FIRST MEASUREMENT OF THE CHARGE FORM FACTOR OF THE PROTON AT VERY LOW Q^2 WITH INITIAL STATE RADIATION

Harald Merkel

Johannes Gutenberg-Universität Mainz

55th International Winter Meeting on Nuclear Physics Bormio (Italy), January 24th, 2017

- The Proton Radius Puzzle
- Initial State Radiation (ISR)
 - ► Leading Order Effect
 - Second Order Radiative Corrections
 - ► How to disentangle the Cross Section
- First results

Elastic Cross Section (Rosenbluth-Formula):

$$\frac{d\sigma}{d\Omega_e} = \left(\frac{d\sigma}{d\Omega_e}\right)_{\text{Mott}} \frac{1}{(1+\tau)} \left[\frac{G_E^2(Q^2) + \frac{\tau}{\epsilon} G_M^2(Q^2)}{G_M^2(Q^2)} \right]$$

with
$$\tau = \frac{Q^2}{4m_p^2}$$

 $\epsilon = (1+2(1+\tau)\tan^2\frac{\theta_e}{2})^{-1}$

Structure of the Nucleon:

 $G_E(Q^2)$: Electric Form Factor \rightarrow related to charge distribution $G_M(Q^2)$: Magnetic Form Factor \rightarrow related to distribution of magnetic moments

Normalization:

$$G_E^p(Q^2 = 0) = 1$$

 $G_M^p(Q^2 = 0) = 2.79$

$$G_E^n(Q^2 = 0) = 0$$

 $G_M^n(Q^2 = 0) = -1.91$

Proton Charge/Magnetic Radius:

$$r_E^2 = -6 \frac{d}{dQ^2} G_E(Q^2) \Big|_{Q^2=0}$$

$$r_M^2 = -\frac{6}{\mu_p} \frac{d}{dQ^2} G_M(Q^2) \Big|_{Q^2=0}$$

- Statistical error: 0.2% in less then 20 min!
- Systematic error:
 - ► Detector efficiency
 - \Rightarrow Overlap in acceptance (every angle 4 \times)
 - \Rightarrow Where possible, every angle with two spectrometers
 - Luminosity over 4 orders of magnitude ($I_{\text{beam}} = 0.5 \text{ nA} 10 \mu \text{A}$)

$$L \propto I_{\text{beam}} \times \rho_{\text{target}} \times l_{\text{target}}$$

 \Rightarrow Current with Foerster probe (fluxgate-magnetometer, \times 90 turns) pico-Ampere Meter (direct measurement)

 \Rightarrow Two spectrometer for measurement, third at fixed position

 $\begin{array}{l} G_{\rm std.dipole} = \left(1 + Q^2 / 0.71 \, {\rm GeV}^2\right)^{-2} \\ \blacklozenge 1 & {\rm Data\ spectrometer\ A,\ B,\ C,\ error\ bars\ by\ spread\ of\ data \rightarrow 0.2\% - 0.4\%\ (stat.:\ 0.1\% - 0.3\%) \\ - & {\rm Spline\ fit} \end{array}$

 $r_E = 0.879 \pm 0.005_{\text{stat.}} \pm 0.004_{\text{syst.}} \pm 0.002_{\text{model}} \pm 0.004_{\text{group}} \text{ fm},$ $r_M = 0.777 \pm 0.013_{\text{stat.}} \pm 0.009_{\text{syst.}} \pm 0.005_{\text{model}} \pm 0.002_{\text{group}} \text{ fm}.$

Jan C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010), Phys. Rev. C 90, 015206 (2014)

Radius of the Proton

- 5 σ Discrepancy between atomic physics and electron scattering
- Situation still unclear
- Serious problem far beyond nuclear science: e.g. Rydberg Constant, Lepton Universality,...
- Extended experimental program in atomic and nuclear physics

Problem: Extrapolation $Q^2 \rightarrow 0$ required for Normalization

- Absolute normalization of cross section not better \approx 1%
- Extrapolation $Q^2 \rightarrow 0$ where $G_p^E(0) = 1$, extraction of $r_E^2 = \frac{d}{dO^2}G_E(Q^2)$
- Systematic error due to model assumptions

Idea: Information in radiative tail contains form factor information

- Final State Interaction contains known form factor (Elastic Line)
- Initial State Interaction: Cross section changes linear with form factor
- Disentangle via comparison Simulation \leftrightarrow Data

Initial State Radiation:

- Exact calculation in Simulation
- QED part is known
- Hadronic part?
 - Born terms: Form Factors
 - Excitations: Polarizabilities

First Results

- Better than 1% achievable!
- First measurement of $G_p^E(Q^2)$ in range

 $0.001 {\rm GeV}^2 < Q^2 < 0.004 {\rm GeV}^2$

- Systematic errors:
 - ► Target walls
 - Pion production
 - Backscattering target frame
 - Backscattering entrance flange
 - ► Radiative corrections

- Extension to low $Q^2 = 0.001$
- Statistical/systematic error not yet competitive
- First successful Initial State Radiation experiment in electron scattering

M. Mihovilovič, A. B. Weber, et al., submitted, arXiv:1612.06707

Error budget

Total systematic uncertainty of cross-section \leq 1.0 %

Next Generation

Internal Target designed for Magix@MESA

- Supersonic jet target
- No target walls
- Nearly pointlike target (2mm length)

First installed at A1:

- Luminosity of up to $L = 10^{34} \,\mathrm{cm}^{-1} \mathrm{s}^{-1}$
- No Background by Target walls or backscattering
- $Q^2 = 0.0001 \,\mathrm{GeV^2}$ achievable
- Status:
 - ► Core with cold head tested
 - ▶ Vacuum pumps delivered (9800 m^3/h)
 - ► Experiment scheduled for June 2017

Total systematic uncertainty of cross-section \leq 0.5 %

- Proton Radius Puzzle
 - ► Still unresolved
 - Huge impact beyond nuclear physics
- Initial State Radiation
 - Information in radiative tail can be used
 - ► Access to very low Q^2 now possible
 - ► First successfull experiment
- Future Experiment
 - Reduced systematic errors
 - ► Key ingredient: Gas Jet Target
 - ► Not discussed today: Other experiments (PRAD, MUSE, ...)