Measurement of polarisation transfer to a bound proton at large virtuality

Ulrich Müller for the A1 Collaboration Institut für Kernphysik Johannes-Gutenberg-Universität Mainz

55. International Winter Meeting on Nuclear Physics Bormio, 23.–27. January 2017

```
Motivation
Experimental setup
Results for {}^{2}H(\vec{e}, e'\vec{p})n
Preliminary results for {}^{12}C(\vec{e}, e'\vec{p})^{11}B
Summary
```

Image: Image:

Do bound nucleons have the same properties as free ones? Are there any "medium modifications"?

- ▶ Influence on electromagnetic form factors G_E and G_M?
- Accessible via polarisation observables
- Measure ratio P_x/P_z of polarisation transfer components for free and bound protons
- (Double) ratio eliminates many systematic uncertainties

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Previous experiments

- ⁴He(*e*, *e*'*p*)³H reaction previously measured at Mainz and JLab
- Ratio P_x/P_z for protons bound in helium smaller than for free protons
- Attributed to "... medium modification of the proton form factors predicted by a quark-meson coupling model"

Principle of measurement

Ratio P_{χ}/P_z proportional to G_E/G_M .

The Mainz Microtron MAMI

Three-spectrometer setup of the A1 collaboration

Spectrometer A:

$$\label{eq:alpha} \begin{split} \alpha &> 20^\circ \\ p &< 735 \mbox{ MeV/c} \\ \Delta\Omega &= 21 \mbox{ msr} \\ \Delta p/p &= 20\% \\ \hline \mbox{Focal plane polarimeter} \end{split}$$

$\begin{array}{l} \text{Spectrometer B:} \\ \alpha > 8^{\circ} \\ p < 870 \ \text{MeV/c} \\ \Delta\Omega = 5.6 \ \text{msr} \\ \Delta p/p = 15\% \end{array}$

Spectrometer C:

$$\alpha > 55^{\circ}$$

 $p < 655 \text{ MeV/c}$
 $\Delta \Omega = 21 \text{ msr}$
 $\Delta p/p = 25\%$

イロト イヨト イヨト イヨト

Ulrich Müller (Univ. Mainz)

Focal Plane Polarimeter

- Scatter polarised proton at ¹²C nucleus
- Spin-orbit term V_{LS}

• Azimuthal asymmetry: $f(\varphi) \propto 1 + A(\theta) \cos(\varphi - \varphi_0)$

- Analysing power for carbon well known
- Spin tracing \rightarrow all 3 pol. components

・ロト ・ 同ト ・ ヨト ・ ヨ

Deuterium: Experiment

Kinematics:

Setup	E	Q ²	p_{miss}	e'	p _{e'}	$\theta_{e'}$	pp	θ_{p}	Events
	$[MeV] [GeV^2/c^2] [MeV/c]$			[MeV/c]			MeV/c		after cuts
A	600	0.4	0	С	384	82.4°	668	-34.7°	210 000
В	600	0.4	+150	C	463	73.8°	495	-43.3°	170 000
C	630	0.18	-50	В	509	43.4°	484	-39.1°	2 400 000
D	630	0.18	-186	C	398	49.4°	665	-53.3°	790 000

Missing momentum:

 $\vec{p}_{miss}=\vec{q}-\vec{p}_p$

Virtuality:

$$\nu = \left(M_A - \sqrt{M_{A-1}^2 + p_{miss}^2}\right)^2 - p_{miss}^2 - M_p^2$$

Virtuality range in this experiment: $\nu = -0.10$ to $0 \, (\text{GeV}/c)^2$

イロト イポト イヨト イヨト

Deuterium: Results

Double-ratio $(P_x/P_z)_A / (P_x/P_z)_p$

- Quasi-free differs from free
- Strong dependence on virtuality Depends on sign of p_{miss}
- Good agreement with JLab ²H data
- No Q² dependence
 - Mainz: $Q^2 = 0.18$, 0.4 $(GeV/c)^2$
 - JLab: $Q^2 = 0.43$, 1.0 $(GeV/c)^2$

²H, JLab: Hu et al., PRC 73 (2006) 064004

A1 collaboration: I. Yaron, D. Izraeli et al., accepted for publication in PLB (2017)

Deuterium: Results

Comparison to ⁴He

Double-ratio $(P_x/P_z)_A / (P_x/P_z)_p$

- Quasi-free differs from free
- Strong dependence on virtuality Depends on sign of p_{miss}
- Good agreement with JLab ²H data
- No Q² dependence
 - ► Mainz: Q² = 0.18, 0.4 (GeV/c)²
 - JLab: $Q^2 = 0.43$, 1.0 $(GeV/c)^2$

Comparison to ⁴He:

No dependence on nuclear density!

²H, JLab: Hu et al., PRC 73 (2006) 064004 ⁴He, JLab: Strauch et al., PRL 91 (2003) 052301

A1 collaboration: I. Yaron, D. Izraeli et al., accepted for publication in PLB (2017)

Comparison to calculation

- Calculation of $(P_x/P_z)_{^2H}$ by H. Arenhövel
- Assumes free form factors for the proton Bernauer et al., PRC 90 (2014) 015206
- ► 7 models:
 - DWIA, non-relativistic (NR)
 - + relativistic corrections (RC)
 - + meson exchange currents (MEC)
 - + isobar configuration (IC)
 - + final state interaction (FSI)
 - PWBA (NR)
 - PWBA + RC
- Calculated for each kinematical bin in E⁷, θ_e , θ_{qp} , φ_{qp}
- Only full calculation shown in diagrams

Leidemann, Tomusiak, Arenhövel, PRC 43 (1991) 1022 Arenhövel, Leidemann, Tomusiak, EPJA 23 (2005) 147

Image: Image:

Comparison to calculation

Virtuality dependence reproduced by calculation

Ulrich Müller (Univ. Mainz)

Reason for virtuality dependence?

- Mostly due to final state interaction
- Little contribution from MEC and IC
- Relativistic corrections improve agreement with data but do not change the slope

- ²H data 10% above calculation
- No systematic virtuality dependence
- Larger than theoretical uncertainty:
 - ▶ NN potential AV18 \rightarrow Bonn: $\approx 2\%$
 - Form factor shape: almost no effect

Carbon: Experiment and results

Very preliminary – Not for quotation!

- ${}^{12}C(\vec{e}, e'\vec{p}){}^{11}B$ data taken in 2015
- 600 MeV beam energy
- $Q^2 = 0.175, 0.4 \, (GeV/c)^2$
- ► Segmented graphite target → reduce proton energy loss

- Same shape of data for p_{miss} < 0</p>
- s-shell versus p-shell protons?
- Analysis ongoing

Deuterium: New data for positive pmiss

- Sparse data for large $p_{miss} > 0$
- Low-energy proton \rightarrow more difficult
- Data taking in July 2016
- Analysis in progress
- Scheduled run in 2017

P_x/P_z in $^2H(\vec{e},e'\vec{p})n$ reaction

- Strong dependence on virtuality of knock-out proton
- Difference for positive and negative momentum
- No Q² dependence
- No evidence for nuclear density effect
- Virtuality dependence predicted by calculations (FSI)
- Calculations are off by an overall 10%

Upcoming results

- Analysis of ${}^{12}C(\vec{e}, e'\vec{p}){}^{11}B$
- New ${}^{2}H(\vec{e}, e'\vec{p})n$ data for $p_{miss} > 0$
- Ongoing program, additional beam time scheduled for 2017

P. Achenbach, H. Arenhövel, J. Beričič, R. Böhm, D. Bosnar, T. Brecelj, E. O. Cohen,
L. Debenjak, M. O. Distler, A. Esser, I. Friščić, R. Gilman, D. Izraeli, I. Korover,
J. Lichtenstadt, H. Merkel, D. G. Middleton, M. Mihovilovič, U. Müller, E. Piasetzky,
J. Pochodzalla, G. Ron, B. S. Schlimme, M. Schoth, F. Schulz, C. Sfienti, S. Širca,
S. Štajner, S. Strauch, M. Thiel, A. Tyukin, A. Weber, I. Yaron