Evgeny Epelbaum, RUB

55. International Winter Meeting on Nuclear Physics, 23 - 27 Januar 2017, Bormio, Italy

Status and perspectives of nuclear chiral EFT

- Chiral NN forces
- Uncertainty quantification
- Few-N systems and the quest for 3NF
- Electroweak current operators

EFTs for nuclear physics

A = 0,1: Chiral perturbation theory

A > 1: Halo-EFT (Q << ($\Delta E_{core} m$)^{1/2}), pionless EFT (Q << M_{π}), chiral EFT (Q ~ M_{π})

A >> 1: In-medium chiral EFT; EFTs using collective DOFs (e.g. to describe deformed nuclei)

Chiral perturbation theory

• Ideal world [$m_u = m_d = 0$], zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)

• Real world [m_u , $m_d \ll \Lambda_{QCD}$], low energy: weakly interacting light GBs (+ strongly interacting massive hadrons)

expand about the ideal world (ChPT)

Chiral Perturbation Theory Weinberg, Gasser, Leutwyler, Meißner, ...

Expansion of the scattering amplitude in powers of

 $Q = \frac{\text{momenta of pions and nucleons or } M_{\pi} \sim 140 \text{ MeV}}{\text{hard scales [at best } \Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}]} \text{ Manohar, Georgi '84}$

Tool: Feynman calculus using the effective chiral Lagrangian

Pion-nucleon scattering up to Q⁴

Fettes, Meißner '00; Becher, Leutwyler '01; Krebs, Gasparyan, EE '12; Alarcon, Camalich, Oller '12; Chen, Yao, Zheng '13; Wendt et al. '14; Siemens et al. '16; Yao et al. '16, ...

Nuclear chiral EFT

Chiral EFT for nuclear systems: expansion for nuclear forces + resummation (Schrödinger eq.) Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right] |\Psi\rangle = E|\Psi\rangle \qquad \boxed{\mathbf{T}} = \underbrace{\mathbf{V}_{\text{eff}}}_{\mathbf{V}} + \underbrace{\mathbf{$$

Notice:

- Much more involved than calculating Feynman diagrams (unitary trafos, TOPT, S-matrixmatching, ...), potentials are not unique, renormalizability is not guaranteed a priori...
- LS equation is linearly divergent already at LO
 —> infinitely many CTs are needed to absorb all UV divergences from iterations!

Commonly used approach [EGM, EM, EKM, Gezerlis et al.'14, Piarulli et al.'15, Carlsson et al.'16, ...]:

- Introduce a finite UV regulator R $\sim R_b~(\Lambda_b \sim 600~MeV)$
- Include short-range operators in V_{NN} according to NDA ← ^{minimal possible set;} alternatives have been proposed...
- Solve the LS equation & tune the **bare** LECs C_i(R) to data (implicit renormalization)
- (Numerical) self-consistency checks via error analysis and R-variation
 See: Lepage, "How to renormalize the Schrödinger equation", nucl-th/9607029 and talk@INT in 2000

Alternative: renormalizable approach based on the Lorentz invariant \mathcal{L}_{eff} [EE, Gegelia '12]

See also: *Nuclear Effective Field Theories — the crux of the matter*, open discussion by Mike Birse and EE at the KITP program "Frontiers in Nuclear Physics", August 22 - November 4, 2016, available at <u>http://online.kitp.ucsb.edu/online/nuclear16/</u>

Chiral expansion of the nuclear forces

Why go to fifth order (N⁴LO) in the chiral expansion?

- no additional parameters in the NN force (except for 1 IB term) \rightarrow testing the theory
- there is evidence that χ -expansion for the 3NF is not yet converged at Q⁴

The long-range part of the nuclear forces

Long-range nuclear forces are completely determined by the chiral symmetry of QCD + experimental information on πN scattering

The TPE potential can be derived by taking the phase-space integral of the π N amplitudes computed in ChPT (Lorentz-transformed to the proper kinematics...) Kaiser '00

Determination of the low-energy constants

All relevant LECs (in GeV⁻ⁿ) extracted from πN scattering Krebs, Gasparyan, EE '12

	c_1	c_2	C ₃	c_4	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{17}
$[Q^4]_{\rm HB, NN}, {\rm GW PWA}$	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-0.58
$[Q^4]_{\rm HB,NN},{\rm KH}$ PWA	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-0.37
$[Q^4]_{\rm covariant},{\rm data}$	-0.82	3.56	-4.59	3.44	5.43	-4.58	-0.40	-9.94	-0.63	-0.90

Related recent work (all calculations lead to similar values of the LECs):

- determination of the LECs from πN data wendt et al. '14; Siemens et al. '16
- LECs from Roy-Steiner-eq. analysis of π N-scattering Hoferichter et al. '15; Yao et al. '16; Siemens et al. '16

With the LECs taken from πN , the long-range NN force is completely fixed (parameter-free)

The short-range part of the nuclear force (contact interactions)

Organizational principle for contact terms according to NDA (Weinberg's counting)

Local r-space regulator for V_{π} [R = 0.8...1.2 fm], nonlocal Gaussian regulator for V_{cont}

NN phase shifts order by order [R = 0.9 fm]

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; PRL 115 (2015) 122301

Other chiral NN potentials on the market:

- 1st generation χ N³LO forces (nonlocal) [Epelbaum-Glöckle-Meißner '04, Entem-Machleidt '03]
- fully local potentials up to N²LO [Gezerlis et al. '14]; minimally nonlocal N³LO potential including N²LO Δ(1232) contributions [Piarulli et al.'15]
- N²LO potentials by the Oak Ridge group tuned to heavier nuclei [Ekström, Carlsson et al.]

Evidence of the 2π -exchange

Predictive power?

Long-range interactions are completely determined by the chiral symmetry & experimental information on πN scattering

predicted in a parameter-free way

	TO	NT O	N2T O		MAT O	
Energy bin	LO	NLO	N ² LO	NºLO	N⁴LO	
neutron-proton dat	a					
$0-100~{\rm MeV}$	130.11	3.79 no new	1.46	1.08 +1 LEC	1.08	
$0-200~{\rm MeV}$	104.71	19.88	3.21	1.14 (¹ S ₀)	1.09	
$0-300~{\rm MeV}$	111.24	52.03	8.78	1.51	1.15	
proton-proton data						
$0-100~{\rm MeV}$	2046.58	33.68	6.67	0.86 no new	0.84	
$0-200~{\rm MeV}$	1649.58	115.60	81.11	$1.95 \xrightarrow{LECs}$	1.34	
$0-300 { m MeV}$	1301.41	104.38	84.24	2.73	1.46	
	2 LECs	+ 7 + 2 IB LECs		+ 15 LECs	+ 1 IB LE(C

preliminary: Reinert et al., in preparation

Clear evidence of the (parameter-free) chiral 2π -exchange!

Uncertainty quantification

A simple algorithm for estimating uncertainty from the truncation of the chiral expansion: EE, Krebs, Meißner, EPJA 51 (2015) 53

For any observable:
$$X^{(i)}(p) = X^{(0)} + \Delta X^{(2)} + \dots + \Delta X^{(i)}$$

 $\sim Q^2 X^{(0)} + \dots + \Delta X^{(i)}$
 $\sim Q^i X^{(0)}$ with $Q = \max(p/\Lambda_b, M_\pi/\Lambda_b)$

Use the explicitly calculated $\Delta X^{(i)}$ to estimate the uncertainty $\delta X^{(i)}$ at order Qⁱ:

 $\delta X^{(0)} = Q^2 |X^{(0)}|,$

 $\delta X^{(i)} = \max_{2 \leq j \leq i} \left(Q^{i+1} | X^{(0)} |, \, Q^{i+1-j} | \Delta X^{(j)} |
ight)$

subject to the additional constraint

 $\delta X^{(i)} \, \geq \, \max_{j,k} ig(|X^{(j \geq i)} - X^{(k \geq i)}| ig).$

- no reliance on the cutoff variation (not reliable)
- easily applicable to any observable (scattering, bound states, 3N, ...)
- of course, no reliance on exp. data
- for σ_{tot}, errors found to be consistent with 68% degree-of-belief intervals
 Furnstahl et al., PRC 92 (2015) 024005

proton-neutron scattering observables at Elab=143 MeV

Examples in the NN sector

What accuracy is achievable?

Chiral expansion of the neutron-proton total cross section

Scattering lengths and effective range parameters extracted from the data

	predictions at N ⁴ LO	Experimental/Empirical values
neutron-proton		
$a_{^{1}S_{0}}$ [fm]	-23.733(6)	-23.740(20)
$r_{^{1}\mathrm{S}_{0}}$ [fm]	2.677(7)	2.77(5)
$a_{^{3}S_{1}}$ [fm]	5.419(1)	5.419(7)
$r_{^{3}\mathbf{S}_{1}}$ [fm]	1.752(0)	1.753(8)
proton-proton		
$a_{^{1}S_{0}}$ [fm]	-7.816(1)	-7.817(4)
$r_{^{1}S_{0}}$ [fm]	2.773(2)	2.78(2)

preliminary: Reinert et al., in preparation

Beyond the 2N system

LENPIC Collaboration

Goal: precision tests of chiral nuclear forces & currents in light nuclei

Strategy: go to high orders, do not compromise the π N LECs, no fine tuning to heavy nuclei, careful error analysis

Few-N results without 3NF

LENPIC Collaboration (Binder et al.), PRC 93 (2016) 04402

Is there evidence for missing 3N forces effects? Yes!

• Discrepancies between theory and data well outside the range of quantified uncertainties

→ clear evidence for missing 3NF effects

TECHNISCHE UNIVERSITAT DAR/NSTADT

RUB

universitätbon

• Magnitude of the required 3NF contributions matches well the estimated size of N²LO terms

💑 🕗 JÜLICH 👯

National Laboratory

→ consistent with the chiral power counting

INCHILLONGIAN UNIVERSITY

LENPIC: Low Energy Nuclear Physics International Collaboration

Few-N results without 3NF

LENPIC Collaboration (Maris et al.), EPJ Web of Conf. 113 (2016) 04015

Brueckner-Hartree-Fock without 3NF

Jinniu Hu, Ying Zhang, EE, Ulf-G. Meißner, Jie Meng, arXiv:1612.05433 [nucl-th]

----- Estima

Estimated accuracy at N⁴LO at the saturation density:

± 0.3 MeV for SNM, ± 0.7 MeV for PNM

$$a_{
m symm}(
ho) = \left(rac{E}{A}
ight)_{
m PNM} - \left(rac{E}{A}
ight)_{
m SNM}$$

$$L=3
horac{\partial(E/A)_{
m SNM}}{\partial
ho}$$

Chiral expansion of the 3NF

Some PRELIMINARY results with 3NF

The LECs D, E are determined from the ³H and the Nd cross section minimum @70 MeV (RIKEN data)

The results are **preliminary**:

 still have to analyze different ways to determine D and E, check other sources of uncertainties, ...

 c_i

Nuclear systems from lattice χEFT

Nuclear lattice simulations:

A novel ab initio approach to nuclei and nuclear reactions D. Lee, EE, H. Krebs, T. Lähde, T. Luu, U.-G. Meißner, G. Rupak, ...

Some recent highlights:

Ab initio calculation of the Hoyle state

EE, H. Krebs, D. Lee, U.-G. Meißner, PRL 106 (11) 192501; EE, H. Krebs, T.A.Lähde, D. Lee, U.-G. Meißner, PRL 109 (12) 252501

Viability of Carbon-based life as a function of light quark masses EE, H. Krebs, T. A. Lähde, D. Lee, U.-G. Meißner, PRL 110 (13) 112502; EPJA 49 (13) 82

Ab initio calculation of the spectrum and structure of ¹⁶O EE, H. Krebs, T. A. Lähde, D. Lee, U.-G. Meißner, G. Rupak, PRL 112 (14) 102501

Lattice EFT for medium-mass nuclei ("triangulation" method for Euclidean-time extrapol.)

T. A. Lähde, EE, H. Krebs, D. Lee, U.-G. Meißner, G. Rupak, PLB 732 (14) 110

 $E_{8Be, old} = -55(2) \text{ MeV}$ $E_{8Be, new} = -56.4(2) \text{ MeV}$

Symmetry-sign extrapol.

T.A. Lähde, T. Luu, D. Lee, U.-G. Meißner, EE, H. Krebs, G. Rupak, EPJ A51 (15) 92

Nuclear binding energy near a quantum phase transition

Elhatisari et al., PRL 117 (2016) 132501

Nuclear systems from lattice χEFT

Lab

nature

Ab initio alpha-alpha scattering

Serdar Elhatisari¹, Dean Lee², Gautam Rupak³, Evgeny Epelbaum⁴, Hermann Krebs⁴, Timo A. Lähde⁵, Thomas Luu^{1,5} & Ulf–G. Meißner^{1,5,6}

Nature 528, 111–114 (03 December 2015) | doi:10.1038/nature16067 Received 12 June 2015 | Accepted 30 September 2015 | Published online 02 December 2015

First ab initio calculation of alpha-alpha scattering!

Used lattice EFT to extract the effective Hamiltonian for two interacting α-clusters (adiabatic projection method [A. Rokash et al., PRC 92 (15) 054612])

Phase shifts obtained $[emp] = [N_{\tau}^{-1/2}H_{\tau}N_{\tau}^{-1/2}]_{R,R}^{\ell,\ell_2}$ loying a hard spherical wall boundary at asymptotically large distances

Promising scaling with respect to the number of particles as $\sim (A_1 + A_2)^2$

6

E_{Lab} (MeV)

8

10

12

0

2

Neutron skin of ⁴⁸Ca

nature physics

ARTICLES

PUBLISHED ONLINE: 2 NOVEMBER 2015 | DOI: 10.1038/NPHYS352

Neutron and weak-charge distributions of the ⁴⁸Ca nucleus

G. Hagen^{1,2*}, A. Ekström^{1,2}, C. Forssén^{1,2,3}, G. R. Jansen^{1,2}, W. Nazarewicz^{1,4,5}, T. Papenbrock^{1,2},
 K. A. Wendt^{1,2}, S. Bacca^{6,7}, N. Barnea⁸, B. Carlsson³, C. Drischler^{9,10}, K. Hebeler^{9,10},
 M. Hjorth-Jensen^{4,11}, M. Miorelli^{6,12}, G. Orlandini^{13,14}, A. Schwenk^{9,10} and J. Simonis^{9,10}

- First ab-initio (coupled-cluster) calculation of the neutron distribution in ⁴⁸Ca
- Used NNLO_{sat} NN + 3NF tuned to energies and radii of up to A ~ 25 nuclei (also EM N³LO NN + N²LO 3NF)

• Neutron skin significantly smaller than expected from DFT and robust (correlations)

 \bullet Prediction of the electric dipole polarizability α_D

Nuclear current operators in chiral EFT

EM currents:

- Kölling, EE, Krebs, Meißner (method of UT), PRC 80 (09) 045502; 86 (12) 047001
- Jlab-Pisa group (TOPT), Pastore et al. '08 '11

Axial currents:

- Krebs, EE, Meißner (MUT), arXiv:1610.03569, to appear in Annals of Physics
- Jlab-Pisa group (TOPT), Baroni et al. '16
- Hoferichter, Klos, Schwenk '15

(Our) requirements on the current operators:

- must be off-shell consistent with the forces
- should be **renormalized** (exploit unitary ambiguity)
- (cutoff) regularization of the forces and currents should **maintain the symmetry** (cont. equation)

Electromagnetic currents

Chiral expansion of the electromagnetic current and charge operators

Electromagnetic exchange currents

Skibinski, Golak, Topolnicki, Witala, EE, Krebs, Kamada, Meißner, Nogga, PRC 93 (2016) 064002

- To maintain consistency between currents and forces (symmetry), we generate regularized longitudinal terms in the current via the continuity equation (i.e. Siegert approach).
- Transverse terms in the currents are to be regularized and included explicitly (in progress...)

Magnetic form factors of ³He, ³H

Piarulli, Girlanda, Marcucci, Pastore, Schiavilla, Viviani, Phys. Rev. C87 (2013) 014006

• ³He/³H m.m's used to fix EM LECs; ~15% correction from two-body currents

• Exchange currents crucial to improve agreement with exp data

Magnetic moments of light nuclei

Pastore, Pieper, Schiavilla, Wiringa, Phys. Rev. C87 (2013) 035503

- Hybrid GFMC calculations using AV18 + Urbana 3NF
- Magnetic moments of A = 2, 3 nuclei used to fix EM LECs
- Theoretical uncertainties?

Exchange axial currents Krebs, EE, Meißner, arXiv:1610.03569

Chiral expansion of the axial current and charge operators

Tritium \beta-decay [Skibinski et al., in progress]

5

 C_D

JÜLICH 💦

-5

0

- Half-life of ³H (up to known radiative corrections): constraints on the Gamow-Teller ME
- Using 1N current, the *ft* value is off by ~ 5% ← exchange current contribution! Up to Q¹ (i.e. N³LO), no LECs except for known c_i and c_D involved. Fixing c_D in the strong sector allows one to predict ft! (it is crucial to maintain the symmetry)

→ test axial exchange currents

- Within the LENPIC, work is in progress on the determination of **c**_D.
- Being validated in ³H β -decay, the same currents can be used to predict the μ capture rate on ²H being measured in MuSun

INIVERSITAT

RUMF

RUB

Relevance for WIMP-nucleus scattering

Assuming the WIMP χ to be fermion and a SM singlet, the dimension-6 and -7 effective Lagrangian for χ -SM fields has the form [Goodman et al. '10; Hoferichter et al. '15]:

...can be viewed as external sources in QCD...

- Vector, axial-vector and pseudoscalar 2N currents have been worked out at order Q⁴ (leading 1-loop) [Pastore et al.'08; Kölling et al.'09,'11; Krebs et al.'15; Hoferichter et al.'15]
- Scalar exchange currents are only available at tree level [Cirigliano et al.'14], derivation of the leading loop corrections in progress [Krebs et al., in preparation...]

The future

What are the frontiers/challenges for the near future?

Precision physics beyond the 2N system: challenge the theory

- Lots of predictive power (N³LO contributions to the 3NF and 4NF are parameter-free, ³H β-decay & μ-capture reactions are parameter-free up to N³LO once the short-range 3NF@N²LO is fixed, ...)
- 3NF & long-standing puzzles in 3N continuum
- Push theory to heavier nuclei (underbinding? radii?)
- More reliable error analysis
- Test different power counting schemes

Nuclear reactions

Chiral EFT as a tool to deal with nuclear effects when looking at physics of/beyond the SM (parity violation, EDM, $0\nu\beta\beta$, proton charge radius,...)

EFT for lattice QCD (extrapolations), lattice QCD for EFT (quark mass dependence, "data", …)