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Chiral NN forces
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Few-N systems and the quest for 3NF
Electroweak current operators



 
EFTs for nuclear physics

A = 0,1: Chiral perturbation theory

A > 1:    Halo-EFT (Q << (ΔEcore m)1/2), pionless EFT (Q << Mπ),    "
              chiral EFT (Q ~ Mπ)

A >> 1:  In-medium chiral EFT;  EFTs using collective DOFs "
             (e.g. to describe deformed nuclei)



 
Chiral perturbation theory

Ideal world [                       ], zero-energy limit: non-interacting massless GBs "
(+ strongly interacting massive hadrons) 

Real world [                            ], low energy: weakly interacting light GBs "
(+ strongly interacting massive hadrons) 

expand about the ideal world (ChPT)

mu = md = 0

1

mu, md ⌧ �QCD

1



 Chiral Perturbation Theory
Expansion of the scattering amplitude in powers of

Q = 
momenta of pions and nucleons or Mπ  ~ 140 MeV

hard scales [at best Λχ = 4πFπ ~ 1 GeV] Manohar, Georgi ’84

Tool: Feynman calculus using the effective chiral Lagrangian 
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N̄Ô(2)[⇤]N

⇥

c3 = �3.88868749 GeV�1

(�c3)
N3LO, loops = 0.85 GeV�1

T (s ) = U(s ) +
⌃ ⌅

4m2
N

ds⇤

⇤

s� µ2
M

s⇤ � µ2
M

T (s) ⌅(s⇤)T ⇥(s⇤)

s⇤ � s� i⇥
. (1)

1

Le� = L⇥ + L⇥N

LEC N2LO fits ⇧ + ⌅+ ⌃

C̃res
1S0 �(0.12 . . . 0.16) �0.12

Cres
1S0 (1.16 . . . 1.37) 1.28

C̃res
3S1 �(0.13 . . . 0.16) �0.10

Cres
3S1 (0.42 . . . 0.72) 0.66

Cres
�1 �(0.36 . . . 0.47) �0.41

Le� = L⇥ + L⇥N

L⇥ = L(2)
⇥ + L(4)

⇥ + . . .

L⇥N = L(1)
⇥N + L(2)

⇥N + L(3)
⇥N + . . .

L⇥ = L(2)
⇥ + L(4)

⇥ + . . .

L⇥N = N̄
⇤
i�µDµ[⇤]�m+

gA
2
�µ�5uµ[⇤]

⌅
N +

⇧

i
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low-energy constants
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Pion-nucleon scattering up to Q4

Order Q4:

Order Q3:

Order Q2:

Order Q:
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Fettes, Meißner ’00; Becher, Leutwyler ’01; Krebs, Gasparyan, EE ’12; Alarcon, Camalich, Oller ’12; Chen, Yao, Zheng ’13; Wendt et al. ’14; Siemens et al. ’16; Yao et al. ’16, …

FIG. 5: ⇡+p ! ⇡+p di↵erential cross section at T
⇡

= 43.3 MeV as a representative example of
the quality of our fits (carried out to all available data for T

⇡

< 100 MeV). In the upper panel,
the orange, pink and red (dotted, dashed and solid) bands refer to Q2, Q3 and Q4 results in the
covariant approach including theoretical uncertainties, respectively. In the lower panel the orange,
pink and red (dotted, dashed and solid) bands refer to Q2 + �1, Q3 + �1 and Q4 + �1 results in the
covariant approach including theoretical uncertainties, respectively. Experimental data of Ref. [63]
are taken from the GWU-SAID data base [61].
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π+p → π+p @ Tπ = 43.3 MeV

Q2

Q3

Q4

Siemens et al., PRC 94 (2016) 014620
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Weinberg, Gasser, Leutwyler, Meißner, ... 



 Nuclear chiral EFT
Chiral EFT for nuclear systems: expansion for nuclear forces + resummation (Schrödinger eq.)
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Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ... 

Notice:
Much more involved than calculating Feynman diagrams (unitary trafos, TOPT, S-matrix-
matching, …), potentials are not unique, renormalizability is not guaranteed a priori… 

See: Lepage, „How to renormalize the Schrödinger equation“,  nucl-th/9607029 and talk@INT in 2000 

LS equation is linearly divergent already at LO            infinitely many CTs are needed to 
absorb all UV divergences from iterations!

— Introduce a finite UV regulator R ~ Rb (Λb ~ 600 MeV)

— Solve the LS equation & tune the bare LECs Ci(R) to data (implicit renormalization)
— (Numerical) self-consistency checks via error analysis and R-variation

Commonly used approach [EGM, EM, EKM, Gezerlis et al.’14, Piarulli et al.’15, Carlsson et al.’16, …]:

— Include short-range operators in VNN according to NDA minimal possible set;"
alternatives have been proposed…

Alternative: renormalizable approach based on the Lorentz invariant Leff  [EE, Gegelia ’12]

See also: Nuclear Effective Field Theories — the crux of the matter, open discussion by Mike Birse and EE at the KITP program!
               „Frontiers in Nuclear Physics“, August 22 - November 4, 2016, available at http://online.kitp.ucsb.edu/online/nuclear16/



 Chiral expansion of the nuclear forcesNuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

being investigated…have been worked out 
Entem, Kaiser, Machleidt, Nosyk, PRC 91 (2015) 014002
EE, Krebs, Meißner, PRL 115 (2015) 122301

Why go to fifth order (N4LO) in the chiral expansion?
— no additional parameters in the NN force (except for 1 IB term) ➙ testing the theory
— there is evidence that χ-expansion for the 3NF is not yet converged at Q4



 The long-range part of the nuclear forces
Nuclear χEFT in the Precision Era Evgeny Epelbaum

πN scattering 2π-exchange 

NN force

long- and intermediate-range parts of the 3NF

Figure 2: The long-range part of the nuclear force is completely predicted by the chiral symmetry
of QCD and experimental information on the pion-nucleon system.

part of the interaction and thus maintains the analytic structure of the amplitude in the low-energy
domain. This feature is in contrast with the non-local momentum-space regulator employed in the
first-generation NN potentials of Refs. [47, 48] of the type

V (p⃗, p⃗ ′)→V reg(p⃗, p⃗ ′) =V (p⃗, p⃗ ′)exp
(

−
p2n+ p′2n

Λ2n

)

, n= 2,3 , (2.7)

where p⃗, p⃗ ′ are the initial and final momenta of the nucleons in the center of mass system (CMS),
which distorts the long-range part of the interaction. Another advantage of the regulator in Eq. (2.5)
is that it cuts off precisely the undesired short-range components of the pion exchange contributions
which cannot be meaningfully predicted in chiral EFT instead of their large-momentum parts as
does the non-local regulator in Eq. (2.7). This makes the additional spectral-function regularization
(SFR) [75] of the two-pion exchange components, which was used e.g. in Refs. [48, 76] to tame
the unphysically strong attraction at short distances at N2LO [41], obsolete. This is a particularly
welcome feature in view of the ongoing and upcoming 3NF studies, in which the implementation
of the SFR would be rather non-trivial. The insensitivity of the calculated NN observables to the
value of the exponent in Eq. (2.5) is demonstrated in [18]. For contact interactions, we used in
Refs. [18, 19] a non-local Gaussian regulator in momentum space with the cutoff set to Λ= 2/R.

2.3 Determination of the LECs

I am now in the position to specify the employed values of the various LECs and begin with
the long-range part of the potential due to exchange of pion(s). Here, the framework of chiral
EFT shows its full power by allowing one to predict the long-range part of the nuclear force in a
parameter-free way using the available experimental information on the pion-nucleon system and
exploiting the constraints due to the chiral symmetry of QCD as visualized schematically in Fig. 2.
At orders N2LO, N3LO and N4LO, one needs to specify the values of the order-Q2, order-Q3 and
order-Q4 πN LECs ci, di and ei, respectively. At N2LO and N3LO, we used in [18] the values
of c1 = −0.81, c2 = 3.28, c3 = −4.69, c4 = 3.40, d̄1 + d̄2 = 3.06, d̄3 = −3.27, d̄5 = 0.45 and
d̄14 − d̄15 = −5.65 from the order-Q3 fits to πN data in the physical region [77] and inside the
Mandelstam triangle [78]. Further, the LEC d18 is adjusted to reproduce the observed value of the
Goldberger-Treiman discrepancy. Here and in the following, the values of the LECs are given in
units of GeV−n. The bars over the LECs indicate that I am using the convention of Ref. [77] by
setting the dimensional regularization scale equal to the pion mass. At N4LO, we employ the values
from our order-Q4 fit to Karlsruhe-Helsinki partial-wave analysis of πN scattering [55], namely:
c1 =−0.75, c2 = 3.49, c3 =−4.77, c4 = 3.34, d̄1+ d̄2 = 6.21, d̄3 =−6.83, d̄5 = 0.78, d̄14− d̄15 =
−12.02, ē14 = 1.52 and ē17 =−0.37. These values are in a reasonable agreement with the ones of
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Long-range nuclear forces are completely determined by the  
chiral symmetry of QCD + experimental information on πN scattering

predicted in a parameter-free way

Ordonez et al.;  Kaiser;  EE, Krebs, Meißner; Entem, Machleidt; …
The long-range NN force up to N4LO [Q5] 

3π-exchange potential is considerably 
weaker than the 2π-one and is 

described by contacts

order-Q2 πN 
amplitude

πN amplitude up to"
 order Q4

πN amplitude up 
to order-Q3

The TPE potential can be derived by taking the phase-space integral of the πN amplitudes 
computed in ChPT (Lorentz-transformed to the proper kinematics…) Kaiser ’00



 
All relevant LECs (in GeV-n) extracted from πN scattering Krebs, Gasparyan, EE ’12

Determination of the low-energy constants

Related recent work (all calculations lead to similar values of the LECs ):
— determination of the LECs from πN data
— LECs from Roy-Steiner-eq. analysis of πN-scattering Hoferichter et al. ’15;  Yao et al. ’16;  Siemens et al. ’16

Wendt et al. ’14;  Siemens et al. ’16

With the LECs taken from πN, the long-range NN force is completely fixed (parameter-free)

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē17

[Q4]HB,NN, GW PWA �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �0.58

[Q4]HB,NN, KH PWA �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �0.37

[Q4]covariant, data �0.82 3.56 �4.59 3.44 5.43 �4.58 �0.40 �9.94 �0.63 �0.90

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē15 ē16 ē17 ē18
fit to GW, Ref. [?] �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �5.80 1.76 �0.58 0.96
fit to KH, Ref. [?] �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �10.41 6.08 �0.37 3.26
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”�2/datum” (np, 0-200 MeV) = 1.8R=1.2 fm ! 0.8R=1.1 fm ! 0.6R=1.0 fm ! 0.7R=0.9 fm ! 0.8R=0.8 fm ,

while the results for pp channels are:

”�2/datum” (pp, 0-200 MeV) = 8.2R=1.2 fm ! 2.2R=1.1 fm ! 0.6R=1.0 fm ! 0.7R=0.9 fm ! 2.1R=0.8 fm .
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1

LO [Q0]:
NLO [Q2]:

N3LO [Q4]:

2 operators (S-waves)
+ 7 operators (S-, P-waves and ε1)

+ 15 operators (S-, P-, D-waves and ε1, ε2) 
N4LO [Q5]: no new isospin-conserving operators

N2LO [Q3]: no new isospin-conserving operators

The short-range part of the nuclear force (contact interactions)
Organizational principle for contact terms according to NDA (Weinberg’s counting)

Local r-space regulator for Vπ [R = 0.8…1.2 fm], nonlocal Gaussian regulator for Vcont
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TABLE III: �2/datum for the description of the Nijmegen neutron-proton and proton-proton phase shifts [25] as described in
the text at di↵erent orders in the chiral expansion for the cuto↵ R = 0.9 fm. Only those channels are included which have been
used in the N3LO/N4LO fits, namely the S-, P- and D-waves and the mixing angles ✏1 and ✏2.

Elab bin LO NLO N2LO N3LO N4LO

neutron-proton phase shifts

0–100 360 31 4.5 0.7 0.3

0–200 480 63 21 0.7 0.3

proton-proton phase shifts

0–100 5750 102 15 0.8 0.3

0–200 9150 560 130 0.7 0.6
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FIG. 1: Chiral expansion of the NN phase shifts in comparison with the NPWA [25] (solid dots) and the GWU single-energy
np partial wave analysis [58] (open triangles). Dotted, dashed, dashed-dotted, dashed-double-dotted and solid lines show the
results at LO, NLO, N2LO, N3LO and N4LO, respectively, calculated using the cuto↵ R = 0.9 fm. Only those partial wave are
shown which have been used in the fits at N3LO/N4LO.

 NN phase shifts order by order [R = 0.9 fm]
EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  PRL 115 (2015) 122301

1st generation χ N3LO forces (nonlocal) [Epelbaum-Glöckle-Meißner ’04, Entem-Machleidt ’03]

Other chiral NN potentials on the market:

fully local potentials up to N2LO [Gezerlis et al. ’14]; minimally nonlocal N3LO potential including 
N2LO Δ(1232) contributions [Piarulli et al.’15]

N2LO potentials by the Oak Ridge group tuned to heavier nuclei [Ekström, Carlsson et al.]



Energy bin N3LO Idaho 500/600 N4LO/N4LO+ CD Bonn 2000 AV18

neutron-proton data

0 � 100 MeV 1.17/1.35 1.08/1.08 1.08 1.08

0 � 200 MeV 1.17/1.33 1.09/1.10 1.07 1.10

0 � 300 MeV 1.24/1.38 1.15/1.13 1.09 1.13

proton-proton data

0 � 100 MeV 0.96/1.28 0.84/0.84 0.84 0.84

0 � 200 MeV 1.28/1.55 1.34/0.97 0.95 0.97

0 � 300 MeV 1.37/2.04 1.46/1.18 0.99 1.18

Energy bin LO NLO N2LO N3LO N4LO N4LO+

neutron-proton data

0 � 100 MeV 130.11 3.79 1.46 1.08 1.08 1.08

0 � 200 MeV 104.71 19.88 3.21 1.14 1.09 1.10

0 � 300 MeV 111.24 52.03 8.78 1.51 1.15 1.13

proton-proton data

0 � 100 MeV 2046.58 33.68 6.67 0.86 0.84 0.84

0 � 200 MeV 1649.58 115.60 81.11 1.95 1.34 0.97

0 � 300 MeV 1301.41 104.38 84.24 2.73 1.46 1.18
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2 LECs + 7 + 2 IB LECs + 15 LECs + 1 IB LEC + 5 LEC

no new !
LECs

+1 LEC !
(1S0)

no new !
LECs

Clear evidence of the (parameter-free) chiral 2π-exchange! 

 Evidence of the 2π-exchange
Predictive power?

Nuclear χEFT in the Precision Era Evgeny Epelbaum

πN scattering 2π-exchange 

NN force

long- and intermediate-range parts of the 3NF

Figure 2: The long-range part of the nuclear force is completely predicted by the chiral symmetry
of QCD and experimental information on the pion-nucleon system.

part of the interaction and thus maintains the analytic structure of the amplitude in the low-energy
domain. This feature is in contrast with the non-local momentum-space regulator employed in the
first-generation NN potentials of Refs. [47, 48] of the type

V (p⃗, p⃗ ′)→V reg(p⃗, p⃗ ′) =V (p⃗, p⃗ ′)exp
(

−
p2n+ p′2n

Λ2n

)

, n= 2,3 , (2.7)

where p⃗, p⃗ ′ are the initial and final momenta of the nucleons in the center of mass system (CMS),
which distorts the long-range part of the interaction. Another advantage of the regulator in Eq. (2.5)
is that it cuts off precisely the undesired short-range components of the pion exchange contributions
which cannot be meaningfully predicted in chiral EFT instead of their large-momentum parts as
does the non-local regulator in Eq. (2.7). This makes the additional spectral-function regularization
(SFR) [75] of the two-pion exchange components, which was used e.g. in Refs. [48, 76] to tame
the unphysically strong attraction at short distances at N2LO [41], obsolete. This is a particularly
welcome feature in view of the ongoing and upcoming 3NF studies, in which the implementation
of the SFR would be rather non-trivial. The insensitivity of the calculated NN observables to the
value of the exponent in Eq. (2.5) is demonstrated in [18]. For contact interactions, we used in
Refs. [18, 19] a non-local Gaussian regulator in momentum space with the cutoff set to Λ= 2/R.

2.3 Determination of the LECs

I am now in the position to specify the employed values of the various LECs and begin with
the long-range part of the potential due to exchange of pion(s). Here, the framework of chiral
EFT shows its full power by allowing one to predict the long-range part of the nuclear force in a
parameter-free way using the available experimental information on the pion-nucleon system and
exploiting the constraints due to the chiral symmetry of QCD as visualized schematically in Fig. 2.
At orders N2LO, N3LO and N4LO, one needs to specify the values of the order-Q2, order-Q3 and
order-Q4 πN LECs ci, di and ei, respectively. At N2LO and N3LO, we used in [18] the values
of c1 = −0.81, c2 = 3.28, c3 = −4.69, c4 = 3.40, d̄1 + d̄2 = 3.06, d̄3 = −3.27, d̄5 = 0.45 and
d̄14 − d̄15 = −5.65 from the order-Q3 fits to πN data in the physical region [77] and inside the
Mandelstam triangle [78]. Further, the LEC d18 is adjusted to reproduce the observed value of the
Goldberger-Treiman discrepancy. Here and in the following, the values of the LECs are given in
units of GeV−n. The bars over the LECs indicate that I am using the convention of Ref. [77] by
setting the dimensional regularization scale equal to the pion mass. At N4LO, we employ the values
from our order-Q4 fit to Karlsruhe-Helsinki partial-wave analysis of πN scattering [55], namely:
c1 =−0.75, c2 = 3.49, c3 =−4.77, c4 = 3.34, d̄1+ d̄2 = 6.21, d̄3 =−6.83, d̄5 = 0.78, d̄14− d̄15 =
−12.02, ē14 = 1.52 and ē17 =−0.37. These values are in a reasonable agreement with the ones of
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Long-range interactions are completely determined by the chiral symmetry & 
experimental information on πN scattering

predicted in a parameter-free way

preliminary: Reinert et al., in preparation
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Figure 8: Predictions for the np differential cross section dσ/dΩ, the analyzing power Ay, the
rotation parameter R, the polarization-transfer parameters Dt , Rt and At and the spin-correlation
parameters Cnn, Ckp, Cpp, Ckk, Azx and Azz at Elab = 143MeV calculated up to N4LO based on the
cutoff of R = 0.9fm. Data for the cross section are at Elab = 142.8MeV and taken from [92] and
for the analyzing power from [93]. For remaining notation see Fig. 6.

Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results
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A simple algorithm for estimating uncertainty from the truncation of the chiral expansion:
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proton-neutron scattering observables at Elab=143 MeV 

EE, Krebs, Meißner, EPJA 51 (2015) 53
estimated from the error !

plots Λb ~ 600 MeV

Use the explicitly calculated ΔX(i) to 
estimate the uncertainty δX(i) at order Qi:

subject to the additional constraint

easily applicable to any observable"
(scattering, bound states, 3N, …)

no reliance on the cutoff variation"
(not reliable)

for σtot, errors found to be consistent 
with 68% degree-of-belief intervals
Furnstahl et al., PRC 92 (2015) 024005 
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Figure 7: Chiral expansion of the np total cross section at different energies based on R = 0.9 fm
in comparison with experimental data of Ref. [90]. The horizontal band shows the result of the
NPWA.

Table 2: Deuteron binding energy Bd (in MeV), asymptotic S state normalization AS (in fm−1/2),
asymptotic D/S state ratio η , radius rd (in fm), quadrupole moment Q (in fm2) and the D-state
probability PD (in %) based on the cutoff R= 0.9 fm. Notice that rd and Q are calculated without
including exchange current contributions and relativistic corrections. References to experimental
data/empirical values can be found in Ref. [18].

LO NLO N2LO N3LO N4LO Empirical
Bd 2.0235 2.1987 2.2311 2.2246⋆ 2.2246⋆ 2.224575(9)
AS 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
PD 2.54 4.73 4.50 4.19 4.29
⋆The deuteron binding energy has been taken as input in the fit.

NPWA and confirm a good convergence of the chiral expansion. More results for NN observables
can be found in Refs. [18, 19].

As already advertised, the novel approach to uncertainty quantification is not restricted to a
particular choice of the regulator. Carrying out the error analysis for calculations based on different
choices of R thus provides a useful consistency check of the method. In Fig. 9, we show the results
for the total cross section at all orders starting from NLO and for all considered cutoff choices.
Within the quoted errors, the predictions based on different values of R agree with each other and
the NPWA for all orders in the chiral expansion. The accuracy of the predicted results for the cross
section shows the same dependence on the cutoff as the quality of the fits discussed in section 2.4.

In Table 2, we list our results for the deuteron properties. At the considered accuracy level,
the chiral expansion is nearly converged already at N3LO except for PD which is not an observable
quantity.8 The predicted values for AS and η are in excellent agreement with the empirical numbers.

8PD = 5%±1% has been used as an additional “data” point in the fits at N3LO and N4LO in order to stabilize the
results, see Ref. [18] for more detail.
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Scattering lengths and effective range parameters extracted from the data
predictions at N4LO Experimental/Empirical values

neutron-proton

a1S0
[fm] �23.733(6) �23.740(20)

r1S0
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Goal: precision tests of chiral nuclear forces & currents in light nuclei

Strategy: go to high orders, do not compromise the πN LECs, no fine!
                 tuning to heavy nuclei, careful error analysis



  Few-N results without 3NF
Is there evidence for missing 3N forces effects? Yes!

LENPIC: Low Energy Nuclear Physics International Collaboration
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Figure 7: Chiral expansion of the np total cross section at different energies based on R = 0.9 fm
in comparison with experimental data of Ref. [90]. The horizontal band shows the result of the
NPWA.

Table 2: Deuteron binding energy Bd (in MeV), asymptotic S state normalization AS (in fm−1/2),
asymptotic D/S state ratio η , radius rd (in fm), quadrupole moment Q (in fm2) and the D-state
probability PD (in %) based on the cutoff R= 0.9 fm. Notice that rd and Q are calculated without
including exchange current contributions and relativistic corrections. References to experimental
data/empirical values can be found in Ref. [18].

LO NLO N2LO N3LO N4LO Empirical
Bd 2.0235 2.1987 2.2311 2.2246⋆ 2.2246⋆ 2.224575(9)
AS 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
PD 2.54 4.73 4.50 4.19 4.29
⋆The deuteron binding energy has been taken as input in the fit.

NPWA and confirm a good convergence of the chiral expansion. More results for NN observables
can be found in Refs. [18, 19].

As already advertised, the novel approach to uncertainty quantification is not restricted to a
particular choice of the regulator. Carrying out the error analysis for calculations based on different
choices of R thus provides a useful consistency check of the method. In Fig. 9, we show the results
for the total cross section at all orders starting from NLO and for all considered cutoff choices.
Within the quoted errors, the predictions based on different values of R agree with each other and
the NPWA for all orders in the chiral expansion. The accuracy of the predicted results for the cross
section shows the same dependence on the cutoff as the quality of the fits discussed in section 2.4.

In Table 2, we list our results for the deuteron properties. At the considered accuracy level,
the chiral expansion is nearly converged already at N3LO except for PD which is not an observable
quantity.8 The predicted values for AS and η are in excellent agreement with the empirical numbers.

8PD = 5%±1% has been used as an additional “data” point in the fits at N3LO and N4LO in order to stabilize the
results, see Ref. [18] for more detail.
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Figure 2. Results for 4He: gs
energy and point-proton rms
radius (rp) at different chiral
order, with both theoretical
(chiral) uncertainty estimates
(blue) and many-body numerical
uncertainties (red), with
experimental values in green.

L
O

N
L

O

N
2 L

O

N
3 L

O
N

4 L
O

E
xp

-55

-50

-45

-40

-35

-30

-25

g
ro

u
n

d
 s

ta
te

 e
n

er
g

y
 (

M
eV

)

L
O

N
L

O

N
2 L

O

N
3 L

O
N

4 L
O

E
xp

0

1

2

3

4

5

6

ex
ci

ta
ti

o
n

 e
n

er
g

y
 (

M
eV

)

J
π

= 0
+
, T = 1

J
π

= 3
+
, T = 0

L
O

N
L

O

N
2 L

O

N
3 L

O
N

4 L
O

E
xp

0.8

0.9

m
ag

n
et

ic
 m

o
m

en
t 

(µ
N

)

6
Li

Figure 3. Results for 6Li: gs energy, excitation energies of the two lowest excited states, and gs magnetic moment
at different chiral order.

weakens. We also see a dramatic difference in convergence rate: the strongly bound nucleus 4He
converges more rapidly than the weakly bound nucleus 6Li; furthermore, up to N2LO convergence is
rapid, but at N3LO and N4LO our results for 6Li are far from being converged, even at Nmax = 18.

In order to improve the convergence of the many-body calculations we apply the Similarity Renor-
malization Group (SRG) at the three-body level to ’soften’ the chiral NN interaction [8–11]. Indeed,
at SRG evolution values of α = 0.04 fm4 and α = 0.08 fm4 we do find rapid convergence of the
many-body calculation, and, including induced 3N interactions, only very weak dependence on
the SRG evolution. Up to N2LO, the SRG evolution produces results for 6Li to within a fraction
of a percent of those without SRG; at N3LO and N4LO the results with the SRG evolution are
significantly better converged than, and within the extrapolation uncertainties of, the uncon-
verged results without SRG evolution. Finally, as a cross-check we also confirm that, to within
our estimated numerical accuracy, our results for 4He agree with results obtained in the Faddeev–
Yakubovsky framework [6].

In figures 2 and 3 we summarize our results at different orders in the chiral expansion. In addition
to the estimated numerical uncertainties in the many-body calculation, we also display the estimated
theoretical chiral uncertainties following [3–6]. The chiral uncertainties decrease with increasing chi-
ral order (as they should). However, the many-body numerical uncertainty increases with increasing
chiral order, and at N3LO and N4LO our results for 6Li are dominated by the many-body uncertainties.
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  Brueckner-Hartree-Fock without 3NF
Jinniu Hu, Ying Zhang, EE, Ulf-G. Meißner, Jie Meng, arXiv:1612.05433 [nucl-th]
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Figure 2: (Color online) Predictions for the EOS of SNM (left panel) and PNM
(right panel) based on the chiral NN potentials of Refs. [35, 36] for R = 0.9 fm
(upper raw) and R = 1.0 fm (lower raw) along with the estimated theoretical
uncertainties. Open rectangles visualize the empirical saturation point of sym-
metric nuclear matter.

The breakdown scale of the nuclear chiral EFT was estimated
to be ⇤b ' 600 MeV [35].3 The Bayesian analysis of the chiral
EFT predictions for the NN total cross section of Ref. [60] has
revealed, that the actual breakdown scale may even be a little
higher than ⇤b ' 600 MeV for R = 0.9 fm. It goes without say-
ing that the estimated theoretical uncertainty at N2LO – N4LO
determines the accuracy of complete calculations which require
the inclusion of the corresponding many-body forces.

In Fig. 2, we show the results for the EOS for SNM and PNM
including the estimated theoretical uncertainties at various or-
ders of the chiral expansion for the most accurate versions of the
NN potentials with R = 0.9 fm and R = 1.0 fm [35, 36]. The ex-
pansion parameter Q at a given density is estimated by identify-
ing the momentum scale p with the Fermi momentum kF, which
is related to the density ⇢ via ⇢ = 2k3

F/(3⇡
2) (⇢ = k3

F/(3⇡
2))

for SNM (PNM), and assuming ⇤b = 600 MeV. At the satura-
tion density, the achievable accuracy of the chiral EFT predic-
tions for the energy per particle may be expected to be about
±1.5 MeV (±0.3 MeV) for SNM and ±2 MeV (±0.7 MeV) for
PNM at N2LO (N4LO). Notice that the expected accuracy at
N4LO is significantly smaller than the current model depen-
dence for these quantities. We further emphasize that the pre-
sented estimations should be taken with some care due to the
non-availability of complete calculations beyond NLO. More
reliable estimations of the theoretical uncertainty using the ap-
proach of [35] will be possible once the corresponding three-
and four-nucleon forces are included.

Our results confirm the conclusions of [54] that cuto↵ vari-
ation does not provide an adequate way for estimating the un-
certainties in the calculations of the nuclear EOS. As discussed
in [35], residual cuto↵-dependence of observables may gener-
ally be expected to underestimate the theoretical uncertainty at
NLO and N3LO, which is consistent with our results. Further,

3To account for increasing finite-cuto↵ artefacts using softer versions of the
chiral forces, the lower values of ⇤b = 500 MeV and 400 MeV were employed
in calculations based on R = 1.1 fm and R = 1.2 fm, respectively.
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Figure 3: (Color online) Chiral expansion of the symmetry energy asymm (left
panel) and the slope parameter L (right panel) at the empirical saturation den-
sity for the cuto↵ values of R = 0.9 fm (upper raw) and R = 1.0 fm (lower
raw) along with the estimated theoretical uncertainty. Solid circles (open rect-
angles) show the complete results at a given chiral order (incomplete results
based on NN interactions only). Solid triangles show the current experimental
constraints on asymm and L as described in the text.

the spread of results for di↵erent values of R at N4LO appears
to be roughly of a similar size as the estimated uncertainty at
this order. We, however, refrain from drawing more definite
conclusions on the cuto↵ dependence based on the incomplete
calculations.

Finally, we have also quantified the achievable accuracy of
the theoretical determination of the symmetry energy asymm and
the slope parameter L, defined as L = 3⇢ @(E/A)SNM/@⇢, at the
empirical saturation density. These important quantities have
been constrained by the available experimental information on
e.g. neutron skin thickness, heavy ion collisions and dipole
polarizabilities leading to the ranges of 29 MeV . asymm .
33 MeV and 40 MeV . L . 62 MeV [61, 62, 63]. In Fig. 3,
we show our results for these quantities using the NN potentials
from LO to N4LO along with the estimated theoretical uncer-
tainties. Especially for the slope parameter, a complete calcu-
lation at N4LO would yield a theoretical prediction much more
accurate than the current experimental data.

5. Summary and conclusions

In summary, we calculated the equations of state (EOSs) of
SNM and PNM with the state-of-the-art chiral NN potential-
s from LO to N4LO in the framework of Brueckner-Hartree-
Fock theory. At N4LO, the EOS of SNM has saturation points
for all employed cuto↵ values with the corresponding satura-
tion densities and binding energies per particle being within
the range of 0.27 . . . 0.39 fm�3 and �16.09 . . . � 23.03 MeV,
respectively. These values are compatible with the ones based

6

Symmetric nuclear matter Pure neutron matter
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Figure 2: (Color online) Predictions for the EOS of SNM (left panel) and PNM
(right panel) based on the chiral NN potentials of Refs. [35, 36] for R = 0.9 fm
(upper raw) and R = 1.0 fm (lower raw) along with the estimated theoretical
uncertainties. Open rectangles visualize the empirical saturation point of sym-
metric nuclear matter.

The breakdown scale of the nuclear chiral EFT was estimated
to be ⇤b ' 600 MeV [35].3 The Bayesian analysis of the chiral
EFT predictions for the NN total cross section of Ref. [60] has
revealed, that the actual breakdown scale may even be a little
higher than ⇤b ' 600 MeV for R = 0.9 fm. It goes without say-
ing that the estimated theoretical uncertainty at N2LO – N4LO
determines the accuracy of complete calculations which require
the inclusion of the corresponding many-body forces.

In Fig. 2, we show the results for the EOS for SNM and PNM
including the estimated theoretical uncertainties at various or-
ders of the chiral expansion for the most accurate versions of the
NN potentials with R = 0.9 fm and R = 1.0 fm [35, 36]. The ex-
pansion parameter Q at a given density is estimated by identify-
ing the momentum scale p with the Fermi momentum kF, which
is related to the density ⇢ via ⇢ = 2k3

F/(3⇡
2) (⇢ = k3

F/(3⇡
2))

for SNM (PNM), and assuming ⇤b = 600 MeV. At the satura-
tion density, the achievable accuracy of the chiral EFT predic-
tions for the energy per particle may be expected to be about
±1.5 MeV (±0.3 MeV) for SNM and ±2 MeV (±0.7 MeV) for
PNM at N2LO (N4LO). Notice that the expected accuracy at
N4LO is significantly smaller than the current model depen-
dence for these quantities. We further emphasize that the pre-
sented estimations should be taken with some care due to the
non-availability of complete calculations beyond NLO. More
reliable estimations of the theoretical uncertainty using the ap-
proach of [35] will be possible once the corresponding three-
and four-nucleon forces are included.

Our results confirm the conclusions of [54] that cuto↵ vari-
ation does not provide an adequate way for estimating the un-
certainties in the calculations of the nuclear EOS. As discussed
in [35], residual cuto↵-dependence of observables may gener-
ally be expected to underestimate the theoretical uncertainty at
NLO and N3LO, which is consistent with our results. Further,

3To account for increasing finite-cuto↵ artefacts using softer versions of the
chiral forces, the lower values of ⇤b = 500 MeV and 400 MeV were employed
in calculations based on R = 1.1 fm and R = 1.2 fm, respectively.
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Figure 3: (Color online) Chiral expansion of the symmetry energy asymm (left
panel) and the slope parameter L (right panel) at the empirical saturation den-
sity for the cuto↵ values of R = 0.9 fm (upper raw) and R = 1.0 fm (lower
raw) along with the estimated theoretical uncertainty. Solid circles (open rect-
angles) show the complete results at a given chiral order (incomplete results
based on NN interactions only). Solid triangles show the current experimental
constraints on asymm and L as described in the text.

the spread of results for di↵erent values of R at N4LO appears
to be roughly of a similar size as the estimated uncertainty at
this order. We, however, refrain from drawing more definite
conclusions on the cuto↵ dependence based on the incomplete
calculations.

Finally, we have also quantified the achievable accuracy of
the theoretical determination of the symmetry energy asymm and
the slope parameter L, defined as L = 3⇢ @(E/A)SNM/@⇢, at the
empirical saturation density. These important quantities have
been constrained by the available experimental information on
e.g. neutron skin thickness, heavy ion collisions and dipole
polarizabilities leading to the ranges of 29 MeV . asymm .
33 MeV and 40 MeV . L . 62 MeV [61, 62, 63]. In Fig. 3,
we show our results for these quantities using the NN potentials
from LO to N4LO along with the estimated theoretical uncer-
tainties. Especially for the slope parameter, a complete calcu-
lation at N4LO would yield a theoretical prediction much more
accurate than the current experimental data.

5. Summary and conclusions

In summary, we calculated the equations of state (EOSs) of
SNM and PNM with the state-of-the-art chiral NN potential-
s from LO to N4LO in the framework of Brueckner-Hartree-
Fock theory. At N4LO, the EOS of SNM has saturation points
for all employed cuto↵ values with the corresponding satura-
tion densities and binding energies per particle being within
the range of 0.27 . . . 0.39 fm�3 and �16.09 . . . � 23.03 MeV,
respectively. These values are compatible with the ones based

6
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Figure 2: (Color online) Predictions for the EOS of SNM (left panel) and PNM
(right panel) based on the chiral NN potentials of Refs. [35, 36] for R = 0.9 fm
(upper raw) and R = 1.0 fm (lower raw) along with the estimated theoretical
uncertainties. Open rectangles visualize the empirical saturation point of sym-
metric nuclear matter.

The breakdown scale of the nuclear chiral EFT was estimated
to be ⇤b ' 600 MeV [35].3 The Bayesian analysis of the chiral
EFT predictions for the NN total cross section of Ref. [60] has
revealed, that the actual breakdown scale may even be a little
higher than ⇤b ' 600 MeV for R = 0.9 fm. It goes without say-
ing that the estimated theoretical uncertainty at N2LO – N4LO
determines the accuracy of complete calculations which require
the inclusion of the corresponding many-body forces.

In Fig. 2, we show the results for the EOS for SNM and PNM
including the estimated theoretical uncertainties at various or-
ders of the chiral expansion for the most accurate versions of the
NN potentials with R = 0.9 fm and R = 1.0 fm [35, 36]. The ex-
pansion parameter Q at a given density is estimated by identify-
ing the momentum scale p with the Fermi momentum kF, which
is related to the density ⇢ via ⇢ = 2k3

F/(3⇡
2) (⇢ = k3

F/(3⇡
2))

for SNM (PNM), and assuming ⇤b = 600 MeV. At the satura-
tion density, the achievable accuracy of the chiral EFT predic-
tions for the energy per particle may be expected to be about
±1.5 MeV (±0.3 MeV) for SNM and ±2 MeV (±0.7 MeV) for
PNM at N2LO (N4LO). Notice that the expected accuracy at
N4LO is significantly smaller than the current model depen-
dence for these quantities. We further emphasize that the pre-
sented estimations should be taken with some care due to the
non-availability of complete calculations beyond NLO. More
reliable estimations of the theoretical uncertainty using the ap-
proach of [35] will be possible once the corresponding three-
and four-nucleon forces are included.

Our results confirm the conclusions of [54] that cuto↵ vari-
ation does not provide an adequate way for estimating the un-
certainties in the calculations of the nuclear EOS. As discussed
in [35], residual cuto↵-dependence of observables may gener-
ally be expected to underestimate the theoretical uncertainty at
NLO and N3LO, which is consistent with our results. Further,

3To account for increasing finite-cuto↵ artefacts using softer versions of the
chiral forces, the lower values of ⇤b = 500 MeV and 400 MeV were employed
in calculations based on R = 1.1 fm and R = 1.2 fm, respectively.
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Figure 3: (Color online) Chiral expansion of the symmetry energy asymm (left
panel) and the slope parameter L (right panel) at the empirical saturation den-
sity for the cuto↵ values of R = 0.9 fm (upper raw) and R = 1.0 fm (lower
raw) along with the estimated theoretical uncertainty. Solid circles (open rect-
angles) show the complete results at a given chiral order (incomplete results
based on NN interactions only). Solid triangles show the current experimental
constraints on asymm and L as described in the text.

the spread of results for di↵erent values of R at N4LO appears
to be roughly of a similar size as the estimated uncertainty at
this order. We, however, refrain from drawing more definite
conclusions on the cuto↵ dependence based on the incomplete
calculations.

Finally, we have also quantified the achievable accuracy of
the theoretical determination of the symmetry energy asymm and
the slope parameter L, defined as L = 3⇢ @(E/A)SNM/@⇢, at the
empirical saturation density. These important quantities have
been constrained by the available experimental information on
e.g. neutron skin thickness, heavy ion collisions and dipole
polarizabilities leading to the ranges of 29 MeV . asymm .
33 MeV and 40 MeV . L . 62 MeV [61, 62, 63]. In Fig. 3,
we show our results for these quantities using the NN potentials
from LO to N4LO along with the estimated theoretical uncer-
tainties. Especially for the slope parameter, a complete calcu-
lation at N4LO would yield a theoretical prediction much more
accurate than the current experimental data.

5. Summary and conclusions

In summary, we calculated the equations of state (EOSs) of
SNM and PNM with the state-of-the-art chiral NN potential-
s from LO to N4LO in the framework of Brueckner-Hartree-
Fock theory. At N4LO, the EOS of SNM has saturation points
for all employed cuto↵ values with the corresponding satura-
tion densities and binding energies per particle being within
the range of 0.27 . . . 0.39 fm�3 and �16.09 . . . � 23.03 MeV,
respectively. These values are compatible with the ones based
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Q4 �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �10.41 6.08 �0.37 3.26

⇥3 +Q4 �0.95 1.90 �1.78 1.50 2.40 �3.87 1.21 �5.25 �0.24 �6.35 2.34 �0.39 2.81

�-contribution 0 2.81 �2.81 1.40 2.39 �2.39 0 �4.77 1.87 �4.15 4.15 �0.17 1.32

�p0(0) = 4.45µ�2 � 8.31µ�1 + 6.03µ0 + 3.22µ + . . . = 4.64 [10�4 fm4]

µ ⇥ M⇥/mN

c�2 = �c�3 = 2c�4 =
4h2A

9(m� �mN )
⌅ 2.8GeV�1

1

Notice: ci receive large Δ(1232) contributions 

N3LO (Q4)

Ishikawa, Robilotta ’08 !
Bernard, EE, Krebs, Meißner ’08,’11

N4LO (Q5)

Krebs, Gasparyan, EE ’12

Krebs, Gasparyan, EE ’13

Krebs, Gasparyan, EE ’13

T = V + V G0T = V + V G0V + V G0V G0V + . . .

µexp
= 0.85741 (e/(2m))

Qexp
d = 0.2859 fm2

ci

D

ei

QLO
d = 0.271 fm2

µLO
= 0.826 (e/(2m))

T = V + V G0T = V + V G0V + V G0V G0V + . . .

T (n)
= V [G0V ]

n�1
= mn�1

Z ⇤

0
d3l1 . . . d

3ln�1

V (~p 0, ~l1) V (

~l1, ~l2) . . . V (

~ln�1, ~p)

[p2 � l21 + i✏] . . . [p2 � l2n�1 + i✏]
,

⇠ 1/⇤; 1/⇤2
; 1/⇤3

; . . .

⇤ ! 1

hp0,↵0|V reg
1⇡ |p,↵i = hp0,↵0|V1⇡|p,↵i F

⇣
p0

⇤
, p
⇤

⌘

V reg
1⇡ (~q ) = V1⇡(~q ) F

⇣
p0

⇤
, p
⇤

⌘

V reg
1⇡ (~q ) = V1⇡(~q ) F

⇣
q
⇤

⌘

max[⇤] ⇠ 600 MeV

T↵0↵(p) ⌘ hp,↵0|T |p,↵i = hp,↵0|V1⇡|p,↵i e
�p02�p2

⇤2

1

Girlanda, Kievski, Viviani ’11
10 LECs



 LENPIC, in progress
Some PRELIMINARY results with 3NF

LENPIC: Low Energy Nuclear Physics International Collaboration
LENPIC

T = V + V G0T = V + V G0V + V G0V G0V + . . .

µexp
= 0.85741 (e/(2m))

Qexp
d = 0.2859 fm2

ci

D

E

QLO
d = 0.271 fm2

µLO
= 0.826 (e/(2m))

T = V + V G0T = V + V G0V + V G0V G0V + . . .

T (n)
= V [G0V ]

n�1
= mn�1

Z ⇤

0
d3l1 . . . d

3ln�1

V (~p 0, ~l1) V (

~l1, ~l2) . . . V (

~ln�1, ~p)

[p2 � l21 + i✏] . . . [p2 � l2n�1 + i✏]
,

⇠ 1/⇤; 1/⇤2
; 1/⇤3

; . . .

⇤ ! 1

hp0,↵0|V reg
1⇡ |p,↵i = hp0,↵0|V1⇡|p,↵i F

⇣
p0

⇤
, p
⇤

⌘

V reg
1⇡ (~q ) = V1⇡(~q ) F

⇣
p0

⇤
, p
⇤

⌘

V reg
1⇡ (~q ) = V1⇡(~q ) F

⇣
q
⇤

⌘

max[⇤] ⇠ 600 MeV

T↵0↵(p) ⌘ hp,↵0|T |p,↵i = hp,↵0|V1⇡|p,↵i e
�p02�p2

⇤2

1

T = V + V G0T = V + V G0V + V G0V G0V + . . .

µexp
= 0.85741 (e/(2m))

Qexp
d = 0.2859 fm2

ci

D

E

QLO
d = 0.271 fm2

µLO
= 0.826 (e/(2m))

T = V + V G0T = V + V G0V + V G0V G0V + . . .

T (n)
= V [G0V ]

n�1
= mn�1

Z ⇤

0
d3l1 . . . d

3ln�1

V (~p 0, ~l1) V (

~l1, ~l2) . . . V (

~ln�1, ~p)

[p2 � l21 + i✏] . . . [p2 � l2n�1 + i✏]
,

⇠ 1/⇤; 1/⇤2
; 1/⇤3

; . . .

⇤ ! 1

hp0,↵0|V reg
1⇡ |p,↵i = hp0,↵0|V1⇡|p,↵i F

⇣
p0

⇤
, p
⇤

⌘

V reg
1⇡ (~q ) = V1⇡(~q ) F

⇣
p0

⇤
, p
⇤

⌘

V reg
1⇡ (~q ) = V1⇡(~q ) F

⇣
q
⇤

⌘

max[⇤] ⇠ 600 MeV

T↵0↵(p) ⌘ hp,↵0|T |p,↵i = hp,↵0|V1⇡|p,↵i e
�p02�p2

⇤2

1

T = V + V G0T = V + V G0V + V G0V G0V + . . .

µexp
= 0.85741 (e/(2m))

Qexp
d = 0.2859 fm2

ci

D

E

QLO
d = 0.271 fm2

µLO
= 0.826 (e/(2m))

T = V + V G0T = V + V G0V + V G0V G0V + . . .

T (n)
= V [G0V ]

n�1
= mn�1

Z ⇤

0
d3l1 . . . d

3ln�1

V (~p 0, ~l1) V (

~l1, ~l2) . . . V (

~ln�1, ~p)

[p2 � l21 + i✏] . . . [p2 � l2n�1 + i✏]
,

⇠ 1/⇤; 1/⇤2
; 1/⇤3

; . . .

⇤ ! 1

hp0,↵0|V reg
1⇡ |p,↵i = hp0,↵0|V1⇡|p,↵i F

⇣
p0

⇤
, p
⇤

⌘

V reg
1⇡ (~q ) = V1⇡(~q ) F

⇣
p0

⇤
, p
⇤

⌘

V reg
1⇡ (~q ) = V1⇡(~q ) F

⇣
q
⇤

⌘

max[⇤] ⇠ 600 MeV

T↵0↵(p) ⌘ hp,↵0|T |p,↵i = hp,↵0|V1⇡|p,↵i e
�p02�p2

⇤2

1

The LECs D, E are determined from the 3H and the "
Nd cross section minimum @70 MeV (RIKEN data)

The results are preliminary: 
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Nuclear lattice simulations: "
A novel ab initio approach to nuclei and nuclear reactions
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FIG. 5. Comparison of the new PMC data for 12C from the SSE analysis (red filled squares) and

previous calculations [8] for dh = 1 (blue open squares). The notation for the various contributions

to the ground state energy E12 coincides with that of Table I. The results correspond to a trial

state with an SU(4) coupling of −7.0× 10−5 MeV−2, not to be confused with the SU(4) coupling

C4 for the SSE analysis. It should be noted that the exponential deterioration of the Monte Carlo

error has been circumvented. Also, these data should not be interpreted in terms of a “plateau” as

a function of Nt. An analysis of the dependence on Nt is given in Fig. 6, and a concise description

of the Euclidean time extrapolation method can be found in Ref. [25].

TABLE I. Contributions to the ground state energy of 12C after extrapolation to infinite Eu-

clidean projection time. The contributions from the improved leading order amplitude (LO), the

two-nucleon force at next-to-leading order (NLO), the electromagnetic and strong isospin break-

ing (EMIB) and the three-nucleon force at next-to-next-to-leading order (3NF) are shown sepa-

rately. The left column shows the results using the PMC data for dh = 1 from Ref. [8], while the

right column shows the results when the SSE data from this work are included.

Ref. [8] + SSE

LO −96.92(16) −96.85(14)

NLO 10.48(3) 10.47(3)

EMIB 7.76(1) 7.76(1)

3NF −14.80(6) −14.56(4)
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Ab initio alpha–alpha scattering
Serdar Elhatisari1, Dean Lee2, Gautam Rupak3, Evgeny Epelbaum4, Hermann Krebs4, Timo A. Lähde5, Thomas Luu1,5 &  
Ulf-G. Meißner1,5,6

Processes such as the scattering of alpha particles (4He), the 
triple-alpha reaction, and alpha capture play a major role in 
stellar nucleosynthesis. In particular, alpha capture on carbon 
determines the ratio of carbon to oxygen during helium burning, 
and affects subsequent carbon, neon, oxygen, and silicon burning 
stages. It also substantially affects models of thermonuclear type Ia 
supernovae, owing to carbon detonation in accreting carbon–oxygen 
white-dwarf stars1–3. In these reactions, the accurate calculation 
of the elastic scattering of alpha particles and alpha-like nuclei—
nuclei with even and equal numbers of protons and neutrons—is 
important for understanding background and resonant scattering 
contributions. First-principles calculations of processes involving 
alpha particles and alpha-like nuclei have so far been impractical, 
owing to the exponential growth of the number of computational 
operations with the number of particles. Here we describe an  
ab initio calculation of alpha–alpha scattering that uses lattice Monte 
Carlo simulations. We use lattice effective field theory to describe 
the low-energy interactions of protons and neutrons, and apply a 
technique called the ‘adiabatic projection method’ to reduce the 
eight-body system to a two-cluster system. We take advantage of 
the computational efficiency and the more favourable scaling with 
system size of auxiliary-field Monte Carlo simulations to compute 
an ab initio effective Hamiltonian for the two clusters. We find 
promising agreement between lattice results and experimental phase 
shifts for s-wave and d-wave scattering. The approximately quadratic 
scaling of computational operations with particle number suggests 
that it should be possible to compute alpha scattering and capture 
on carbon and oxygen in the near future. The methods described 
here can be applied to ultracold atomic few-body systems as well 
as to hadronic systems using lattice quantum chromodynamics to 
describe the interactions of quarks and gluons.

In recent years there has been much progress in ab initio scattering 
and reactions involving light4–6 and medium-mass7,8 nuclei. However, 
for most numerical methods, the number of computational operations 
increases markedly when the projectile nucleus has more than a few 
nucleons. Therefore it remains a challenge to study many important 
processes that are relevant for stellar astrophysics such as alpha–alpha 
scattering, alpha–carbon scattering and radiative capture, as well as car-
bon and oxygen burning in massive star evolution and thermo nuclear 
supernovae9.

We describe lattice calculations for which the number of compu-
tational (floating point) operations for the A1-body +  A2-body prob-
lem scales as roughly (A1 +  A2)2; this scaling is mild enough to make 
first-principles calculations of alpha processes possible. We use the 
formalism of lattice effective field theory10–12 (EFT) and a technique 
for elastic scattering and inelastic reactions on the lattice called the 
‘adiabatic projection method’13–17.

Chiral EFT is a framework for organizing the low-energy nuclear 
interactions of protons and neutrons according to powers of momenta 
and factors of the mass of the pion; see ref. 18 for a review of the theory. 

The important interactions are at leading order (LO), the next largest 
contributions are at next-to-leading order (NLO), and then follows 
next-to-next-to-leading order (NNLO). We present an ab initio calcula-
tion of  4He +  4He scattering going up to NNLO terms in chiral EFT. We 
find promising agreement with experimental data19–22 for the s-wave 
and d-wave phase shifts; improvements can be achieved by including 
higher-order terms in the chiral expansion.

The adiabatic projection method addresses the cluster–cluster scat-
tering problem on the lattice by using Euclidean time projection to 
construct an effective two-cluster Hamiltonian. By Euclidean time pro-
jection we mean multiplication by exp(−Hτ), where H is the underly-
ing microscopic Hamiltonian and τ is Euclidean time. We use natural 
units, where the reduced Planck constant ћ and the speed of light c 
are set to one. Even though the actual lattice calculations use discrete 
time steps, we refer to the continuous Euclidean time parameter τ  for 
notational simplicity.

Our starting point is a three-dimensional spatial lattice that is peri-
odic with length L in each dimension. We take a set of initial two-alpha 
states | 〉R , labelled by their separation vector R, as illustrated in Fig. 1. 
We take the initial alpha wavefunctions to be Gaussian wave packets, 
so that at large separations they factorize as a tensor product of two 
individual alpha clusters:

∑| 〉 = | + 〉 ⊗ | 〉R r R r
r

1 2

where r is a summation variable corresponding to the location of the 
second cluster. The summation over r produces two-alpha states with 
total momentum equal to zero. Rather than dealing with a large array 
of three-dimensional vectors R, we project onto spherical harmonics 
ℓ ℓY , z

 with angular momentum quantum numbers ℓ ℓ, z:

∑ δ| 〉 = ( ′) | ′〉
′

| |′
ℓ ℓ

ℓ ℓ RR Y R
R

RR
,

, ,
z

z

where δ is the Kronecker delta function. We only consider cases where 
R =  | R|  <  L/2.

On the lattice, the symmetry group of spatial rotations is broken down 
to a cubic subgroup. Nevertheless, at low scattering energies, this approx-
imate rotational symmetry is very accurate, provided that artefacts due  
to the periodic volume are removed. We remove these artefacts using a 
hard spherical wall boundary; the spherical harmonic projection tech-
nique is useful for extracting data for selected partial waves. This method 
has been extended to particles with spin and partial wave mixing, and 
shows excellent agreement with continuous-space calculations23.

We use Euclidean time projection to form dressed cluster states:

τ| 〉 = (− )| 〉τ
ℓ ℓ ℓ ℓR H Rexp, ,z z

The evolution in Euclidean time automatically incorporates the 
induced deformation and polarization of the alpha clusters as they 
approach each other. The deformation and polarization are due to the 
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In Fig. 4 we show phase shifts for d-wave scattering versus laboratory 
energy at LO, NLO and NNLO, compared with experimental data19–22. 
The green dashed (LO), blue short-dashed (NLO), and red solid lines 
(NNLO) are determined from fits to the lattice data using the effective 
range expansion. Although there are differences, the NNLO results 
agree fairly with the experimental results. As in the s-wave case, we 
show the extrapolated values and errors in the limit Lt →  ∞, using 
lattice data for Lt =  4 to Lt =  10. Details of the extrapolation fit and all 
associated error estimates are discussed in Methods. We determined 
the centre-of-mass energy and the decay width of the d-wave reso-
nance of the phase shift data from ref. 22 to be ER =  2.92(18) MeV and 
Γ =  1.34(50) MeV, respectively. Owing to the large decay width, there 
is some model dependence in the definitions of the resonance param-
eters; we discuss several different definitions and determinations in 
Methods. At LO we find ER =  1.10(12) MeV and Γ =  0.32(10) MeV, 
at NLO ER =  3.84(16) MeV and Γ =  3.22(21) MeV, and at NNLO 
ER =  3.27(12) MeV and Γ =  2.09(16) MeV.

To summarize, we present an ab initio calculation of 4He +  4He scat-
tering. We use lattice EFT and the adiabatic projection method to com-
pute phase shifts for s-wave and d-wave scattering up to NNLO, and 
find promising agreement with experimental data. To perform these 
calculations, we used spherical wave projections of the lattice initial 
states and a new algorithm that performs updates of both the auxiliary 
field configurations and alpha cluster positions. A schematic of the 
method is given in Extended Data Fig. 1.

Perhaps the most notable outcome of this study is a numerical 
method for simulating scattering and reactions that has a very favour-
able scaling with particle number. The number of computational oper-
ations needed for the A1-body +  A2-body problem scales roughly as 
(A1 +  A2)2 for light and medium-mass nuclei, and the algorithm does 
not require the projectile to be very light. Because sign oscillations 
are greatly suppressed for alpha-like nuclei12,27, our approach appears 
to be a viable method for studying important processes such as alpha 
scattering and capture on 12C. Direct experimental data for alpha cap-
ture on 12C is not possible, owing to Coulomb barrier suppression at 
energies relevant for stellar nucleosynthesis, and extrapolations from 

higher energies have uncertainties that exceed the 10% accuracy needed 
for stellar evolution models.

Nevertheless, there has been progress in measuring the contribu-
tion from subthreshold states28 and cumulative R-matrix analyses 
using multiple data sources such as beta-delayed alpha-decay of 16N 
and 4He +  12C elastic scattering29. Ab initio lattice calculations can con-
tribute to these efforts by calculating asymptotic normalization coeffi-
cients for subthreshold states, determining the direct capture rate onto 
the ground state, and providing low-energy data on 4He +  12C elastic 
scattering. For these future calculations, we expect that about four times 
as much computing time as the roughly two million core hours used 
for this work will be required; the computational resources available 
appear sufficient to keep stochastic errors under control. To reduce 
systematic errors, we are currently working on including lattice nuclear 
forces at the next-higher order in the chiral expansion, reducing the 
lattice spacing, improving the lattice action, and doing precision tests 
of systematic errors in the adiabatic projection method. If necessary, 
the ab initio lattice results will be further improved by including short-
range operators in the adiabatic Hamiltonian to make fine adjustments 
to the energies of near-threshold states of 16O.

There is an obvious overlap between lattice calculations using the 
adiabatic projection method and halo EFT. Therefore it might be 
fruitful to look for synergies between the two methods. In cases where 
there is a large scale separation between the low-energy scattering and 
high-energy internal excitations, benchmark tests can be made between 
halo EFT and lattice calculations. Furthermore, ab initio calculations 
can be used to determine input data for halo EFT, as done in ref. 30. 
In cases where the separation of scales is not large, lattice calculations 
can be used to guide improvement of halo EFT to include nuclear 
core excitations. It also might be useful to treat the lattice adiabatic 
Hamiltonian as a halo EFT for clusters, and explore extensions to three- 
and four-cluster systems. This method could potentially be used to 
investigate multi-alpha-cluster structures in 12C and 16O.

It would be exciting to extend the methods presented here to lat-
tice quantum chromodynamics (QCD) and construct adiabatic 
Hamiltonians for hadronic systems. All of the techniques used in our 
lattice simulations have immediate analogues in lattice QCD. The initial 
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theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors 
and the extrapolation of that data to infinite projection time. The green 
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determined from fits to the lattice data using the effective range expansion. 
The black dot-dashed line in the inset shows NLO results using halo EFT 
with point-like alpha particles26.
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In Fig. 4 we show phase shifts for d-wave scattering versus laboratory 
energy at LO, NLO and NNLO, compared with experimental data19–22. 
The green dashed (LO), blue short-dashed (NLO), and red solid lines 
(NNLO) are determined from fits to the lattice data using the effective 
range expansion. Although there are differences, the NNLO results 
agree fairly with the experimental results. As in the s-wave case, we 
show the extrapolated values and errors in the limit Lt →  ∞, using 
lattice data for Lt =  4 to Lt =  10. Details of the extrapolation fit and all 
associated error estimates are discussed in Methods. We determined 
the centre-of-mass energy and the decay width of the d-wave reso-
nance of the phase shift data from ref. 22 to be ER =  2.92(18) MeV and 
Γ =  1.34(50) MeV, respectively. Owing to the large decay width, there 
is some model dependence in the definitions of the resonance param-
eters; we discuss several different definitions and determinations in 
Methods. At LO we find ER =  1.10(12) MeV and Γ =  0.32(10) MeV, 
at NLO ER =  3.84(16) MeV and Γ =  3.22(21) MeV, and at NNLO 
ER =  3.27(12) MeV and Γ =  2.09(16) MeV.

To summarize, we present an ab initio calculation of 4He +  4He scat-
tering. We use lattice EFT and the adiabatic projection method to com-
pute phase shifts for s-wave and d-wave scattering up to NNLO, and 
find promising agreement with experimental data. To perform these 
calculations, we used spherical wave projections of the lattice initial 
states and a new algorithm that performs updates of both the auxiliary 
field configurations and alpha cluster positions. A schematic of the 
method is given in Extended Data Fig. 1.

Perhaps the most notable outcome of this study is a numerical 
method for simulating scattering and reactions that has a very favour-
able scaling with particle number. The number of computational oper-
ations needed for the A1-body +  A2-body problem scales roughly as 
(A1 +  A2)2 for light and medium-mass nuclei, and the algorithm does 
not require the projectile to be very light. Because sign oscillations 
are greatly suppressed for alpha-like nuclei12,27, our approach appears 
to be a viable method for studying important processes such as alpha 
scattering and capture on 12C. Direct experimental data for alpha cap-
ture on 12C is not possible, owing to Coulomb barrier suppression at 
energies relevant for stellar nucleosynthesis, and extrapolations from 

higher energies have uncertainties that exceed the 10% accuracy needed 
for stellar evolution models.

Nevertheless, there has been progress in measuring the contribu-
tion from subthreshold states28 and cumulative R-matrix analyses 
using multiple data sources such as beta-delayed alpha-decay of 16N 
and 4He +  12C elastic scattering29. Ab initio lattice calculations can con-
tribute to these efforts by calculating asymptotic normalization coeffi-
cients for subthreshold states, determining the direct capture rate onto 
the ground state, and providing low-energy data on 4He +  12C elastic 
scattering. For these future calculations, we expect that about four times 
as much computing time as the roughly two million core hours used 
for this work will be required; the computational resources available 
appear sufficient to keep stochastic errors under control. To reduce 
systematic errors, we are currently working on including lattice nuclear 
forces at the next-higher order in the chiral expansion, reducing the 
lattice spacing, improving the lattice action, and doing precision tests 
of systematic errors in the adiabatic projection method. If necessary, 
the ab initio lattice results will be further improved by including short-
range operators in the adiabatic Hamiltonian to make fine adjustments 
to the energies of near-threshold states of 16O.

There is an obvious overlap between lattice calculations using the 
adiabatic projection method and halo EFT. Therefore it might be 
fruitful to look for synergies between the two methods. In cases where 
there is a large scale separation between the low-energy scattering and 
high-energy internal excitations, benchmark tests can be made between 
halo EFT and lattice calculations. Furthermore, ab initio calculations 
can be used to determine input data for halo EFT, as done in ref. 30. 
In cases where the separation of scales is not large, lattice calculations 
can be used to guide improvement of halo EFT to include nuclear 
core excitations. It also might be useful to treat the lattice adiabatic 
Hamiltonian as a halo EFT for clusters, and explore extensions to three- 
and four-cluster systems. This method could potentially be used to 
investigate multi-alpha-cluster structures in 12C and 16O.

It would be exciting to extend the methods presented here to lat-
tice quantum chromodynamics (QCD) and construct adiabatic 
Hamiltonians for hadronic systems. All of the techniques used in our 
lattice simulations have immediate analogues in lattice QCD. The initial 
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theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors 
and the extrapolation of that data to infinite projection time. The green 
dashed (LO), blue short-dashed (NLO), and red solid (NNLO) lines are 
determined from fits to the lattice data using the effective range expansion. 
The black dot-dashed line in the inset shows NLO results using halo EFT 
with point-like alpha particles26.
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interactions of individual nucleons between the two alpha clusters, as 
well as to repulsion as a result of the Pauli exclusion principle for iden-
tical fermions.

With these dressed cluster states, we compute matrix elements of the 
full microscopic Hamiltonian with respect to the dressed cluster states:

= 〈 | | ′〉 ( )τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓH R H R[ ] 1R R,
, , ,z z z

Because the dressed cluster states are not orthogonal, we construct a 
norm matrix:

= 〈 | ′〉τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓN R R[ ]R R,
, , ,z z z

The radial adiabatic Hamiltonian is defined as a matrix product:

= ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z

In the limit of large projection time τ , the spectrum of the adiabatic 
Hamiltonian reproduces the low-energy finite-volume spectrum of the 
microscopic Hamiltonian H. In ref. 17, it is shown that in the asymp-
totic region where the alpha clusters are widely separated, the adiabatic 
Hamiltonian reduces to a simple two-cluster Hamiltonian with only 
infinite-range interactions such as the Coulomb interaction between 
the otherwise non-interacting clusters. Although this may seem an 
obvious result, it is a non-trivial statement that the dependence on the 
projection time τ drops out from the adiabatic Hamiltonian at large 
distances.

We study 4He +  4He scattering using the same lattice action that is 
used to study the Hoyle state of 12C (ref. 11). The spatial lattice spacing 
is a =  1.97 fm and the Euclidean-time, or temporal, lattice spacing is 
at =  1.32 fm. Revisiting these calculations in the future with different 
lattice spacings and including higher-order terms in the chiral expan-
sion will provide a useful measure of systematic errors in lattice calcu-
lations of larger nuclear systems.

We perform projection Monte Carlo simulations with auxiliary fields 
to compute the matrices τ ′

ℓ ℓH[ ]R R,
, z  and τ ′

ℓ ℓN[ ]R R,
, z  on a periodic cubic lattice 

with volume L3 =  (16 fm)3; see ref. 24 for an overview of methods used 
in lattice EFT. The total projection time for the initial and final dressed 
cluster states together is 2τ, which is equal to the product of the number 
of time steps Lt and the temporal lattice spacing at. We determine 
τ ′
ℓ ℓN[ ]R R,
, z  from calculations with Lt time steps and τ ′

ℓ ℓH[ ]R R,
, z  from calcula-

tions with Lt +  1 time steps. The extra time step for τ ′
ℓ ℓH[ ]R R,
, z  is needed 

to calculate the matrix elements of H in equation (1). For these calcu-
lations, a new algorithm is used to allow for Monte Carlo updates of the 
auxiliary fields as well as updates of the alpha cluster positions.

We compute the radial adiabatic Hamiltonian using equation (2) and 
extend it to a much larger volume of (120 fm)3. This is done by 

 computing matrix elements of = ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z at large separation (large R  

and R′ ) from single-alpha lattice simulations, and then including the 
Coulomb interaction between the otherwise non-interacting clusters. 
This process also allows us to define a ‘trivial’ two-cluster Hamiltonian 
in which the two alpha clusters are non-interacting except for the 
infinite-range Coulomb interaction.

With the radial adiabatic Hamiltonian defined in the large (120 fm)3 
box, we extract the scattering phase shifts by imposing a hard spherical 
wall boundary at some radius Rwall and determining the standing wave 
modes. In Fig. 2 we show s-wave radial functions for two different 
radial excitations (2s and 3s) at NNLO using chiral EFT. The error bars 
show 1-standard deviation (s.d.) Monte Carlo errors calculated using 
a jackknife analysis of the lattice data. We could extract the phase shift 
by fitting to the asymptotic behaviour of the radial wavefunction as in 
ref. 17; however, it is more accurate to extract the phase shifts from the 
energy of the standing wave, as discussed in ref. 25.

Figure 3 shows the phase shifts for s-wave scattering versus labo-
ratory energy at LO, NLO, and NNLO in chiral EFT, compared with 
experimental data19–22. The green dashed (LO), blue short-dashed 
(NLO), and red solid lines (NNLO) are determined from fits to the 
lattice data using the effective range expansion (see Methods). For 
further comparison, the inset of Fig. 3 shows NLO results using 
halo EFT with point-like alpha particles26. Halo EFT is an effec-
tive theory in which clusters of tightly bound nucleons are treated 
as point particles. Our LO results do not include Coulomb effects 
and so have substantially different behaviour near the alpha–alpha 
scattering threshold. The NLO and NNLO phase shifts are quite 
similar, and both agree fairly well with the experimental data. The 
close agreement between NLO and NNLO results is probably acci-
dental: several contributions appearing at NNLO seem to cancel 
each other out. The same does not occur for the d-wave phase shifts. 
The results and error bars shown in Fig. 3 are computed from lat-
tice phase-shift data for Lt =  4 to Lt =  10 and extrapolating to the 
limit Lt →  ∞. Details of the extrapolation fit and all associated 
error estimates are discussed in Methods. The observed energy of 
the s-wave resonance in the centre-of-mass frame is 0.09184 MeV 
above threshold. For the lattice results, we find that the ground 
state is 0.79(9) MeV below threshold at LO, and 0.11(1) MeV below 
threshold at both NLO and NNLO (the errors in parentheses here 
and elsewhere represent 1 s.d.).

R 

Figure 1 | Initial state clusters. Initial state | 〉R  composed of two alpha-
particle wave packets on the lattice separated by the displacement vector R. 
Each alpha-particle wave packet consists of four nucleons. Protons are red; 
neutrons are blue; spins are represented as arrows.
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3s state
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Figure 2 | s-wave scattering radial wavefunctions. The second-lowest-
energy (red squares) and third-lowest-energy (blue circles) s-wave radial 
wavefunctions for spherical wall radius Rwall ≈  36 fm (grey dashed line) at 
NNLO plotted versus radial distance. The dashed and double-dot-dashed 
lines show the fits to a Coulomb wavefunction for the second and third 
radial states, respectively. The error bars indicate 1-s.d. Monte Carlo errors 
calculated using a jackknife analysis of the lattice data.
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Used lattice EFT to extract the effective "
Hamiltonian for two interacting α-clusters "
(adiabatic projection method [A. Rokash et al., PRC 92 (15) 054612])

First ab initio calculation of alpha-alpha scattering!

Phase shifts obtained emp-
loying a hard spherical wall 
boundary at asymptotically 
large distances

Promising scaling with 
respect to the number of 
particles as  ~ (A1 + A2)2



Frontier of ab initio calculations from Achim Schwenk, TU Darmstadt 

0.15 0.18 0.21

Rskin (fm)

3.2

3.3

3.4

3.5

R
p
(f
m
)

A

3.4 3.5 3.6

Rn (fm)

B

2.0 2.4 2.8

®D (fm
3 )

C

EDF 

CC   IM-SRG  Expt.  USDB

0

0.5

1

1.5

2

2.5

3

3.5

4

E
n
er

g
y
 (

M
eV

)

4
+

0
+

2
+

2
+

0
+

2
+ 2

+

4
+

5
+

1
+

1
+

3
+

3
+

3
+

3
+

1
+

1
+

2
+

(4
+
)

(3
+
)

(4
+
,2

+
)

3
+

4
+1
+2
+

3
+

2
+

4
+

(2
+
)

1
+

2
+

1
+

4
+

3
+

24
F

•  First NN+3N prediction of the neutron skin, 
weak form factor, dipole polarizability of 48Ca 
 
 
 
 
 
 
 
  
Neutron skin smaller than previously thought! Hagen et al., Nature Phys. 

  

•  In-Medium Similarity Renormalization Group 
 

First nonperturbative derivation of shell-model 
interactions from NN+3N interactions 
Bogner et al., PRL 113, 142501 (2014) 
  
First ab initio description of deformed nuclei 
Stroberg et al., 1511.02802 

  

•  Quantum Monte Carlo with local chiral 3N 
Lynn, Tews et al., 1507.05561, 1509.0347 

 Neutron skin of 48Ca

Frontier of ab initio calculations from Achim Schwenk, TU Darmstadt 

0.15 0.18 0.21

Rskin (fm)

3.2

3.3

3.4

3.5

R
p
(f
m
)

A

3.4 3.5 3.6

Rn (fm)

B

2.0 2.4 2.8

®D (fm
3 )

C

EDF 

CC   IM-SRG  Expt.  USDB

0

0.5

1

1.5

2

2.5

3

3.5

4

E
n
er

g
y
 (

M
eV

)

4
+

0
+

2
+

2
+

0
+

2
+ 2

+

4
+

5
+

1
+

1
+

3
+

3
+

3
+

3
+

1
+

1
+

2
+

(4
+
)

(3
+
)

(4
+
,2

+
)

3
+

4
+1
+2
+

3
+

2
+

4
+

(2
+
)

1
+

2
+

1
+

4
+

3
+

24
F

•  First NN+3N prediction of the neutron skin, 
weak form factor, dipole polarizability of 48Ca 
 
 
 
 
 
 
 
  
Neutron skin smaller than previously thought! Hagen et al., Nature Phys. 

  

•  In-Medium Similarity Renormalization Group 
 

First nonperturbative derivation of shell-model 
interactions from NN+3N interactions 
Bogner et al., PRL 113, 142501 (2014) 
  
First ab initio description of deformed nuclei 
Stroberg et al., 1511.02802 

  

•  Quantum Monte Carlo with local chiral 3N 
Lynn, Tews et al., 1507.05561, 1509.0347 

First ab-initio (coupled-cluster) calculation of 
the neutron distribution in 48Ca

Used NNLOsat NN + 3NF tuned to energies 
and radii of up to A ~ 25 nuclei "
(also EM N3LO NN + N2LO 3NF)

Neutron skin significantly smaller than expected from DFT and robust (correlations)

Prediction of the electric dipole polarizability αD
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Electroweak probes on nucleons and nuclei can be described by current formalism

Nuclear currents in chiral EFT
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Chiral EFT Hamiltonian depends on external sources
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Electroweak probes on nucleons and nuclei can be described by current formalism

(Our) requirements on the current operators:
must be off-shell consistent with the forces
should be renormalized (exploit unitary ambiguity)
(cutoff) regularization of the forces and currents 
should maintain the symmetry (cont. equation)

— Kölling, EE, Krebs, Meißner (method of UT), PRC 80 (09) 045502; 86 (12) 047001!
— Jlab-Pisa group (TOPT), Pastore et al. ’08 - ’11

EM currents:

— Krebs, EE, Meißner (MUT), arXiv:1610.03569, to appear in Annals of Physics !
— Jlab-Pisa group (TOPT), Baroni et al. ’16!
— Hoferichter, Klos, Schwenk ’15

Axial currents:



single-nucleon two-nucleon three-nucleon

Q-3

Q-1

Q0

Q1

depend on d8, d9, d18, d21, d22,!
no 1/m corrections… 

parameter-free

depend on C2, C4, C5, C7 + L1, L2; !
no loop corrections depend on CT

parameter-free static two-pion exchange

parameter-free

 Electromagnetic currents
Chiral expansion of the electromagnetic current and charge operators 

ci

1/m

di

ei

Our results differ from the ones of 
the JLab-Pisa group. In particular, 
they did not succeed to get the 1π 
current renormalized…
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FIG. 1. (Color online) The total cross section σtot for the γ + d → p + n reaction. The chiral
N4LO, R=0.9 fm predictions for the SNC (SNC+Siegert) current model are shown with the dashed

red (thick black dashed) curve. The AV18 predictions for the SNC, SNC+Siegert and SNC+MEC
current models are shown with the double-dotted-dashed green, dotted violet and solid blue curve,
respectively. The experimental data are from Ref. [46] (black ”x”), [47] (magenta squares), [48]

(open circles), [49] (black pluses) and [50] (black dots).

obtain very similar predictions, practically indistinguishable at photon energies below ap-
proximately 30 MeV. At the higher energies a small difference develops between the chiral
and the AV18 potential, with the chiral predictions lying closer to the data.

Next we study a more detailed observable, namely the differential cross section at two
photon laboratory energies Eγ=30 MeV (Fig. 2, the upper row) and Eγ=100 MeV (Fig. 2,
the lower row). In the left panel we show the convergence of predictions for R=0.9 fm with
respect to the order of the chiral expansion. In the middle panel the uncertainty of theoretical
predictions due to the truncation of higher order contributions is given. Finally, in the right
panel, we demonstrate the dependence of predictions on the values of the regulator R at
N4LO using five different values of R: 0.8, 0.9, 1.0, 1.1 and 1.2 fm. Our best prediction,
SNC+Siegert for R=0.9 fm is represented by the thick black dashed curve and is shown
both in the left and right panels. For the sake of comparison, also the AV18 prediction given
by the thick violet dotted line is displayed in these two panels. The same arrangement of
curves will be preserved also in Figs. 3-6, 8 and 12.

It is clear that for both energies one has to go beyond the leading order (LO) to describe
data. At the lower energy all the higher than LO predictions are close to each other, but
at Eγ=100 MeV the convergence is reached only at N3LO. The truncation errors presented
in the central panel confirm this observation and the band at N4LO lies on the N3LO
one. A small but visible width of the N4LO band for the higher energy suggests that some
contributions from higher orders are still possible for this observable. The cut-off dependence
of the cross section is very small at lower energy and increases with energy, reaching at
Eγ=100 MeV about 20% at small proton c.m. scattering angles. However, a more careful

7

 
Skibinski, Golak, Topolnicki, Witala, EE, Krebs, Kamada, Meißner, Nogga, PRC 93 (2016) 064002 

To maintain consistency between currents and forces (symmetry), we generate regularized 
longitudinal terms in the current via the continuity equation (i.e. Siegert approach).

Transverse terms in the currents are to be regularized and included explicitly (in progress…)

Total cross section for the deuteron photo-disintegration !
reaction γ + d → p + n 

Electromagnetic exchange currents

1N, AV18

1N, N4LO

Siegert, N4LO

Siegert, AV18
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Magnetic form factors of 3He, 3HPredictions with χEFT EM Currents for 3He and 3H Magnetic f.f.’s
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! 3He/3H m.m.’s used to fix EM LECs;∼ 15% correction from two-body currents

! Two-body corrections crucial to improve agreement with EXPT data

3He < r >EXP= 1.976±0.047 fm 3H < r >EXP= 1.840±0.181 fm
Λ 500 600 500 600

LO 2.098 (2.092) 2.090 (2.092) 1.924 (1.918) 1.914 (1.918)
N3LO 1.927 (1.915) 1.913 (1.924) 1.808 (1.792) 1.794 (1.797)

PRC87(2013)014006

11 / 40

22

10-4

10-3

10-2

10-1

100

|F
M

(q
)/µ

|

0 1 2 3 4
q (fm-1)

10-4

10-3

10-2

10-1

100

|F
M

S (q
)|

0 1 2 3 4 5
q (fm-1)

|F
M

V
(q

)|

LO AV18/UIX
LO N3LO/N2LO
TOT AV18/UIX
TOT N3LO/N2LO

3He 3H

FIG. 9: (Color online). The 3He and 3H magnetic form factors (top panels), and their isoscalar and isovector combinations
(bottom panels), obtained at leading order (LO) and with inclusion of current operators up to N3LO (TOT) corresponding
to the LEC’s dS1 and dS2 in Table I and to set III of isovector LEC’s dV1 and dV2 in Table III, are compared with experimental
data [58]. Predictions relative to cutoffs Λ in the range (500–600) MeV are displayed by the bands.

The magnetic form factors of 3He and 3H and their isoscalar and isovector combinations FS
M (q) and FV

M (q), nor-
malized respectively as µS and µV at q = 0, at LO and with inclusion of corrections up to N3LO in the current,
are displayed in Fig. 9. As is well known from studies based on the conventional meson-exchange framework (see
the review [13] and references therein), two-body currents are crucial for “filling in” the zeros obtained in the LO
calculation due to the interference between the S- and D-state components in the ground states of these nuclei. For
q ! 2 fm−1 there is excellent agreement between the present χEFT predictions and experiment. However, as the
momentum transfer increases, even after making allowance for the significant cutoff dependence, theory tends to
underestimate the data, in particular it predicts the zeros in both form factors occurring at significantly lower values
of q than observed. Thus, the first diffraction region remains problematic for the present theory, confirming earlier
conclusions derived from studies in the conventional framework [62, 63].
Figure 10 illustrates the sensitivity of the N3LO predictions on the different ways in which the isovector LEC’s are

constrained in sets I, II, III. The set I results are strongly at variance with data. Set II leads to two-body current
contributions larger than in set III, and consequently, in contrast to set III, the corresponding form factors reproduce
the data in the diffraction region. However, the cutoff variation of the results is considerably larger than for set III,
as reflected in the change of the LEC dV1 for Λ = 500–600 MeV in Table III. Furthermore, set II overestimates µV by
about 3%.

Figure 11 exhibits cumulatively the LO, NLO, N2LO, and N3LO contributions to the 3He and 3H magnetic form
factors, obtained with the N3LO/N2LO Hamiltonian and cutoff Λ = 500 MeV. Tables XIII and XIV list the individual
components of these contributions at selected values of q. The notation is as follows: with LO we denote the one-body
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FIG. 9: (Color online). The 3He and 3H magnetic form factors (top panels), and their isoscalar and isovector combinations
(bottom panels), obtained at leading order (LO) and with inclusion of current operators up to N3LO (TOT) corresponding
to the LEC’s dS1 and dS2 in Table I and to set III of isovector LEC’s dV1 and dV2 in Table III, are compared with experimental
data [58]. Predictions relative to cutoffs Λ in the range (500–600) MeV are displayed by the bands.

The magnetic form factors of 3He and 3H and their isoscalar and isovector combinations FS
M (q) and FV

M (q), nor-
malized respectively as µS and µV at q = 0, at LO and with inclusion of corrections up to N3LO in the current,
are displayed in Fig. 9. As is well known from studies based on the conventional meson-exchange framework (see
the review [13] and references therein), two-body currents are crucial for “filling in” the zeros obtained in the LO
calculation due to the interference between the S- and D-state components in the ground states of these nuclei. For
q ! 2 fm−1 there is excellent agreement between the present χEFT predictions and experiment. However, as the
momentum transfer increases, even after making allowance for the significant cutoff dependence, theory tends to
underestimate the data, in particular it predicts the zeros in both form factors occurring at significantly lower values
of q than observed. Thus, the first diffraction region remains problematic for the present theory, confirming earlier
conclusions derived from studies in the conventional framework [62, 63].
Figure 10 illustrates the sensitivity of the N3LO predictions on the different ways in which the isovector LEC’s are

constrained in sets I, II, III. The set I results are strongly at variance with data. Set II leads to two-body current
contributions larger than in set III, and consequently, in contrast to set III, the corresponding form factors reproduce
the data in the diffraction region. However, the cutoff variation of the results is considerably larger than for set III,
as reflected in the change of the LEC dV1 for Λ = 500–600 MeV in Table III. Furthermore, set II overestimates µV by
about 3%.

Figure 11 exhibits cumulatively the LO, NLO, N2LO, and N3LO contributions to the 3He and 3H magnetic form
factors, obtained with the N3LO/N2LO Hamiltonian and cutoff Λ = 500 MeV. Tables XIII and XIV list the individual
components of these contributions at selected values of q. The notation is as follows: with LO we denote the one-body

3He/3H m.m’s used to fix EM LECs; ~15% correction from two-body currents
Exchange currents crucial to improve agreement with exp data



 Pastore, Pieper, Schiavilla, Wiringa, Phys. Rev. C87 (2013) 035503 

Magnetic moments of light nuclei

Magnetic moments of A = 2, 3 nuclei used to fix EM LECs
Theoretical uncertainties?

Hybrid GFMC calculations using AV18 + Urbana 3NF

Magnetic Moments in A≤ 10 Nuclei

Predictions for A > 3 nuclei
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! µ(IA) = µN ∑i[(Li +gpSi)(1+ τi,z)/2+gnSi(1− τi,z)/2]
! GFMC calculations based on H = T + AV18 + IL7

PRC87(2013)035503 15 / 40

predictions



single-nucleon two-nucleon three-nucleon

Q-3

Q-1

Q0

Q1

depend on d2, d5, d6, d15-2d23,!
no 1/m corrections… 

parameter-free

parameter-free; !
only tree-level 1/m-corr. survive

depend on z1, …, z4;!
no loop corrections

parameter-free static two-pion exchange

parameter-free

parameter-free (depend on the known CT)

 Exchange axial currents
Chiral expansion of the axial current and charge operators 

cDci

1/m

Comparison with Baroni et al. (TOPT) 

— different results for π-exchange"
     current contributions 
— different tree-level 1π-charge

— looked only at irred. 3N graphs 

— didn’t consider 1/m-corrections "
     at order Q1 

Krebs, EE, Meißner, arXiv:1610.03569



  Tritium β-decay [Skibinski et al., in progress]

Half-life of 3H (up to known radiative corrections):
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constraints on the Gamow-Teller ME 

Using 1N current, the ft value is off by ~ 5%          exchange current contribution!
Up to Q1 (i.e. N3LO), no LECs except for 
known ci and cD involved. Fixing cD in the "
strong sector allows one to predict ft!"
(it is crucial to maintain the symmetry)

cD cD cEci

leading 3N force (N2LO)leading short-range!
axial current (Q0)test axial exchange currents

Being validated in 3H β-decay, the 
same currents can be used to pre-
dict the μ capture rate on 2H being 
measured in MuSun

LENPIC: Low Energy Nuclear Physics International Collaboration
LENPIC

 0
-5 0 5 10 15

cD

nd scattering length 2a [Schön et al.’03]

nd σtot at 70 MeV [Abfalterer et al.’01]

pd minimum of dσ/dθ at 70 MeV [Sekiguchi et al.’02]

nd σtot at 108 MeV [Abfalterer et al.’01]

nd σtot at 135 MeV [Abfalterer et al.’01]

pd minimum of dσ/dθ at 135 MeV [Sekiguchi et al.’02]

pd minimum of dσ/dθ at 108 MeV [Ermisch et al.’03]

Within the LENPIC, work is in pro-
gress on the determination of cD. 



  Relevance for WIMP-nucleus scattering
Assuming the WIMP χ to be fermion and a SM singlet, the dimension-6 and -7 effective 
Lagrangian for χ-SM fields has the form [Goodman et al. ’10;  Hoferichter et al. ’15]: 
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…can be viewed as external sources in QCD…

Vector, axial-vector and pseudoscalar 2N currents have been worked out at order Q4 

(leading 1-loop) [Pastore et al.’08; Kölling et al.’09,’11; Krebs et al.’15; Hoferichter et al.’15] 

Scalar exchange currents are only available at tree level [Cirigliano et al.’14], derivation of the "
leading loop corrections in progress [Krebs et al., in preparation…]



 The future
What are the frontiers/challenges for the near future?

Precision physics beyond the 2N system: challenge the theory 
Lots of predictive power (N3LO contributions to the 3NF and 4NF are 
parameter-free, 3H β-decay & μ-capture reactions are parameter-free 
up to N3LO once the short-range 3NF@N2LO is fixed, …)
3NF & long-standing puzzles in 3N continuum
Push theory to heavier nuclei (underbinding? radii?)
More reliable error analysis
Test different power counting schemes

—

—
—
—
—

Chiral EFT as a tool to deal with nuclear effects when looking at physics "
of/beyond the SM (parity violation, EDM, 0νββ, proton charge radius,…) 

EFT for lattice QCD (extrapolations), lattice QCD for EFT (quark mass 
dependence, „data“, …)

Nuclear reactions 


