepancy.

Chapter II: The experiments

- 1 VEPP-3 in Novosibirsk, Russia
- 2 CLAS at Jefferson Lab, USA
- **3 OLYMPUS** at DESY, Germany

OLYMPUS: BLAST moved to DESY

OLYMPUS: BLAST moved to DESY

OLYMPUS: BLAST moved to DESY

 e^+ and e^- beams were alternated once per day.

 e^+ and e^- beams were alternated once per day.

Luminosity monitoring was critical.

Luminosity monitoring was critical.

VEPP-3, Novosibirsk, Russia

CLAS, Jefferson Lab, USA

All three experiments push to low ϵ , high Q^2 .

Chapter III: The results

What might we expect?

Results from VEPP-3, 1 GeV beams

Results from VEPP-3, 1.6 GeV beams

Results from CLAS, $Q^2 = 0.85 \text{ GeV}^2$

Results from CLAS, $Q^2 = 1.45 \text{ GeV}^2$

Results from OLYMPUS, 2 GeV beams

OLYMPUS data are slightly low.

The form factor discrepancy is not large at these kinematics.

To recap:

To recap:

To recap:

Epilogue: Two admissable interpretations

Epilogue: Two admissable interpretations

1 Two-photon exchange calculations overestimate $\sigma_{e^+p}/\sigma_{e^-p}$. Some new effects must be added to the calculations.

Epilogue: Two admissable interpretations

- 1 Two-photon exchange calculations overestimate $\sigma_{e^+p}/\sigma_{e^-p}$. Some new effects must be added to the calculations.
- 2 The two-photon exchange hypothesis is still viable. We need to test higher Q^2 , lower ϵ .

To be continued...