Study of corrections to the eikonal approximation C. HEBBORN^{*} AND P. CAPEL Physique Nucléaire et Physique Quantique, Université libre de Bruxelles, Belgium chloe.hebborn@ulb.ac.be, pierre.capel@ulb.ac.be

*FRIA scholarship

Motivation

• Halo nuclei: exotic structure with large matter radius due to one or two loosely-bound neutrons.

 \rightarrow Seen as a **compact core** with one or two valence neutrons. $Ex:^{11}Be \equiv {}^{10}Be + n$

The eikonal approximation and its corrections

Assumptions:

- Central potential V simulating the projectile (P) target (T) interaction
- In a first step, **elastic scattering** of structureless and spinless nuclei

Schrödinger equation:

 $\left(-\frac{\hbar^2}{2\mu}\Delta \boldsymbol{r} + V(r)\right)\Psi(\boldsymbol{r}) = E\Psi(\boldsymbol{r}),$

$^{11}\text{Li} \equiv {}^{9}\text{Li} + n + n$

Short-lived:

- \rightarrow Cannot be studied through spectroscopic methods
- \rightarrow Studied through **reaction processes:**
 - elastic scattering, breakup reactions,...
- \Rightarrow Need an accurate reaction model to infer reliable information
- The **eikonal model** is a quantal approximation which \oplus has a **reduced computational time** (factor of 8 gain from exact calculations) \oplus provides a **simple interpretation** of the reaction \ominus is valid only at high energies

 \Rightarrow Aim of this study: extend its range of validity to low energies where μ is the *P*-*T* reduced mass and *E* the energy.

The eikonal approximation: at high energy, the wave function \approx plane wave [1] $\Psi(\boldsymbol{r}) = e^{ikz} \,\widehat{\Psi}(\boldsymbol{r}) \quad \text{with } |\Delta_{\mathbf{r}}\widehat{\Psi}| \ll k \left|\frac{\partial}{\partial z}\widehat{\Psi}\right|$ \implies Solutions: $\Psi(\boldsymbol{r}) = e^{ikz}e^{i\chi(b)}$ with $\chi(b) = -\frac{1}{\hbar v}\int_{-\infty}^{z}V(b,z')dz'$ the eikonal phase P is seen as following a straight-line upon which it accumulates a phase through its interaction with T. At low energy: P is deflected by $T \rightarrow$ eikonal approximation not valid. \Rightarrow Two corrections to account for the deflection: ① Wallace's correction: perturbation development of the T-matrix [2] $T = (V + VgV) + VgNgV + \dots$ where g is the eikonal propagator.

(2) The semi-classical correction: $\chi(b) \rightarrow \frac{b'}{k} \chi(b')$, where b' is the *P*-*T* distance of closest approach computed using the real part of the potential [3,4].

Deflection of the trajectories at two b: the trajectory at b_1 is nuclear dominated at b_2 is Coulomb dominated

Cross sections and eikonal phases of the elastic scattering of ^{10}Be off ^{12}C

Wallace's correction (Wal.):

 $^{10}\text{Be} + ^{12}\text{C} @ 67\underline{A} \text{MeV}$

• nearly exact results @ 67A MeV but less effective @ 10A MeV • better reproduction of the oscillation pattern of the cross sections • shift of the results: σ to forward angles $e^{i\chi}$ to large b + Semi-classical correction to only the Coulomb interaction (Wal. + S-C (Coul.)): • compensation of the shift: σ to large angles $e^{i\chi}$ to small b \oplus better agreement with the exact results \ominus inaccurate at low energies and large angles \ominus lack of absorption at small b

2 The semi-classical correction to the whole interaction (S-C (Coul. + Nucl.)): • more accurate results at forward scattering angles • better reproduction of the oscillations \ominus insufficient at large angles \ominus lack of absorption at small b

Conclusions and prospects

Physique Quantique

Wallace's correction: small extension to low energies not sufficient at very low energies and large angles **②The semi-classical correction:** not accurate at large angles \Rightarrow Lack of absorption at small *b* and large angles

• To increase absorption: use a complex distance of closest approach computed with the whole optical potential • Generalization to two- and three-body projectile and breakup reactions

References

[1] R. J. Glauber, *High energy collision theory*, Lecture in theoretical physics, (1959). [2] S. J. Wallace, Ann. Phys. **78**, 190 (1972). [3] C. E. Aguiar, F. Zardi and A. Vitturi, Phys. Rev. C 56, 1511 (1997). [4] T. Fukui, K. Ogata, and P. Capel. Phys. Rev. C 90, 034617 (2014).

