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p-valuesp-values

Largest excess observed at m
X 
= 750GeV and for narrow width.

Local signi5cance: 3.4s

Taking into account mass range 500-3500GeV (and all signal hypotheses),

“global” signi5cance becomes 1.6s
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Breaking-down the contributions Breaking-down the contributions 

Excess at 760GeV comes mostly from EBEB categories.

Driven by 3.8T category.
(where the observed excess is ~unchanged w.r.t. the previous results).

Observed one event in the 0T dataset compatible with 3.8T excess.



This has triggered a tsunami of theoretical papers 
and ideas …
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Blessings of a phantom

❖ The 750 GeV diphoton resonance was, at the same time, the 
most exciting new-physics hint after the Higgs discovery and 
the most spectacular over-reaction of the high-energy physics 
community to a (global) 2σ effect!

❖ While perhaps too many papers have been written in response 
to this effect, the “swarm intelligence” of the community has 
produced, in a rather short time, a comprehensive picture of 
the physics of such a particle!

❖ Several very useful lessons have been learned! 



What has remained after the resonance  
turned out to be  

a statistical fluctuation ?



The photon PDF of the proton
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How bright is the proton?
A precise determination of the photon PDF
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It has become apparent in recent years that it is important, notably for a range of physics stud-
ies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the
proton. We show how the photon parton distribution function (PDF) can be determined in a model-
independent manner, using electron–proton (ep) scattering data, in e↵ect viewing the ep ! e +X

process as an electron scattering o↵ the photon field of the proton. To this end, we consider an
imaginary BSM process with a flavour changing photon–lepton vertex. We write its cross section
in two ways, one in terms of proton structure functions, the other in terms of a photon distribu-
tion. Requiring their equivalence yields the photon distribution as an integral over proton structure
functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of
1�2% over a wide range of x values.

A fast-moving particle generates an associated electro-
magnetic field which can be interpreted as a distribution
of photons, as originally calculated by Fermi, Weizsäcker
and Williams [1–3] for point-like charges. The corre-
sponding determination of the photon distribution for
hadrons, specifically f

�/p

for the proton, has however
been the subject of debate over recent years.

The photon distribution is small compared to that of
the quarks and gluons, since it is suppressed by a power
of the electromagnetic coupling ↵. Nevertheless, it has
been realised in the past few years that its poor knowl-
edge is becoming a limiting factor in our ability to pre-
dict key scattering reactions at CERN’s Large Hadron
Collider (LHC). Notable examples are the production of
the Higgs boson throughW/Z fusion [4], or in association
with an outgoing weak boson [5]. For W±H production
it is the largest source of uncertainty [6]. The photon
distribution is also potentially relevant for the produc-
tion of lepton-pairs [7–11], top-quarks [12], pairs of weak
bosons [13–18] and generally enters into electroweak cor-
rections for almost any LHC process. The diphoton ex-
cess around 750 GeV seen by ATLAS and CMS [19, 20]
has also generated interest in understanding f

�/p

.

The two most widely used estimates of f
�/p

are those
included in the MRST2004QED [21] and NNPDF23QED [22]
parametrisations of the proton structure. In the NNPDF
approach, the photon distribution is constrained mainly
by LHC data on the production of pairs of leptons,
pp ! `+`�. This is dominated by qq̄ ! `+`�, with a
small component from �� ! `+`�. The drawback of
this approach is that even with very small uncertainties
in `+`� production data [8], in the QCD corrections to
qq̄ ! `+`� and in the quark and anti-quark distribu-
tions, it is di�cult to obtain high precision constraints
on f

�/p

.

In the MRST2004QED approach, the photon is instead
modeled. It is assumed to be generated as emissions

from free, point-like quarks, using quark distributions fit-
ted from deep-inelastic scattering (DIS) and other data.
The free parameter in the model is an e↵ective mass-
scale below which quarks stop radiating, which was taken
in the range between current-quark masses (a few MeV)
and constituent-quark masses (a few hundred MeV). The
CT14QED [23] variant of this approach constrains the e↵ec-
tive mass scale using ep ! e� +X data [24], sensitive to
the photon in a limited momentum range through the re-
action e� ! e� [25]. A more sophisticated approach [26]
supplements a model of the photon component generated
from quarks (“inelastic” part) with a calculation of the
“elastic” component (whose importance has been under-
stood at least since the early 1970’s [27]) generated by
coherent radiation from the proton as a whole. This was
recently revived in Refs. [28–30].

In this article we point out that electron-proton (ep)
scattering data already contains all the information that
is needed to accurately determine f

�/p

. It is common
to think of ep scattering as a process in which a pho-
ton emitted from the electron probes the structure of the
proton. However one can equivalently think of it as an
electron probing the photon field generated by the proton
itself. Thus the ep scattering cross section is necessarily
connected with f

�/p

. A simple way to make the connec-
tion manifest is to consider, instead of ep scattering, the
fictitious process l+ p ! L+X, where l and L are neu-
tral leptons, with l massless and L massive with mass M .
We assume a transition magnetic moment coupling of the
form L

int

= (e/⇤)L�µ⌫F
µ⌫

l. Here e2(µ2)/(4⇡) ⌘ ↵(µ2)
is the MS QED coupling evaluated at the scale µ, and the
arbitrary scale ⇤ �

p
s (where

p
s is the centre-of-mass

energy) is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmetric
particle production at ep colliders [31]: there are two
ways of writing the heavy-lepton production cross section
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The photon PDF of the proton

❖ Model-independent determination using available, 
high-precision data on electron-proton scattering

❖ Key observation is a statement of duality: the process     
e+p → e+X can be described in terms of proton structure 
functions, but it can equally be viewed as the scattering 
of the electron off the photon field in the proton



❖ Key relation:

❖ Contains all large logs of the form   
f                               and

❖ Contains both inelastic and elastic 
contributions 

❖ Basis for a precise determination

The photon PDF of the proton
4
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FIG. 4. The ratio of common PDF sets to our LUXqed result,
along with the LUXqed uncertainty band (light red). The CT14
and MRST bands correspond to the range from the PDF mem-
bers shown in brackets (95% cl. in CT14’s case). The NNPDF

bands span from max(µr � �r, r16) to µr + �r, where µr is
the average (represented by the blue line), �r is the standard
deviation over replicas, and r16 denotes the 16th percentile
among replicas. Note the di↵erent y-axes for the panels.

as the di↵erence between the CLAS and CB fits (RES);
a systematic uncertainty due to the choice of the transi-
tion scale between the HERMES F

2

fit and the pertur-
bative determination from the PDFs, obtained by reduc-
ing the transition scale from 9 to 5 GeV2 (M); missing
higher order e↵ects, estimated using a modification of
Eq. (6), with the upper bound of the Q2 integration set
to µ2 and the last term adjusted to maintain ↵2(↵

s

L)n

accuracy (HO); a potential twist-4 contribution to F
L

parametrised as a factor (1 + 5.5 GeV2/Q2) [54] for
Q2 � 9GeV2 (T). One-sided errors are all symmetrised.
Our final uncertainty, shown as a solid line in Fig. 3, is
obtained by combining all sources in quadrature and is
about 1-2% over a large range of x values.

In Fig. 4 we compare our LUXqed result for the MS f
�/p

to determinations available publicly within LHAPDF [55].
Of the model-based estimates CT14qed inc, CT14qed [23]
and MRST2004 [21], it is CT14qed inc that comes closest
to LUXqed. Its model for the inelastic component is con-
strained by ep ! e� + X data from ZEUS [24]. It also

FIG. 5. �� luminosity in pp collisions as a function of the
�� invariant mass M , at four collider centre-of-mass energies.
The NNPDF30 results are shown only for 8 and 100 TeV. The
uncertainty of our LUXqed results is smaller than the width of
the lines.

includes an elastic component. Note however that, for
the neutron, CT14qed inc neglects the important neu-
tron magnetic form factor. As for the model-independent
determinations, NNPDF30 [56], which notably extends
NNPDF23 [22] with full treatment of ↵(↵

s

L)n terms in
the evolution [57], almost agrees with our result at small
x. At large x its band overlaps with our result, but the
central value and error are both much larger.
Similar features are visible in the corresponding ��

partonic luminosities, defined as

dL
��

d lnM2

=
M2

s

Z
dz

z
f
�/p

(z,M2) f
�/p

✓
M2

zs
,M2

◆
, (9)

and shown in Fig. 5, as a function of the �� invariant
mass M , for several centre-of-mass energies.
As an application, we consider pp ! HW+(! `+⌫) +

X at
p
s = 13 TeV, for which the total cross section with-

out photon-induced contributions is 91.2±1.8 fb [6], with
the error dominated by (non-photonic) PDF uncertain-
ties. Using HAWK 2.0.1 [58], we find a photon-induced
contribution of 5.5+4.3

�2.9

fb with NNPDF30, to be compared
to 4.4± 0.1 fb with LUXqed.
In conclusion, we have obtained a formula (i.e. Eq. (6))

for the MS photon PDF in terms of the proton structure
functions, which includes all terms of order ↵L (↵

s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n. Our method can be eas-
ily generalised to higher orders in ↵

s

and holds for any
hadronic bound state. Using current experimental in-
formation on F

2

and F
L

for protons we obtain a pho-
ton PDF with much smaller uncertainties than existing
determinations, as can be seen from Fig. 4. The pho-
ton PDF has a substantial contribution from the elas-
tic form factor (⇠ 20%) and from the resonance region
(⇠5%) even for high values of µ ⇠ 100�1000 GeV. Our

2

�, one in terms of standard proton structure functions,
F
2

and F
L

(or F
1

), the other in terms of the proton PDFs
f
a/p

, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) + X. Defining q = k � k0, Q2 = �q2 and
x

Bj

= Q2/(2pq), we have

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

(p, q)Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where the proton hadronic tensor (as defined
in [32]) is given by W

µ⌫

(p, q) = �g
µ⌫

F
1

(x
Bj

, Q2) +
p
µ

p
⌫

/(pq)F
2

(x
Bj

, Q2) up to terms proportional
to q

µ

, q
⌫

, and the leptonic tensor is Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
. In Eq. (1)

we introduced the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find

� =
c
0

2⇡

Z
1� 2xm

p

M

x

dz

z

Z
Q

2

max

Q

2

min

dQ2

Q2

↵2

ph

(�Q2)

"✓
2�2z+z2

+
2x2m2

p

Q2

+
z2Q2

M2

� 2zQ2

M2

�
2x2Q2m2

p

M4

◆
F
2

(x/z,Q2)

+

✓
�z2 � z2Q2

2M2

+
z2Q4

2M4

◆
F
L

(x/z,Q2)

#
, (3)

where x = M2/(s � m2

p

), m
p

is the proton mass,
F
L

(x,Q2) = (1+4m2

p

x2/Q2)F
2

(x,Q2)�2xF
1

(x,Q2) and
c
0

= 16⇡2/⇤2. Assuming that M2 � m2

p

, we have
Q2

min

= x2m2

p

/(1� z) and Q2

max

= M2(1� z)/z.
The same result in terms of parton distributions can

be written as

� = c
0

X

a

Z
1

x

dz

z
�̂
a

(z, µ2)
M2

zs
f
a/p

✓
M2

zs
, µ2

◆
, (4)

where in the MS factorisation scheme

�̂
a

(z, µ2) = ↵(µ2)�(1� z)�
a�

+
↵2(µ2)

2⇡

"
� 2 + 3z+

+ zp
�q

(z) ln
M2(1� z)2

zµ2

#
X

i2{q,q̄}

e2
i

�
ai

+ . . . , (5)

where e
i

is the charge of quark flavour i and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):

xf
�/p

(x, µ2) =
1

2⇡↵(µ2)

Z
1

x

dz

z

(Z µ

2

1�z

x

2

m

2

p

1�z

dQ2

Q2

↵2(Q2)

" 
zp

�q

(z) +
2x2m2

p

Q2

!
F
2

(x/z,Q2)� z2F
L

⇣x
z
,Q2

⌘#

� ↵2(µ2)z2F
2

⇣x
z
, µ2

⌘)
, (6)

where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n [33]. Within our accuracy
↵
ph

(�Q2) ⇡ ↵(Q2). The conversion to the MS factorisa-
tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

(x,Q2) =
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

(x,Q2) =
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q2 > x2m2

p

/(1 � x), which implies that
the elastic contribution to f

�

/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

2

�, one in terms of standard proton structure functions,
F
2

and F
L

(or F
1

), the other in terms of the proton PDFs
f
a/p

, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) + X. Defining q = k � k0, Q2 = �q2 and
x

Bj

= Q2/(2pq), we have

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

(p, q)Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where the proton hadronic tensor (as defined
in [32]) is given by W

µ⌫

(p, q) = �g
µ⌫

F
1

(x
Bj

, Q2) +
p
µ

p
⌫

/(pq)F
2

(x
Bj

, Q2) up to terms proportional
to q

µ

, q
⌫

, and the leptonic tensor is Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
. In Eq. (1)

we introduced the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find

� =
c
0

2⇡

Z
1� 2xm

p

M

x

dz

z

Z
Q

2

max

Q

2

min

dQ2

Q2

↵2

ph

(�Q2)

"✓
2�2z+z2

+
2x2m2

p

Q2

+
z2Q2

M2

� 2zQ2

M2

�
2x2Q2m2

p

M4

◆
F
2

(x/z,Q2)

+

✓
�z2 � z2Q2

2M2

+
z2Q4

2M4

◆
F
L

(x/z,Q2)

#
, (3)

where x = M2/(s � m2

p

), m
p

is the proton mass,
F
L

(x,Q2) = (1+4m2

p

x2/Q2)F
2

(x,Q2)�2xF
1

(x,Q2) and
c
0

= 16⇡2/⇤2. Assuming that M2 � m2

p

, we have
Q2

min

= x2m2

p

/(1� z) and Q2
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= M2(1� z)/z.
The same result in terms of parton distributions can

be written as
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0

X
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Z
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dz
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◆
, (4)

where in the MS factorisation scheme
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+
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(z) ln
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#
X
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where e
i

is the charge of quark flavour i and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2
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⇠ 1/↵
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. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):

xf
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dz

z
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2

1�z

x

2
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dQ2
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zp
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2x2m2
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!
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z
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⌘#
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z
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where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n [33]. Within our accuracy
↵
ph

(�Q2) ⇡ ↵(Q2). The conversion to the MS factorisa-
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an impact of up to 10% on the elastic part of f

�/p

(x)
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/(1 � x), which implies that
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The photon PDF of the proton
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How well is the photon known?

8

this work

• valence quarKs known to few percent
• others quarks to 10% over a large x-range
• THE ONLY DATA DRIVEN PHOTON DETERMINATION 

HAS A O(100%) UNCERTAINTY

Monday 15 August 16

❖ Amazing improvement over previous work, making 
the photon PDF one of the best known structure 
functions of the proton:

❖ This will have an impact on many other LHC analyses!



New spin-0 particles
Spin-0 gauge singlets play an important role in many 

extensions of the SM, e.g. as mediators to a hidden sector 
or in solutions to the strong CP problem



Motivation
❖ Consider a spin-0 particle S, which is a singlet under the 

SM gauge group

❖ Its only renormalizable interactions with the SM arise 
through the Higgs portals:

❖ First term gives rise to a mixing of S with the Higgs, with 
mixing angle                        which naturally can be large

❖ Affects Higgs phenomenology (α must be small) and 
potentially the phenomenology of S decays
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Scalar particles S which are singlets under the Standard Model gauge group are generic features
of many models of fundamental physics, in particular as possible mediators to a hidden sector. We
show that the decay S ! Zh provides a powerful probe of the CP nature of the scalar, because it is
allowed only if S has CP-odd interactions. We perform a model-independent analysis of this decay
using an e↵ective Lagrangian and compute the relevant Wilson coe�cients arising from integrating
out heavy fermions to one-loop order.

I. INTRODUCTION

Pseudoscalar singlets play an important role in various
extensions of the Standard Model (SM). They appear,
e.g., as mediators to a dark sector or in solutions to the
strong CP problem. Searches at the LHC focus on the
model-specific signals of these new states, which often
do not reveal their pseudoscalar nature – the phantom
digamma excess seen in the first 13TeV data [1, 2] could
have been an example of such a signal. Identifying the
CP properties of such a new state will be one of the top
priorities if a signal is seen in future data.

Let us consider a new spin-0 particle S, which is a
gauge singlet under the SM gauge group. Assuming its
mass is much larger than the electroweak scale, its inter-
actions can be described in terms of local operators in
the unbroken phase of the electroweak gauge symmetry.
At the renormalizable level, the only interactions of S
with SM particles arise from the Higgs portals

L
portal

= ��
1

S �†�� �
2

2
S2 �†� , (1)

where � is the Higgs doublet. The first term gives rise to
a mixing between S and the Higgs boson, with a mixing
angle ↵ ⇠ v�

1

/m2

S . The coupling �
1

is naturally of order
the UV cuto↵ of the theory, but at least of order mS , and
hence one expects ↵ > v/mS . However, this mixing will
a↵ect the phenomenology of Higgs decay rates, and so
in practice ↵ must be small. The example of the elusive
750GeV diphoton resonance [1, 2] has demonstrated that
tight bounds on ↵ can also be derived from the decays
S ! ZZ, WW , tt̄, hh [3, 4]. The portal coupling �

2

, on
the other hand, does not give rise to dangerous e↵ects.

It is therefore a challenge to model building to find
ways of suppressing the coupling �

1

, either by means of
a symmetry or dynamically. A discrete Z

2

symmetry un-
der which S changes sign would enforce �

1

= 0. If the
ultraviolet theory is (at least approximately) CP invari-
ant, then neutral particles can be classified as CP eigen-
states. If S is a CP-odd pseudoscalar (JPC = 0�+), �

1

must be zero. A nice example of a dynamical suppression
is provided by models in which S is identified with the
lowest mode of a Z

2

-odd bulk scalar in a warped extra
dimension [3, 5]. When the Higgs sector is localized on

the IR brane, its coupling to S is either suppressed by
a small wave-function overlap or by a loop factor. Here
we entertain the possibility of eliminating the portal cou-
pling �

1

by supposing that S is a CP-odd pseudoscalar,
e.g. an axion-like particle.
Measurements of angular distributions in S ! ZZ !

4l or S ! Z� ! 4l decays have been considered as a way
of probing the spin and CP properties of a new resonance
[6, 7], in analogy with the corresponding measurements
in Higgs decays [8]. However, the rates for these decays
are likely to be quite small, since a gauge-singlet S has
no renormalizable couplings to gauge bosons. Hence it
may require very large statistics to perform these analy-
ses. In this Letter we propose the decay S ! Zh, which
is strictly forbidden for a CP-even scalar, as a novel and
independent way to test the spin and CP quantum num-
bers of a new particle S. The very existence of this decay
would constitute a smoking-gun signal for a pseudoscalar
nature of S (or for significant CP-odd couplings, in case
S is a state with mixed CP quantum numbers), without
the need to analyze angular distributions. The observa-
tion of this decay would also exclude a spin-2 explana-
tion of a hypothetical new resonance [9]. To the best
of our knowledge this signature has not been studied in
the literature. Established experimental searches in the
context of two-Higgs-doublet models can be adapted for
the proposed search. The most promising decay mode is
S ! Zh ! l+l�bb̄ [10].

II. EFFECTIVE LAGRANGIAN ANALYSIS

At the level of dimension-5 operators, the most general
couplings of a CP-odd scalar to gauge bosons read

Lgauge

e↵

=
c̃gg
M

↵s

4⇡
S Ga

µ⌫
eGµ⌫,a + . . . , (2)

where M denotes the new-physics scale, and the dots
represent analogous couplings to the SU(2)L and U(1)Y
gauge bosons. Via this operator the resonance S can be
produced in gluon fusion at the LHC. The most general
dimension-5 couplings of S to fermions have the same
form as the SM Yukawa interactions times S/M , and
with the Yukawa matrices replaced by some new matri-
ces. In any realistic model these couplings must have
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where � is the Higgs doublet. The first term gives rise to
a mixing between S and the Higgs boson, with a mixing
angle ↵ ⇠ v�

1

/m2

S . The coupling �
1

is naturally of order
the UV cuto↵ of the theory, but at least of order mS , and
hence one expects ↵ > v/mS . However, this mixing will
a↵ect the phenomenology of Higgs decay rates, and so
in practice ↵ must be small. The example of the elusive
750GeV diphoton resonance [1, 2] has demonstrated that
tight bounds on ↵ can also be derived from the decays
S ! ZZ, WW , tt̄, hh [3, 4]. The portal coupling �

2

, on
the other hand, does not give rise to dangerous e↵ects.

It is therefore a challenge to model building to find
ways of suppressing the coupling �

1

, either by means of
a symmetry or dynamically. A discrete Z

2

symmetry un-
der which S changes sign would enforce �

1

= 0. If the
ultraviolet theory is (at least approximately) CP invari-
ant, then neutral particles can be classified as CP eigen-
states. If S is a CP-odd pseudoscalar (JPC = 0�+), �

1

must be zero. A nice example of a dynamical suppression
is provided by models in which S is identified with the
lowest mode of a Z

2

-odd bulk scalar in a warped extra
dimension [3, 5]. When the Higgs sector is localized on

the IR brane, its coupling to S is either suppressed by
a small wave-function overlap or by a loop factor. Here
we entertain the possibility of eliminating the portal cou-
pling �

1

by supposing that S is a CP-odd pseudoscalar,
e.g. an axion-like particle.
Measurements of angular distributions in S ! ZZ !

4l or S ! Z� ! 4l decays have been considered as a way
of probing the spin and CP properties of a new resonance
[6, 7], in analogy with the corresponding measurements
in Higgs decays [8]. However, the rates for these decays
are likely to be quite small, since a gauge-singlet S has
no renormalizable couplings to gauge bosons. Hence it
may require very large statistics to perform these analy-
ses. In this Letter we propose the decay S ! Zh, which
is strictly forbidden for a CP-even scalar, as a novel and
independent way to test the spin and CP quantum num-
bers of a new particle S. The very existence of this decay
would constitute a smoking-gun signal for a pseudoscalar
nature of S (or for significant CP-odd couplings, in case
S is a state with mixed CP quantum numbers), without
the need to analyze angular distributions. The observa-
tion of this decay would also exclude a spin-2 explana-
tion of a hypothetical new resonance [9]. To the best
of our knowledge this signature has not been studied in
the literature. Established experimental searches in the
context of two-Higgs-doublet models can be adapted for
the proposed search. The most promising decay mode is
S ! Zh ! l+l�bb̄ [10].

II. EFFECTIVE LAGRANGIAN ANALYSIS

At the level of dimension-5 operators, the most general
couplings of a CP-odd scalar to gauge bosons read

Lgauge

e↵

=
c̃gg
M

↵s

4⇡
S Ga

µ⌫
eGµ⌫,a + . . . , (2)

where M denotes the new-physics scale, and the dots
represent analogous couplings to the SU(2)L and U(1)Y
gauge bosons. Via this operator the resonance S can be
produced in gluon fusion at the LHC. The most general
dimension-5 couplings of S to fermions have the same
form as the SM Yukawa interactions times S/M , and
with the Yukawa matrices replaced by some new matri-
ces. In any realistic model these couplings must have

[Bauer, MN 2016; Dawson, Lewis 2016; …]



Motivation
❖ Finding ways of suppressing the coupling λ1 is a 

challenge to model building 

❖ Two options:
❖ dynamically, e.g. sequestering in WEDs, where λ1 is 

suppressed by a small wave-function overlap or a 
loop factor

❖ by means of a discrete symmetry, such as CP 
invariance, as λ1 is forbidden if S is a pseudoscalar 
boson



Sequestering in a warped extra 
dimension

Bauer, Hörner, MN: arXiv:1603.05978 (JHEP)
Csaki, Randall: arXiv:1603.07303 (JHEP)
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both models. These allow for a complete discussion of tree-level flavor-changing e↵ects in the
RS setup. Moreover, we will show how to perform sums over infinite towers of gauge-boson
profiles in the minimal as well as in the custodial model.

3.1 Introduction and Solution to the Gauge Hierarchy
Problem

3.1.1 The General Setup

The RS model [158] o↵ers an elegant possibility to address the large hierarchy between the
Planck scale and the electroweak scale by means of a non-trivial geometry in a five dimensional
(5D) anti-de Sitter (AdS5) space. The non-factorizable RS metric

ds2 = e�2�(�)⌘µ⌫ dxµdx⌫ � r2d�2 , (3.1)

is constructed such that length scales within the usual 4D space-time of constant �, labeled
by coordinates xµ (µ = 0 . . . 3), are rescaled via an exponential warp factor, depending on the
position � 2 [�⇡, ⇡] in the extra dimension. In this thesis we will use the west coast convention
for the Minkowski metric ⌘µ⌫ = diag(1, �1, �1, �1). The exponential factor will turn out to
be responsible for the solution to the gauge hierarchy problem and will be specified later.
Importantly, the metric respects 4D Poincaré invariance. The fifth dimension is compactified
on an orbifold S1/Z2, i.e., a circle with radius r and with points identified, that are related to
each other by a Z2 (symmetry) transformation

(xµ, �) $ (xµ, ��) , (3.2)

see figure 3.1. The radius is assumed to be not much larger than O(MPl), however, due
to the warping, the model will have observable consequences down to the TeV scale. We
assume the action to be invariant under Z2 transformations Z. However, the fields do not
have to be identical at points which are identified by the orbifold structure and can di↵er by a
symmetry transformation which leaves the action invariant. Since Z2 = id, Z has eigenvalues
±1, corresponding to even and odd functions on the orbifold, respectively

�(xµ, ��) = Z�(xµ, �) = ±�(xµ, �) . (3.3)
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anti-de Sitter



Living in the bulk
❖ Moving fermions into the bulk offers 

new possibilities for model building:
❖ lowest-lying states (zero modes, 

corresponding to SM fermions) 
are chiral

❖ zero-mode profiles are localized 
near the IR or UV branes

❖ Explains two striking features of the SM, namely chiral matter 
fields with hierarchical masses and mixing angles 

❖ RS models address both the hierarchy problem and the flavor 
puzzle of the SM by means of the same geometrical mechanism!

[Grossman, MN 1999; Gherghetta, Pomarol 2000]



Localizer field for bulk fermions
❖ The mass term for a 5D bulk fermion is necessarily an 

odd function on the S1/Z2 orbifold:

❖ But any coordinate-dependent coupling in a Lagrangian 
should be derived from the VEV of a field:

❖ Such a particle should be included in all                                      
RS models containing bulk matter fields!

Z
d

4
x

Z ⇡

�⇡
d� r e

�4�(�)


�
X

f

sgn(�) f̄ Mff

�

from K�K̄ mixing [49]. In the minimal model the KK scale is so high that this bound can be
satisfied with a modest 25% fine-tuning. For the lower values of the KK mass scale allowed
in the custodial model, the flavor constraints can either be solved by means of a 5�10%
fine-tuning or by enlarging the strong-interaction gauge group in the bulk [54]. Additional
constraints arising from the phenomenology of the Higgs boson, such as its production cross
section and decay rates into ��, ZZ and WW , are more model dependent and can readily be
made consistent with present data by adjusting some model parameters.

We identify the diphoton resonance with the lightest excitation of a new bulk scalar field
S(x,�), which is a singlet of the full bulk gauge group. In order to allow for a coupling of this
field to the scalar density of the vector-like 5D fermion fields we need to implement S(x,�) as
an odd field on the S1

/Z2 orbifold, such that S(x,��) = �S(x,�). The relevant terms in the
action read
Z

d

4
x

Z ⇡

�⇡

d� r e

�4�(�)



g

MN

2
(@MS) (@NS) � µ

2

2
S

2 �
X

f

⇣

sgn(�) f̄ Mff + S f̄ Gff

⌘

�

, (5)

where the sum extends over all 5D fermion multiplets f . Even in the minimal RS model
there exists a 4-component vector-like 5D fermion field for every Weyl fermion of the SM.
The SM fermions correspond to the zero modes of these fields, which become massive after
electroweak symmetry breaking. Consequently, for each SM fermion there exist two towers
of KK excitations [55]. In extensions of the RS model with a custodial symmetry additional
exotic matter fields are introduced, which have no zero modes but give rise to additional towers
of KK excitations, thereby increasing the number of vector-like fermions of the model [41, 42].
The bulk masses Mf and couplings Gf are hermitian matrices in generation space. By means
of field redefinitions one can arrange that Mf are real, diagonal matrices. From now on we
will always work in this so-called bulk mass basis. The values of the bulk masses determine
the profiles of the SM fermions along the extra dimension, which generically turn out to be
localized near one of the two branes [27, 28]. Note that there is the intriguing possibility that
the bulk masses could be generated dynamically in models where the scalar field S acquires a
vacuum expectation value w, such that Mf = wGf . While we leave the detailed construction
of such models to future work, we shall assume that the structure of the couplings Gf follows
the structure of Mf .

In (5) we have not considered the possibility of a portal coupling ⇠ S |�|2 connecting the
field S with the Higgs doublet. We will investigate the phenomenological impact of such a
coupling on the various decay rates of the resonance S in Section 4, finding rather strong
constraints. An extra-dimensional setup, in which the Higgs sector is localized on the IR
brane, where the Z2-odd scalar field S vanishes, might provide a dynamical explanation for the
suppression of the portal interaction. We emphasize, however, that even with such sequestering
a Shh coupling is inevitably induced at one-loop order, since the 5D bulk fermions can mediate
between the IR brane, where the Higgs field is localized, and the bulk, where the field S lives.
In our phenomenological analysis in Section 4 we will therefore allow for the presence of a
loop-suppressed portal interaction.

The solution of the field equations satisfied by the KKmodes of the scalar field S is obtained
in complete analogy to the case of a bulk scalar field studied in [39, 56, 57]. Imposing the KK

4

V (S)

 due to VEV of the field
 coupling of S to fermions



Localizer field for bulk fermions
❖ The mass of the lowest-lying KK state of S is predicted 

to be of order the KK scale (i.e. few TeV), but a smaller 
mass (e.g. 750 GeV) could be arranged by a tuning of 
boundary conditions

❖ With the Higgs localized near the IR brane, the linear 
Higgs portal interaction λ1 is suppressed by a small 
wave-function overlap or by a loop factor

❖ The matrices Gf  are automatically diagonal in the bulk 
mass basis (built-in flavor protection mechanism)

[König, MN, Novotny, to appear]



Phenomenology
❖ Integrating out the heavy KK fermion states gives:

❖ The Wilson coefficients “count” the fermion degrees of 
freedom in the bulk:

scalar has a wide profile along the extra dimension, while for � � 1 it is localized near the IR
brane; in fact, we have

�

S
1 (t)

�!1
=

r

L(1 + �)

⇡

1

2 + �

�(t � 1) . (13)

While there is no particular reason why the bulk scalar should be localized near the IR brane,
we will find that our results take a particularly simple form in this limit.

3 Diboson Signals from Warped Space

In the models we consider, the masses of the KK excitations of gauge bosons and fermions are
bound by constraints from electroweak precision and flavor observables to lie in the multi-TeV
range. The 750 GeV resonance is considerably lighter, and it is thus justified to integrate out
the tower of fermion KK modes in computing the decays of S to diboson or fermionic final
states. Below the KK mass scale we define the e↵ective Lagrangian

Le↵ = cgg
↵s

4⇡
S G

a
µ⌫G

µ⌫,a + cWW
↵

4⇡s2w
SW

a
µ⌫W

µ⌫,a + cBB
↵

4⇡c2w
S Bµ⌫B

µ⌫

�
⇣

S Q̄LŶu �̃uR + S Q̄LŶd � dR + S L̄LŶe � eR + h.c.
⌘

,

(14)

in which G

a
µ⌫ , W

a
µ⌫ and Bµ⌫ are the field strength tensors of SU(3)c, SU(2)L and U(1)Y ,

respectively, � is the scalar Higgs doublet, and sw = sin ✓w and cw = cos ✓w are functions of the
weak mixing angle. Since the mass of the new resonance is much larger than the electroweak
scale, it is appropriate to write the e↵ective Lagrangian in the electroweak symmetric phase.
Upon electroweak symmetry breaking the second and third operator in the first line generate
the couplings of S to pairs of electroweak gauge bosons. In particular, the resulting diphoton
coupling is

Le↵ 3 c��
↵

4⇡
S Fµ⌫F

µ⌫
, with c�� = cWW + cBB . (15)

The terms in the second line in (14) describe the couplings of S to fermion pairs (with or
without a Higgs boson). In our model these couplings have a hierarchical structure, and the
dominant e↵ect by far is the coupling to the top quark. Rewriting Re[(Ŷu)33] = ctt yt (after
transformation to the mass basis), where yt =

p
2mt/v is the top-quark Yukawa coupling, we

can express the corresponding term as

Le↵ 3 �ctt mt

✓

1 +
h

v

◆

S t̄t+ . . . . (16)

The Wilson coe�cients in the e↵ective Lagrangian are suppressed by the mass scale of the
heavy KK particles, cii / 1/MKK. In the remainder of this section we will calculate these
coe�cients at the matching scale ⇤KK = few ⇥ MKK corresponding to the masses of the
low-lying KK modes, which give the dominant contributions.

It is well known that the two-gluon operator has a non-trivial QCD evolution [59, 60] and
mixes with the operator in (16) under renormalization [61]. These e↵ects are discussed in
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Figure 1: Loop diagrams involving the exchange of heavy KK fermions fn (left) can be de-
scribed, at low energies, by e↵ective local interactions coupling S to diboson states (right).

phenomenological analysis below we will for simplicity assume that the diagonal elements of the
matrices gf all have the same sign and magnitude, with the possible exception of gt ⌘ (gu)33.

In close analogy with the case of the induced hgg and h�� couplings of the Higgs boson
in models where all SM field propagate in the bulk, we find that the sums over the infinite
towers of KK fermion states in Figure 1 converge and can be calculated in closed form using
5D fermion propagators [65–67]. In the unbroken phase of the electroweak gauge symmetry
(i.e. for v = 0), there is no mixing between fermion states belonging to di↵erent multiplets of
the gauge group and the fermion propagators are diagonal matrices in generation space. The
Wilson coe�cients are then given by sums over the contributions from the di↵erent fermion
multiplets. Mixing e↵ects induced by electroweak symmetry breaking yield corrections of
order (mf/mS)2 relative to the leading terms we will compute. Even for the top quark these
corrections are at most a few percent and can safely be neglected.

The fermion representations of the custodial RS models have been discussed in detail in
[43, 45–47]. We begin with a brief description of the quark sector. As a consequence of the
discrete PLR symmetry, the left-handed bottom quark needs to be embedded in an SU(2)L ⇥
SU(2)R bi-doublet with isospin quantum numbers T

3
L = �T

3
R = �1/2. This assignment

fixes the quantum numbers of the remaining quark fields uniquely. In particular, the right-
handed down-type quarks have to be embedded in an SU(2)R triplet in order to obtain a
U(1)X-invariant Yukawa coupling. We choose the same SU(2)L ⇥ SU(2)R quantum numbers
for all three quark generations, which is necessary to consistently incorporate quark mixing
in the anarchic approach to flavor in warped extra dimensions. Altogether, there are fifteen
di↵erent quark states in the up sector and nine in the down sector (for three generations). The
boundary conditions give rise to three light modes in each sector, which are identified with
the SM quarks. These are accompanied by KK towers consisting of groups of fifteen and nine
modes of similar masses in the up and down sectors, respectively. In addition, there is a KK
tower of exotic fermion states with electric charge Q� = 5/3, which exhibits nine excitations
in each KK level. In order to compute the Wilson coe�cients cgg, cWW and cBB in (14) it is
most convenient to decompose these multiplets into multiplets under SU(2)L ⇥U(1)Y . There
are two SU(2)L doublets and one triplet

cQ :
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, (19)
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The quantity

F

2(cf ) =
1 + 2cf

1 � ✏

1+2cf
(33)

is the well-known zero-mode profile [27, 28], which is exponentially small for all fermions
with the exception of the right-handed top quark. We note the exact boundary values
d

(±)(cf , pE, 1) = 1 and d

(±)(cf , pE, ✏) = ⌥1, from which it follows that k(±)
n (cf , 1) = k

(±)
n (cf , ✏) =

0 for all n � 2.
Using these results, it follows that (taking ✏ ! 0 where possible)
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(34)

where (dropping irrelevant terms in ✏)

�(+)(cf , �) = � 2F 2(cf )

3 + � + 2cf
+ O

✓

m

2
S

M

2
KK

◆

, �(�)(cf , �) = O
✓

m

2
S

M

2
KK

◆

. (35)

Analogous expressions hold for the Wilson coe�cients cWW and cBB, as is evident from (24).
In Figure 2 we show the exact numerical results for �(±)(cf , �) as functions of the bulk mass
parameter cf for various values of �. Even forMKK as low as 2 TeV we find that the corrections
of O(m2

S/M
2
KK) are very small and can safely be neglected. Moreover, for all fermions other

than the right-handed top quark it is an excellent approximation to neglect the exponentially
small quantity F

2(cf ), while for the right-handed top quark we can replace F

2(ct) ⇡ 1 + 2ct.
Note that in the limit � ! 1, corresponding to a scalar resonance localized on the IR brane,
we obtain the exact result �(±)(cf , �) ! 0, and hence the Wilson coe�cients in this limit are
simply given in terms of sums over the diagonal elements of the matrices gf , meaning that
they essentially count the number of 5D fermionic degrees of freedom. For simplicity, we will
adopt this approximation in displaying the following results. In our numerical work we will
use the correct expressions, which are obtained by replacing gt ⌘ (gu)33 ! 1+��2ct

3+�+2ct
gt.

We now collect our results for the Wilson coe�cients in the three versions of the RS model,
adopting these approximations. For the custodial model I we find

cgg = � 1
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(36)
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[Bauer, Hörner, MN 2016]



Phenomenology
❖ Results depend on the KK mass scale and the coupling 

of S to top quarks, both normalized to the average geff:

[Bauer, Hörner, MN 2016]
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Figure 4: Regions in the parameter space of the RS models in which the diphoton signal
is reproduced at 1� (light blue) and 2� (dark blue). The black dashed line corresponds to
the central value shown in (1). The two upper panels refer to the custodial models I and II,
while the lower left panel refers to the minimal RS model. Regions excluded by bounds from
resonance searches in Run 1 data (at 95% CL) are shaded gray with boundaries drawn in red
(dijets), purple (tt̄), blue (WW ), orange (ZZ) and green (Z�). We use � = 1 and ct = 0.4. The
lower right panel shows the variation of the central fit values with the localization parameter
� of the scalar profile, for � = 1 (black dashed), � = 10 (dotted green) and � = 1 (red).
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Br(S ! XX) gg �� WW ZZ Z� tt̄ hh tt̄h �tot

Custodial I 43.0% 1.30% 5.1% 2.1% 0.10% 47.9% 0 0.50% 0.08 GeV

Custodial II 28.4% 0.68% 2.1% 0.9% 0.02% 67.2% 0 0.70% 0.22 GeV

Minimal 89.2% 0.37% 2.7% 1.0% 0.16% 6.6% 0 0.07% 0.14 GeV

Custodial I 32.2% 0.97% 9.9% 4.6% 0.08% 48.5% 3.1% 0.60% 0.11 GeV

Custodial II 24.1% 0.58% 4.3% 2.0% 0.01% 66.9% 1.3% 0.77% 0.25 GeV

Minimal 78.0% 0.32% 6.3% 2.8% 0.14% 10.2% 2.1% 0.14% 0.16 GeV

Custodial I 21.5% 0.65% 18.0% 8.7% 0.05% 42.1% 8.4% 0.59% 0.16 GeV

Custodial II 19.2% 0.46% 9.1% 4.4% 0.01% 61.9% 4.2% 0.77% 0.32 GeV

Minimal 60.4% 0.25% 13.7% 6.5% 0.11% 12.3% 6.5% 0.21% 0.21 GeV

Table 3: Branching ratios for various decay modes of the resonance S in the three RS models
and for the benchmark parameter points defined in (46). In the center and lower portions of
the table we show the branching ratios in the presence of a small portal coupling �1 = 0.02
and 0.04, respectively, see Section 5. The small contributions to the S ! hh and S ! tt̄h

branching ratios resulting from the portal coupling �2 in (48) and (52) have been set to 0.

MKK ⇡ 5 TeV (implying KK resonance masses near 10 TeV) the diphoton signal can be
explained with a modest coupling ge↵ ⇠ 1. In the minimal RS model the parameter space in
which the diphoton signal can be explained is more constrained. We find values in the range
MKK/ge↵ ⇠ 0.4�1, which for a KK scale as high as the bound (3) enforced by electroweak
precision tests requires large couplings ge↵ ⇠ 5�12, close to the perturbativity limit. One also
needs to require that the ratio gt/ge↵ is negative so as to avoid the strong constraint from tt̄

resonance searches (see, however, footnote 3).
We find it useful to define a benchmark point for each model and study the individual

branching fractions for the various S decay modes for these points. Specifically, we choose the
points indicated by the orange stars in Figure 4, for which (with � = 1 and ct = 0.4)

Minimal model : MKK/ge↵ = 0.7 TeV, gt/ge↵ = �1.5 ,

Custodial model I : MKK/ge↵ = 4.0 TeV, gt/ge↵ = �0.5 ,

Custodial model II : MKK/ge↵ = 3.0 TeV, gt/ge↵ = 0 .

(46)

In the upper portion of Table 3 we collect the branching ratios into the various final states
for these benchmark models. Note that the S ! tt̄ decay rate is only calculated at lowest
order in QCD and hence a✏icted with some uncertainty. The S ! tt̄ branching ratio is rather
sensitive to the choice of gt/ge↵ , while the remaining branching fractions only mildly depend
on this parameter. The three-body decay mode S ! tt̄h will be discussed in Section 6. In the
last column we show the total decay width of S, which is very small in our models. Given the
existing Run 1 dijet bound shown in Table 2, it is impossible to obtain a total width exceeding
a few GeV in any model in which the decay S ! gg has a significant branching ratio. This is
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Motivation
❖ How can one probe if S is CP even (scalar), CP odd (pseudo-

scalar), or a particle with mixed CP properties?

❖ Traditionally (Higgs case):
❖ study angular distributions in S → ZZ → 4l decay; requires 

large statistics and fails if S only weakly couples to Z bosons
❖ Our idea:

❖ search for the decay S → Z+h (→ l+l-bb), which can only be 
mediated via CP-odd interactions of S

❖ observing a single event proves that S is a pseudo-scalar (if 
CP is conserved in the UV theory), or that it has pseudoscalar 
interactions (in case it is a mixture of CP eigenstates)

[Soni, Xu 1993; Chala et al. 2016; Franceschini et al. 2016]



Introductory remarks
❖ Besides the Higgs portals, all other interactions of S with 

SM particles arise from higher-dimensional operators 
starting at dimension 5

❖ The pseudoscalar couplings at D=5 order are:

❖ They induce couplings such as gg → S, S → γγ, S → ZZ,  
S → tt etc.
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Scalar particles S which are singlets under the Standard Model gauge group are generic features
of many models of fundamental physics, in particular as possible mediators to a hidden sector. We
show that the decay S ! Zh provides a powerful probe of the CP nature of the scalar, because it is
allowed only if S has CP-odd interactions. We perform a model-independent analysis of this decay
using an e↵ective Lagrangian and compute the relevant Wilson coe�cients arising from integrating
out heavy fermions to one-loop order.

I. INTRODUCTION

Pseudoscalar singlets play an important role in various
extensions of the Standard Model (SM). They appear,
e.g., as mediators to a dark sector or in solutions to the
strong CP problem. Searches at the LHC focus on the
model-specific signals of these new states, which often
do not reveal their pseudoscalar nature – the phantom
digamma excess seen in the first 13TeV data [1, 2] could
have been an example of such a signal. Identifying the
CP properties of such a new state will be one of the top
priorities if a signal is seen in future data.

Let us consider a new spin-0 particle S, which is a
gauge singlet under the SM gauge group. Assuming its
mass is much larger than the electroweak scale, its inter-
actions can be described in terms of local operators in
the unbroken phase of the electroweak gauge symmetry.
At the renormalizable level, the only interactions of S
with SM particles arise from the Higgs portals

L
portal

= ��
1

S �†�� �
2

2
S2 �†� , (1)

where � is the Higgs doublet. The first term gives rise to
a mixing between S and the Higgs boson, with a mixing
angle ↵ ⇠ v�

1

/m2

S . The coupling �
1

is naturally of order
the UV cuto↵ of the theory, but at least of order mS , and
hence one expects ↵ > v/mS . However, this mixing will
a↵ect the phenomenology of Higgs decay rates, and so
in practice ↵ must be small. The example of the elusive
750GeV diphoton resonance [1, 2] has demonstrated that
tight bounds on ↵ can also be derived from the decays
S ! ZZ, WW , tt̄, hh [3, 4]. The portal coupling �

2

, on
the other hand, does not give rise to dangerous e↵ects.

It is therefore a challenge to model building to find
ways of suppressing the coupling �

1

, either by means of
a symmetry or dynamically. A discrete Z

2

symmetry un-
der which S changes sign would enforce �

1

= 0. If the
ultraviolet theory is (at least approximately) CP invari-
ant, then neutral particles can be classified as CP eigen-
states. If S is a CP-odd pseudoscalar (JPC = 0�+), �

1

must be zero. A nice example of a dynamical suppression
is provided by models in which S is identified with the
lowest mode of a Z

2

-odd bulk scalar in a warped extra
dimension [3, 5]. When the Higgs sector is localized on

the IR brane, its coupling to S is either suppressed by
a small wave-function overlap or by a loop factor. Here
we entertain the possibility of eliminating the portal cou-
pling �

1

by supposing that S is a CP-odd pseudoscalar,
e.g. an axion-like particle.
Measurements of angular distributions in S ! ZZ !

4l or S ! Z� ! 4l decays have been considered as a way
of probing the spin and CP properties of a new resonance
[6, 7], in analogy with the corresponding measurements
in Higgs decays [8]. However, the rates for these decays
are likely to be quite small, since a gauge-singlet S has
no renormalizable couplings to gauge bosons. Hence it
may require very large statistics to perform these analy-
ses. In this Letter we propose the decay S ! Zh, which
is strictly forbidden for a CP-even scalar, as a novel and
independent way to test the spin and CP quantum num-
bers of a new particle S. The very existence of this decay
would constitute a smoking-gun signal for a pseudoscalar
nature of S (or for significant CP-odd couplings, in case
S is a state with mixed CP quantum numbers), without
the need to analyze angular distributions. The observa-
tion of this decay would also exclude a spin-2 explana-
tion of a hypothetical new resonance [9]. To the best
of our knowledge this signature has not been studied in
the literature. Established experimental searches in the
context of two-Higgs-doublet models can be adapted for
the proposed search. The most promising decay mode is
S ! Zh ! l+l�bb̄ [10].

II. EFFECTIVE LAGRANGIAN ANALYSIS

At the level of dimension-5 operators, the most general
couplings of a CP-odd scalar to gauge bosons read

Lgauge

e↵

=
c̃gg
M

↵s

4⇡
S Ga

µ⌫
eGµ⌫,a + . . . , (2)

where M denotes the new-physics scale, and the dots
represent analogous couplings to the SU(2)L and U(1)Y
gauge bosons. Via this operator the resonance S can be
produced in gluon fusion at the LHC. The most general
dimension-5 couplings of S to fermions have the same
form as the SM Yukawa interactions times S/M , and
with the Yukawa matrices replaced by some new matri-
ces. In any realistic model these couplings must have
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FIG. 1. Tree-level diagrams representing the contribution of
the operator in (4) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

S ! Zh ! l+l�bb̄ [20].

II. EFFECTIVE LAGRANGIAN ANALYSIS

At the level of dimension-5 operators, the most general
couplings of a CP-odd scalar to gauge bosons read

Lgauge
e↵ =

c̃gg
M

↵s

4⇡
S Ga

µ⌫
eGµ⌫,a + . . . , (2)

where M denotes the new-physics scale, and the dots
represent analogous couplings to the SU(2)L and U(1)Y
gauge bosons. Via this operator the resonance S can be
produced in gluon fusion at the LHC. The most general
dimension-5 couplings of S to fermions have the same
form as the SM Yukawa interactions times S/M , and
with the Yukawa matrices replaced by some new matri-
ces. In any realistic model these couplings must have
a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[21]. It is thus reasonable to assume that the dominant
couplings are those to the third-generation quarks, which
for a pseudoscalar S and in unitary gauge can be param-
eterized in the form

Lferm
e↵ 3 �c̃tt

mt

M

✓
1 +

h

v

◆
S t̄ i�5 t+ [t ! b] . (3)

Via the second term the resonance S can be produced in
bottom-quark fusion at the LHC [22, 23].

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that, in many new-physics scenarios ad-
dressing the diphoton anomaly, the masses of the heavy
particles which are integrated out are in the TeV range.
Otherwise it is di�cult to account for the relatively large
diphoton signal �(pp ! S ! ��) = (4.6 ± 1.2) fb [24].
When there is no significant mass gap between S and the
new sector containing these particles, then contributions
from operators with dimension D � 6 are not expected
to be strongly suppressed compared with those shown
above. Some of these operators induce new structures
not present at dimension-5 level.

A. Operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at renormaliz-
able level via the kinetic terms [25, 26]. However, this

requires the pseudoscalar S to be light (since the e↵ect
vanishes in the decoupling limit) and carry electroweak
quantum numbers. In this case the existence of CP-odd
couplings of the heavy scalar bosons can be related to
three U(2) invariants of the scalar potential [27]. For the
case of a gauge-singlet scalar considered here, no such
invariants exist. Moreover, the e↵ective Lagrangian up
to dimension 5 does not contain any polynomial opera-
tor which could mediate the decay S ! Zh at tree level.
The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (4)

where cw ⌘ cos ✓w and the last expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
is a consequence of the partial conservation of the Higgs
current,

@µ
�
�†iDµ �+ h.c.

� ! �
⇣
1+

h

v

⌘X

f

2T f
3 mf f̄ i�5f , (5)

where T f
3 is the third component of weak isospin. The

resulting operators are of the same form as those in (3)
and do not give rise to a tree-level S ! Zh matrix el-
ement. Indeed, adding up the diagrams shown in Fig-
ure 1 one finds that the tree-level S ! Zh matrix ele-
ment of the operator in (4) vanishes identically, and the
same is true for the S ! Zhh matrix element.1 Impor-
tantly, however, in extensions of the SM containing heavy
particles whose masses arise (or receive their dominant
contributions) from electroweak symmetry breaking, the
non-polynomial operator

O5 = (@µS)
�
�†iDµ �+ h.c.

�
ln

�†�

µ2
(6)

can be induced [29]. Using an integration by parts and
the equations of motion, and neglecting fermionic terms
which do not contribute to S ! Zh decay at tree level,
this operator can be reduced to

O5 =̂ � S
�
�†iDµ �+ h.c.

� @µ(�†�)

�†�

! g

cw
S Zµ (v + h) @µh .

(7)

This gives rise to non-vanishing S ! Zh and S ! Zhh
matrix elements. At one-loop order, the S ! Zh decay
amplitude also receives a contribution from an operator
containing quark fields, and since the Higgs boson couples
proportional to the quark mass it su�ces to consider the

1 In [28] the operator in (4) was used to illustrate new-physics
e↵ects which could induce the Higgs decay h ! Z� into a hypo-
thetical, light scalar particle �. However, we find that its contri-
bution vanishes when all graphs shown in Figure 1 are included.
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FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (3)

where cw ⌘ cos ✓w and the second expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
follows from the partial conservation of the Higgs current

@µ
�
�†iDµ �+ h.c.

� ! �
⇣
1+

h

v

⌘X

f

2T f
3

mf f̄ i�
5

f , (4)

where T f
3

is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
M

Ctop

5

,

with Ctop

5

= �Nc y
2

t

8⇡2

T t
3

c̃tt F ,

(6)

where T t
3

= 1

2

. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral

F =

Z
1

0

d[xyz]
2m2

t � xm2

h � zm2

Z

m2

t � xzm2

S � xym2

h � yzm2

Z � i0
, (7)

with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2

S �
m2

t , the function F is formally suppressed by a factor
m2

t/m
2

S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate

�(S ! Zh)D=5

=
m3

S

16⇡M2

��Ctop

5

��2 �3/2(1, xh, xZ) , (8)

where xi = m2

i /m
2

S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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Scalar particles S which are singlets under the Standard Model gauge group are generic features
of many models of fundamental physics, in particular as possible mediators to a hidden sector. We
show that the decay S ! Zh provides a powerful probe of the CP nature of the scalar, because it is
allowed only if S has CP-odd interactions. We perform a model-independent analysis of this decay
using an e↵ective Lagrangian and compute the relevant Wilson coe�cients arising from integrating
out heavy fermions to one-loop order.

I. INTRODUCTION

Pseudoscalar singlets play an important role in various
extensions of the Standard Model (SM). They appear,
e.g., as mediators to a dark sector or in solutions to the
strong CP problem. Searches at the LHC focus on the
model-specific signals of these new states, which often
do not reveal their pseudoscalar nature – the phantom
digamma excess seen in the first 13TeV data [1, 2] could
have been an example of such a signal. Identifying the
CP properties of such a new state will be one of the top
priorities if a signal is seen in future data.

Let us consider a new spin-0 particle S, which is a
gauge singlet under the SM gauge group. Assuming its
mass is much larger than the electroweak scale, its inter-
actions can be described in terms of local operators in
the unbroken phase of the electroweak gauge symmetry.
At the renormalizable level, the only interactions of S
with SM particles arise from the Higgs portals

L
portal

= ��
1

S �†�� �
2

2
S2 �†� , (1)

where � is the Higgs doublet. The first term gives rise to
a mixing between S and the Higgs boson, with a mixing
angle ↵ ⇠ v�

1

/m2

S . The coupling �
1

is naturally of order
the UV cuto↵ of the theory, but at least of order mS , and
hence one expects ↵ > v/mS . However, this mixing will
a↵ect the phenomenology of Higgs decay rates, and so
in practice ↵ must be small. The example of the elusive
750GeV diphoton resonance [1, 2] has demonstrated that
tight bounds on ↵ can also be derived from the decays
S ! ZZ, WW , tt̄, hh [3, 4]. The portal coupling �

2

, on
the other hand, does not give rise to dangerous e↵ects.

It is therefore a challenge to model building to find
ways of suppressing the coupling �

1

, either by means of
a symmetry or dynamically. A discrete Z

2

symmetry un-
der which S changes sign would enforce �

1

= 0. If the
ultraviolet theory is (at least approximately) CP invari-
ant, then neutral particles can be classified as CP eigen-
states. If S is a CP-odd pseudoscalar (JPC = 0�+), �

1

must be zero. A nice example of a dynamical suppression
is provided by models in which S is identified with the
lowest mode of a Z

2

-odd bulk scalar in a warped extra
dimension [3, 5]. When the Higgs sector is localized on

the IR brane, its coupling to S is either suppressed by
a small wave-function overlap or by a loop factor. Here
we entertain the possibility of eliminating the portal cou-
pling �

1

by supposing that S is a CP-odd pseudoscalar,
e.g. an axion-like particle.
Measurements of angular distributions in S ! ZZ !

4l or S ! Z� ! 4l decays have been considered as a way
of probing the spin and CP properties of a new resonance
[6, 7], in analogy with the corresponding measurements
in Higgs decays [8]. However, the rates for these decays
are likely to be quite small, since a gauge-singlet S has
no renormalizable couplings to gauge bosons. Hence it
may require very large statistics to perform these analy-
ses. In this Letter we propose the decay S ! Zh, which
is strictly forbidden for a CP-even scalar, as a novel and
independent way to test the spin and CP quantum num-
bers of a new particle S. The very existence of this decay
would constitute a smoking-gun signal for a pseudoscalar
nature of S (or for significant CP-odd couplings, in case
S is a state with mixed CP quantum numbers), without
the need to analyze angular distributions. The observa-
tion of this decay would also exclude a spin-2 explana-
tion of a hypothetical new resonance [9]. To the best
of our knowledge this signature has not been studied in
the literature. Established experimental searches in the
context of two-Higgs-doublet models can be adapted for
the proposed search. The most promising decay mode is
S ! Zh ! l+l�bb̄ [10].

II. EFFECTIVE LAGRANGIAN ANALYSIS

At the level of dimension-5 operators, the most general
couplings of a CP-odd scalar to gauge bosons read

Lgauge

e↵

=
c̃gg
M

↵s

4⇡
S Ga

µ⌫
eGµ⌫,a + . . . , (2)

where M denotes the new-physics scale, and the dots
represent analogous couplings to the SU(2)L and U(1)Y
gauge bosons. Via this operator the resonance S can be
produced in gluon fusion at the LHC. The most general
dimension-5 couplings of S to fermions have the same
form as the SM Yukawa interactions times S/M , and
with the Yukawa matrices replaced by some new matri-
ces. In any realistic model these couplings must have

[many refs.!]



Operator analysis of S→Z+h decay
(not in 2HDM, but for a SM gauge singlet!)



Operator analysis at D=5
❖ There does not exist a dimension-5 operator giving rise 

to a tree-level S → Z+h matrix element!

❖ The obvious candidate

can be eliminated using the equations of motion

❖ The corresponding S → Zh(h) matrix elements vanish!

2

FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (3)

where cw ⌘ cos ✓w and the second expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
follows from the partial conservation of the Higgs current

@µ
�
�†iDµ �+ h.c.

� ! �
⇣
1+

h

v

⌘X

f

2T f
3

mf f̄ i�
5

f , (4)

where T f
3

is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
M

Ctop

5

,

with Ctop

5

= �Nc y
2

t

8⇡2

T t
3

c̃tt F ,

(6)

where T t
3

= 1

2

. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral

F =

Z
1

0

d[xyz]
2m2

t � xm2

h � zm2

Z

m2

t � xzm2

S � xym2

h � yzm2

Z � i0
, (7)

with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate
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fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
M

Ctop

5

,

with Ctop

5

= �Nc y
2

t

8⇡2

T t
3

c̃tt F ,

(6)

where T t
3

= 1

2

. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral

F =

Z
1

0

d[xyz]
2m2

t � xm2

h � zm2

Z

m2

t � xzm2

S � xym2

h � yzm2

Z � i0
, (7)

with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
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keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
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operators with dimension D � 6 are not expected to be
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e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate
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Lorentz indices of the ✏µ⌫↵� tensor associated with the
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2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
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S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate

�(S ! Zh)D=5

=
m3

S

16⇡M2

��Ctop

5

��2 �3/2(1, xh, xZ) , (8)

where xi = m2

i /m
2

S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
�
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(@µS)Zµ (v + h)2 , (3)
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unitary gauge, can be reduced to operators containing
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follows from the partial conservation of the Higgs current
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matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
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where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
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light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate
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in the loop vanish, since it is impossible to saturate the
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
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where QL is the third-generation left-handed quark dou-
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate
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element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
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fields, and since the Higgs boson couples proportional to
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light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
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750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
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the S ! Zh decay amplitude indeed arises at dimen-
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.
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The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate
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matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
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where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
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in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
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integral with mt ⌘ mt(mS) and with the physical Higgs
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[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.
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keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
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e↵ect vanishes in the decoupling limit) and carry elec-
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Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
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light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
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S �
m2

t , the function F is formally suppressed by a factor
m2

t/m
2

S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate

�(S ! Zh)D=5

=
m3

S

16⇡M2

��Ctop

5

��2 �3/2(1, xh, xZ) , (8)

where xi = m2

i /m
2

S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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fermions in the loop are negligible. Evaluating the inte-
gral for mt ⌘ mt(mS) = 146.77GeV and with the physi-
cal Higgs and Z-boson masses gives F ⇡ �0.009+0.673 i.
It is instructive to study the behavior of the function F
in more detail, neglecting for simplicity the small e↵ects
due to m2
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This function is formally suppressed by a factor m2
t/m

2
S ,

and its real part is accidentally small. The imagi-
nary part, on the other hand, is enlarged by a factor
2⇡ ln(m2

S/m
2
t ), and as a result |F | is numerically of O(1).

If the dominant contribution to the S ! Zh decay am-
plitude is indeed related to the top-quark contribution
proportional to ct5, then we can derive a relation between
the S ! Zh and S ! tt̄ rates. It reads
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which evaluates to 3.6 · 10�4. The present experimental
upper bound on the S ! tt̄ rate of about 0.7 pb at

p
s =

8TeV [30] yields �(pp ! S ! tt̄) < 3.2 pb at 13TeV
under the assumption of gluon-initiated production. Re-
lation (17) then implies �(pp ! S ! Zh)top < 1.2 fb.

It is interesting to consider the hypothetical limit
where one takes the fermion mass mt in (15) much larger
than the mass of the resonance S, i.e. m2

t � m2
S . In this

case the parameter integral yields F = 1 + O(m2
S/m

2
t ).

The fermion is a very heavy particle, which should be
integrated out from the low-energy theory. The contri-
bution (14) then corresponds to a matching contribution
to the Wilson coe�cient of a local dimension-5 opera-
tor, suppressed by only a single power of M . Close in-
spection shows that the leading term corresponds to a
matching contribution to the operator O5 in (6). The
non-polynomial structure arises because the particle in-
tegrated out (the hypothetical heavy fermion) receives its
mass from electroweak symmetry breaking, so it is heavy
only in the broken phase of the theory. The equivalent
form of the operator shown in (7) can readily be mapped
onto the structure of the parameter integral in (15). Con-
sider, as an illustration, a sequential fourth generation of
heavy leptons, and assume that the heavy charged state
L has mass mL > mS/2 and a coupling c̃LL to the pseu-
doscalar resonance defined in analogy to (3). Integrating
out this heavy lepton generates the contribution

C5 =
y2L c̃LL

16⇡2
=

m2
L c̃LL

8⇡2v2
> 0.03 c̃LL (18)

to the Wilson coe�cient of the operator O5. Comparison
with (13) indicates that, for c̃LL = O(1) of natural size, it
would be possible in this case to obtain a S ! Zh decay
rate close to the present experimental upper bound.

There is an interesting subtlety related to the calcu-
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result (14) using the naive definition of �5, such that
{�µ, �5} = 0. It is well know that this scheme is not
consistent beyond tree level. We have thus repeated the
calculation using the ‘tHooft-Veltman (HV) scheme [31],
in which �5 anticommutes with �µ for µ = 0, 1, 2, 3, while
it commutes with the remaining (d� 4) �µ matrices. We
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F given by

�FHV = �1� 2

3

6m2
t �m2

S

m2
S � ⇠m2

Z

. (19)

Note the peculiar feature that in unitary gauge (⇠ = 1)
this contribution would have the e↵ect of subtracting
the leading asymptotic contribution to F in the limit
m2

t � m2
S , leaving a result which formally corresponds

to the matrix element of a dimension-7 operator. This
seems to contradict the conclusion drawn above. How-
ever, it is well known that the HV scheme (like any other
consistent scheme for implementing �5 in dimensional
regularization) violates the chiral Ward identities of the
electroweak theory [32]. In our case, the relevant Ward
identity takes the form

kµ�
µ(k) = �imZ �(k) , (20)

where �µ(k) is the proper vertex function of an on-shell S
decaying to an on-shell Higgs boson and a Z-boson cur-
rent with momentum k, while �(k) is the corresponding
proper vertex function with the current replaced by the
Goldstone boson '3. The Ward identity must be restored
by means of appropriate counterterms. We find that,
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tion to the S ! Zh decay amplitude precisely cancels the
extra term in (19), so that we recover the result obtained
using the naive definition of �5. This finding should not
come as a surprise. In [33] a consistent scheme for imple-
menting �5 in dimensional regularization was proposed,
which for traces involving an even number of �5 matri-
ces yields results identical to those obtained in the naive
scheme with anticommuting �5.

III. HEAVY VECTOR-LIKE FERMIONS

It is instructive to illustrate our findings with a con-
crete new-physics model, which generates the e↵ective
interactions of the scalar resonance with SM particles via
loop diagrams involving heavy vector-like fermions that
are mixed with the SM fermions. Such a scenario is real-
ized, e.g., in models of partial compositeness or warped
extra dimension [34–36]. We consider an SU(2)L dou-
blet  = (T B)T of vector-like quarks with hypercharge
Y = 1

6 , which mixes with the third-generation quark
doublet of the SM. The most general Lagrangian is

L =  ̄ (i /D �M) + Q̄L i /DQL + t̄R i /D tR + b̄R i /D bR

� yt
�
Q̄L�̃ tR + h.c.

�� �
gt ̄ �̃ tR + gb ̄ � bR + h.c.

�

� c1S  ̄ i�5  � ic2S
�
Q̄L �  ̄QL

�
, (21)

F ⇡ �0.01 + 0.67i
F ⇡ �0.09 + 0.23i



Operator analysis at D=5
❖ We find                                                                 

in both cases, which is a very small decay rate

❖ If the decay into top-quark pairs is kinematically 
allowed, one obtains

yielding 3.6·10-4 (1.8·10-4) for mS = 750 GeV (1.5 TeV)
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FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (3)

where cw ⌘ cos ✓w and the second expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
follows from the partial conservation of the Higgs current

@µ
�
�†iDµ �+ h.c.

� ! �
⇣
1+

h

v

⌘X

f

2T f
3

mf f̄ i�
5

f , (4)

where T f
3

is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
M

Ctop

5

,

with Ctop

5

= �Nc y
2

t

8⇡2

T t
3

c̃tt F ,

(6)

where T t
3

= 1

2

. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral

F =

Z
1

0

d[xyz]
2m2

t � xm2

h � zm2

Z

m2

t � xzm2

S � xym2

h � yzm2

Z � i0
, (7)

with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2

S �
m2

t , the function F is formally suppressed by a factor
m2

t/m
2

S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate

�(S ! Zh)D=5

=
m3

S

16⇡M2

��Ctop

5

��2 �3/2(1, xh, xZ) , (8)

where xi = m2

i /m
2

S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate
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where cw ⌘ cos ✓w and the second expression holds in
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follows from the partial conservation of the Higgs current
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is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
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the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
M
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,

with Ctop
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(6)

where T t
3

= 1
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. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral

F =
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h � zm2

Z
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with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2

S �
m2

t , the function F is formally suppressed by a factor
m2

t/m
2

S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate

�(S ! Zh)D=5

=
m3

S

16⇡M2

��Ctop

5

��2 �3/2(1, xh, xZ) , (8)

where xi = m2

i /m
2

S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-

3

tween the S ! Zh and S ! tt̄ rates, which reads

�(S ! Zh)D=5

�(S ! tt̄)
=

3y2t
16⇡2

⇣mS

4⇡v

⌘
2

|F |2 �3/2(1, xh, xZ)p
1� 4xt

.

(9)
This ratio evaluates to 3.6 · 10�4 for mS = 750GeV and
1.8 · 10�4 for mS = 1.5TeV. The present experimen-
tal upper bounds on the corresponding S ! tt̄ rates of
about 0.7 pb and 65 fb at

p
s = 8TeV [15] yield �(pp !

S
750

! tt̄) < 3.2 pb and �(pp ! S
1500

! tt̄) < 0.6 pb
at

p
s = 13TeV under the assumption of gluon-initiated

production. Relation (9) then implies the bounds �(pp !
S
750

! Zh)D=5

< 1.1 fb and �(pp ! S
1500

! Zh)D=5

<
0.1 fb. These are two orders of magnitude smaller than
the present direct experimental upper limits �(pp !
S
750

! Zh) < 123 fb and �(pp ! S
1500

! Zh) < 40 fb
at

p
s = 13TeV [10].

B. D = 7 operator analysis of S ! Zh decay

The dominance of the loop-induced dimension-5 con-
tribution to the S ! Zh decay rate is far from guaran-
teed. This contribution can be very small if the CP-odd
coupling c̃tt of S to top quarks is suppressed. Also, as
we have seen, the one-loop matrix element in (6) is sup-
pressed by a factor m2

t/m
2

S . If mS is not much smaller
than the new-physics scale M , the loop contributions
arising at dimension 7 can give rise to similar e↵ects.
Moreover, at dimension 7 there exists a unique operator
giving rise to a tree-level contribution to the S ! Zh
amplitude. It reads

O
7

= (@µS)
�
�†iDµ �+ h.c.

�
�†�

=̂ � S
�
�†iDµ �+ h.c.

�
@µ(�†�)

! g

2cw
S Zµ (v + h)3 @µh ,

(10)

where in the second step we have used an integration by
parts and the equations of motion for the Higgs field,
neglecting the fermionic terms in (4), which do not con-
tribute to S ! Zh decay at tree level. The expression in
the third line, valid in unitary gauge, gives rise to non-
vanishing S ! Zh and S ! Zhh matrix elements.

At one-loop order there exist several dimension-7 op-
erators contributing to the decay S ! Zh. Those which
mix with O

7

under renormalization are

LD=7

e↵

=
C

7

M3

O
7

+
ct
6

M2

t̄R �̃†i /D �̃ tR

+
ct
7a

M3

h
iS Q̄Li /D i /D �̃ tR + h.c.

i

+
ct
7b

M3

(@µS) t̄R �̃†�µ�̃ tR + . . . ,

(11)

plus analogous operators containing the right-handed
bottom quark. The dimension-6 operator proportional
to ct

6

contributes in conjunction with the operator in (5)
to give a contribution of order 1/M3.

Let us focus for a moment on the potentially dominant
tree-level contribution from the operator O

7

, which yields
the decay rate

�(S ! Zh) ⇡ m3

S

16⇡M2

����C
top

5

+
v2

2M2

C
7

����
2

�3/2(1, xh, xZ) .

(12)
With C

7

= 1 and M = 1TeV this partial width is about
7MeV for mS = 750GeV and 60MeV for mS = 1.5TeV.
The contribution from Ctop

5

can be safely neglected in
this case. If we assume for simplicity that the resonance
is produced in gluon fusion, and that its dominant decay
is into dijets (S ! gg), the current experimental upper
bounds on the pp ! S ! Zh rates quoted above trans-
late into |C

7

| < 1.3 (M/TeV)3 for mS = 750GeV and
|C

7

| < 2.5 (M/TeV)3 for mS = 1.5TeV. The coupling
c̃gg in (2) cancels out in this case [3]. These estimates
show that S ! Zh rates close to the present experimen-
tal bounds are possible for reasonable parameter choices.

C. Non-polynomial operators

It is interesting to consider the hypothetical limit
where one takes the fermion mass mt in (7) much larger
than the mass of the resonance S. Then the parameter
integral yields F = 1+O(m2

S/m
2

t ). The fermion is a very
heavy particle, which can be integrated out from the low-
energy theory. The contribution (6) then corresponds to
a one-loop matching contribution to the Wilson coe�-
cient of a local dimension-5 operator with a tree-level
S ! Zh matrix element. Our operator analysis in Sec-
tion IIA did not reveal the existence of such an operator.
However, in extensions of the SM containing heavy par-

ticles whose masses arise (or receive their dominant con-
tributions) from electroweak symmetry breaking, opera-
tors with a non-polynomial dependence on the Higgs field
can arise [16]. The non-polynomial structure appears be-
cause the particle integrated out (the hypothetical heavy
fermion) receives its mass from electroweak symmetry
breaking, so it is heavy only in the broken phase of the
theory. In our case, the relevant operator reads

O
5

= (@µS)
�
�†iDµ �+ h.c.

�
ln

�†�

µ2

=̂ � S
�
�†iDµ �+ h.c.

� @µ(�†�)

�†�
,

(13)

where in the second step we have again used an inte-
gration by parts and neglected fermionic currents. The
latter expression has a one-to-one map onto the structure
of the parameter integral (7).
Consider, as an illustration, a sequential fourth genera-

tion of heavy leptons, and assume that the heavy charged
state L has a mass mL & mS/2 and a coupling c̃LL to the
pseudoscalar resonance defined in analogy to (5). Inte-
grating out this heavy lepton generates the contribution

C
5

=
y2L c̃LL

16⇡2

=
m2

L c̃LL

8⇡2v2
& m2

S c̃LL

32⇡2v2
(14)



Operator analysis at D=5
❖ The current experimental bounds on                         then 

imply                           rates less than 1.1 fb and 0.1 fb (at 
D=5), respectively, which is two orders of magnitude 
smaller than the experimental upper bounds of 123 fb 
and 40 fb

❖ However, it is by no means guaranteed that the D=5 
contributions to the S → Z+h decay rates are the 
dominant ones!                                                            

pp ! S ! tt̄

pp ! S ! Zh

[ATLAS-CONF-2016-015]



Operator analysis at D=7
❖ At dimension 7, there is a unique operator mediating the 

decay S → Z+h at tree level:

❖ It yields the decay rate:

❖ With C7 = 1 and M = 1 TeV, this rate is 7 MeV for mS = 
750 GeV and 60 MeV for mS = 1.5 TeV. If S is produced in 
gluon fusion and dominantly decays into dijets, these 
rates are close to the current experimental upper bounds!
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c̃gg in (2) cancels out in this case [3]. These estimates
show that S ! Zh rates close to the present experimen-
tal bounds are possible for reasonable parameter choices.

C. Non-polynomial operators
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energy theory. The contribution (6) then corresponds to
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However, in extensions of the SM containing heavy par-

ticles whose masses arise (or receive their dominant con-
tributions) from electroweak symmetry breaking, opera-
tors with a non-polynomial dependence on the Higgs field
can arise [16]. The non-polynomial structure appears be-
cause the particle integrated out (the hypothetical heavy
fermion) receives its mass from electroweak symmetry
breaking, so it is heavy only in the broken phase of the
theory. In our case, the relevant operator reads
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where in the second step we have again used an inte-
gration by parts and neglected fermionic currents. The
latter expression has a one-to-one map onto the structure
of the parameter integral (7).
Consider, as an illustration, a sequential fourth genera-

tion of heavy leptons, and assume that the heavy charged
state L has a mass mL & mS/2 and a coupling c̃LL to the
pseudoscalar resonance defined in analogy to (5). Inte-
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1.8 · 10�4 for mS = 1.5TeV. The present experimen-
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the present direct experimental upper limits �(pp !
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at

p
s = 13TeV [10].
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The dominance of the loop-induced dimension-5 con-
tribution to the S ! Zh decay rate is far from guaran-
teed. This contribution can be very small if the CP-odd
coupling c̃tt of S to top quarks is suppressed. Also, as
we have seen, the one-loop matrix element in (6) is sup-
pressed by a factor m2
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S . If mS is not much smaller
than the new-physics scale M , the loop contributions
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Non-polynomial operators at D=5
❖ Recall the result from the top-loop amplitude arising at 

dimension 5:

❖ Consider the fictitious limit where                   , in which 
case

❖ The top quark is then a very heavy particle, which 
should be integrated out 

2

FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (3)

where cw ⌘ cos ✓w and the second expression holds in
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where T f
3

is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is
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where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is
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. The Z boson is longitudinally polarized,
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light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2
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From the amplitude (6) we obtain the decay rate
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We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.
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e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate
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where cw ⌘ cos ✓w and the second expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
follows from the partial conservation of the Higgs current
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where T f
3

is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.
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where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is
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. The Z boson is longitudinally polarized,
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S is
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with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2

S �
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t , the function F is formally suppressed by a factor
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S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate
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We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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Non-polynomial operators at D=5

❖ This yields a short-distance, D=5 matching contribution!

❖ However, we found that no corresponding dimension-5 
operator exists on the effective Lagrangian!?!

❖ What’s going on?

❖ When one integrates out particles whose mass arises 
from electroweak symmetry breaking, then non-
polynomial operators in the Higgs field can arise in the 
effective Lagrangian! [see e.g.: Pierce, Thaler, Wang 2006]



Non-polynomial operators at D=5
❖ In our case, the relevant operator is:

❖ Assuming that S is produced in gluon fusion, we then 
obtain the production times decay rate: 

where:
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tween the S ! Zh and S ! tt̄ rates, which reads
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This ratio evaluates to 3.6 · 10�4 for mS = 750GeV and
1.8 · 10�4 for mS = 1.5TeV. The present experimen-
tal upper bounds on the corresponding S ! tt̄ rates of
about 0.7 pb and 65 fb at

p
s = 8TeV [15] yield �(pp !

S
750

! tt̄) < 3.2 pb and �(pp ! S
1500

! tt̄) < 0.6 pb
at

p
s = 13TeV under the assumption of gluon-initiated

production. Relation (9) then implies the bounds �(pp !
S
750

! Zh)D=5

< 1.1 fb and �(pp ! S
1500

! Zh)D=5

<
0.1 fb. These are two orders of magnitude smaller than
the present direct experimental upper limits �(pp !
S
750

! Zh) < 123 fb and �(pp ! S
1500

! Zh) < 40 fb
at

p
s = 13TeV [10].

B. D = 7 operator analysis of S ! Zh decay

The dominance of the loop-induced dimension-5 con-
tribution to the S ! Zh decay rate is far from guaran-
teed. This contribution can be very small if the CP-odd
coupling c̃tt of S to top quarks is suppressed. Also, as
we have seen, the one-loop matrix element in (6) is sup-
pressed by a factor m2

t/m
2

S . If mS is not much smaller
than the new-physics scale M , the loop contributions
arising at dimension 7 can give rise to similar e↵ects.
Moreover, at dimension 7 there exists a unique operator
giving rise to a tree-level contribution to the S ! Zh
amplitude. It reads
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where in the second step we have used an integration by
parts and the equations of motion for the Higgs field,
neglecting the fermionic terms in (4), which do not con-
tribute to S ! Zh decay at tree level. The expression in
the third line, valid in unitary gauge, gives rise to non-
vanishing S ! Zh and S ! Zhh matrix elements.

At one-loop order there exist several dimension-7 op-
erators contributing to the decay S ! Zh. Those which
mix with O

7

under renormalization are
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plus analogous operators containing the right-handed
bottom quark. The dimension-6 operator proportional
to ct

6

contributes in conjunction with the operator in (5)
to give a contribution of order 1/M3.

Let us focus for a moment on the potentially dominant
tree-level contribution from the operator O

7

, which yields
the decay rate
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With C

7

= 1 and M = 1TeV this partial width is about
7MeV for mS = 750GeV and 60MeV for mS = 1.5TeV.
The contribution from Ctop

5

can be safely neglected in
this case. If we assume for simplicity that the resonance
is produced in gluon fusion, and that its dominant decay
is into dijets (S ! gg), the current experimental upper
bounds on the pp ! S ! Zh rates quoted above trans-
late into |C

7

| < 1.3 (M/TeV)3 for mS = 750GeV and
|C

7

| < 2.5 (M/TeV)3 for mS = 1.5TeV. The coupling
c̃gg in (2) cancels out in this case [3]. These estimates
show that S ! Zh rates close to the present experimen-
tal bounds are possible for reasonable parameter choices.

C. Non-polynomial operators

It is interesting to consider the hypothetical limit
where one takes the fermion mass mt in (7) much larger
than the mass of the resonance S. Then the parameter
integral yields F = 1+O(m2

S/m
2

t ). The fermion is a very
heavy particle, which can be integrated out from the low-
energy theory. The contribution (6) then corresponds to
a one-loop matching contribution to the Wilson coe�-
cient of a local dimension-5 operator with a tree-level
S ! Zh matrix element. Our operator analysis in Sec-
tion IIA did not reveal the existence of such an operator.
However, in extensions of the SM containing heavy par-

ticles whose masses arise (or receive their dominant con-
tributions) from electroweak symmetry breaking, opera-
tors with a non-polynomial dependence on the Higgs field
can arise [16]. The non-polynomial structure appears be-
cause the particle integrated out (the hypothetical heavy
fermion) receives its mass from electroweak symmetry
breaking, so it is heavy only in the broken phase of the
theory. In our case, the relevant operator reads
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where in the second step we have again used an inte-
gration by parts and neglected fermionic currents. The
latter expression has a one-to-one map onto the structure
of the parameter integral (7).
Consider, as an illustration, a sequential fourth genera-

tion of heavy leptons, and assume that the heavy charged
state L has a mass mL & mS/2 and a coupling c̃LL to the
pseudoscalar resonance defined in analogy to (5). Inte-
grating out this heavy lepton generates the contribution
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Note that the former bounds do not apply if mS < 2mt.
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The dominance of the loop-induced dimension-5 con-
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teed. This contribution can be very small if the CP-odd
coupling c̃tt of S to top quarks is suppressed. Also, as
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pressed by a factor m2
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FIG. 3. Predictions for the pp ! S ! Zh ! Zbb̄ signal
rate vs. mS , compared with the ATLAS upper bounds [10].
The red line shows the contribution from C
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evaluated with
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|/M3 = 1/TeV3, while the blue line shows a generic

dimension-5 contribution with B1/2
gg |C
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|/M = 0.1/TeV (see
Section II C), where Bgg ⌘ Br(S ! gg). The green line shows

the contribution from Ctop

5

for B1/2
gg |c̃tt|/M = 1/TeV, while

the dashed green line incorporates the upper bound on |c̃tt|
implied by the ATLAS limits on the pp ! S ! tt̄ rate [15].

With C
7

= 1 and M = 1TeV this partial width is about
7MeV for mS = 750GeV and 60MeV for mS = 1.5TeV.
The contribution from Ctop

5

can be safely neglected in this
case, except in the kinematic region where mS < 2mt.
However, in Section IIC below we will consider a more
general class of new-physics models, where the coe�cient
Ctop

5

is replaced by a generic coe�cient C
5

. Figure 3
shows our results for the pp ! S ! Zh ! Zbb̄ signal rate
under the assumption that S is produced in gluon fusion
and that a single Wilson coe�cient gives the dominant
contribution to the S ! Zh rate. The relevant rate can
then be written as
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where ffgg is the gluon luminosity function, and the
Kpp!S and KS!gg factors accounting for higher-order
QCD corrections have been computed in [3]. We fix the

products B
1/2
gg |C

5

|/M , B
1/2
gg |C

7

|/M3 and B
1/2
gg |c̃tt|/M

(for the case of the top-quark contribution Ctop

5

) to the
values shown in the plot, denoting Bgg ⌘ Br(S ! gg).
The rate scales with the squares of these combinations.
Our results show that S ! Zh rates close to the present
experimental bounds are possible for reasonable param-
eter values, provided that the S ! gg branching ratio is
not too small. They can be translated into lower bounds
on the e↵ective new-physics scales
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C
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= Ctop

5

+ Cnon�pol

5

2

FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (3)

where cw ⌘ cos ✓w and the second expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
follows from the partial conservation of the Higgs current

@µ
�
�†iDµ �+ h.c.

� ! �
⇣
1+

h

v

⌘X

f

2T f
3

mf f̄ i�
5

f , (4)

where T f
3

is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
M
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,
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= �Nc y
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8⇡2

T t
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c̃tt F ,
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where T t
3

= 1

2

. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral
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Z
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, (7)

with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2

S �
m2

t , the function F is formally suppressed by a factor
m2

t/m
2

S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate
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where xi = m2

i /m
2

S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-



Comparison with ATLAS bounds3

This ratio evaluates to 3.6 · 10�4 for mS = 750GeV and
1.8 · 10�4 for mS = 1.5TeV. The present experimen-
tal upper bounds on the corresponding S ! tt̄ rates of
about 0.7 pb and 65 fb at

p
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! tt̄) < 3.2 pb and �(pp ! S
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! tt̄) < 0.6 pb
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s = 13TeV under the assumption of gluon-initiated

production. Relation (9) then implies the bounds �(pp !
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! Zh)D=5

< 1.1 fb and �(pp ! S
1500

! Zh)D=5

<
0.1 fb, which are two orders of magnitude below the direct
experimental upper limits �(pp ! S

750

! Zh) < 123 fb
and �(pp ! S

1500

! Zh) < 40 fb at
p
s = 13TeV [10].

Note that the former bounds do not apply if mS < 2mt.

B. D = 7 operator analysis of S ! Zh decay

The dominance of the loop-induced dimension-5 con-
tribution to the S ! Zh decay rate is far from guaran-
teed. This contribution can be very small if the CP-odd
coupling c̃tt of S to top quarks is suppressed. Also, as
we have seen, the one-loop matrix element in (6) is sup-
pressed by a factor m2

t/m
2

S . If mS is not much smaller
than the new-physics scale M , the loop contributions
arising at dimension 7 can give rise to similar e↵ects.
Moreover, at dimension 7 there exists a unique operator
giving rise to a tree-level contribution to the S ! Zh
amplitude. It reads
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where in the second step we have used an integration by
parts and the equations of motion for the Higgs field,
neglecting the fermionic terms in (4), which do not con-
tribute to S ! Zh decay at tree level. The expression in
the third line, valid in unitary gauge, gives rise to non-
vanishing S ! Zh and S ! Zhh matrix elements.

At one-loop order there exist several dimension-7 op-
erators contributing to the decay S ! Zh. Those which
mix with O
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plus analogous operators containing the right-handed
bottom quark. The dimension-6 operator proportional
to ct

6

contributes in conjunction with the operator in (5)
to give a contribution of order 1/M3.

Let us focus on the potentially dominant tree-level con-
tribution from O

7

, which yields the decay rate
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FIG. 3. Predictions for the pp ! S ! Zh ! Zbb̄ signal
rate vs. mS , compared with the ATLAS upper bounds [10].
The red line shows the contribution from C
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evaluated with
B1/2

gg |C
7

|/M3 = 1/TeV3, while the blue line shows a generic

dimension-5 contribution with B1/2
gg |C

5

|/M = 0.1/TeV (see
Section II C), where Bgg ⌘ Br(S ! gg). The green line shows

the contribution from Ctop

5

for B1/2
gg |c̃tt|/M = 1/TeV, while

the dashed green line incorporates the upper bound on |c̃tt|
implied by the ATLAS limits on the pp ! S ! tt̄ rate [15].

With C
7

= 1 and M = 1TeV this partial width is about
7MeV for mS = 750GeV and 60MeV for mS = 1.5TeV.
The contribution from Ctop

5

can be safely neglected in this
case, except in the kinematic region where mS < 2mt.
However, in Section IIC below we will consider a more
general class of new-physics models, where the coe�cient
Ctop

5

is replaced by a generic coe�cient C
5

. Figure 3
shows our results for the pp ! S ! Zh ! Zbb̄ signal rate
under the assumption that S is produced in gluon fusion
and that a single Wilson coe�cient gives the dominant
contribution to the S ! Zh rate. The relevant rate can
then be written as
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where ffgg is the gluon luminosity function, and the
Kpp!S and KS!gg factors accounting for higher-order
QCD corrections have been computed in [3]. We fix the

products B
1/2
gg |C

5

|/M , B
1/2
gg |C

7

|/M3 and B
1/2
gg |c̃tt|/M

(for the case of the top-quark contribution Ctop

5

) to the
values shown in the plot, denoting Bgg ⌘ Br(S ! gg).
The rate scales with the squares of these combinations.
Our results show that S ! Zh rates close to the present
experimental bounds are possible for reasonable param-
eter values, provided that the S ! gg branching ratio is
not too small. They can be translated into lower bounds
on the e↵ective new-physics scales
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the third line, valid in unitary gauge, gives rise to non-
vanishing S ! Zh and S ! Zhh matrix elements.
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evaluated with
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|/M3 = 1/TeV3, while the blue line shows a generic

dimension-5 contribution with B1/2
gg |C
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|/M = 0.1/TeV (see
Section II C), where Bgg ⌘ Br(S ! gg). The green line shows

the contribution from Ctop

5

for B1/2
gg |c̃tt|/M = 1/TeV, while

the dashed green line incorporates the upper bound on |c̃tt|
implied by the ATLAS limits on the pp ! S ! tt̄ rate [15].
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7MeV for mS = 750GeV and 60MeV for mS = 1.5TeV.
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can be safely neglected in this
case, except in the kinematic region where mS < 2mt.
However, in Section IIC below we will consider a more
general class of new-physics models, where the coe�cient
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is replaced by a generic coe�cient C
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. Figure 3
shows our results for the pp ! S ! Zh ! Zbb̄ signal rate
under the assumption that S is produced in gluon fusion
and that a single Wilson coe�cient gives the dominant
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where ffgg is the gluon luminosity function, and the
Kpp!S and KS!gg factors accounting for higher-order
QCD corrections have been computed in [3]. We fix the
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(for the case of the top-quark contribution Ctop

5

) to the
values shown in the plot, denoting Bgg ⌘ Br(S ! gg).
The rate scales with the squares of these combinations.
Our results show that S ! Zh rates close to the present
experimental bounds are possible for reasonable param-
eter values, provided that the S ! gg branching ratio is
not too small. They can be translated into lower bounds
on the e↵ective new-physics scales
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FIG. 4. Bounds on the e↵ective new-physics scales M
5

and
M

7

implied by the ATLAS search for S ! Zh decay [10].

which are probed by the ATLAS analysis in [10]. These
bounds are shown in Figure 4. They nicely illustrate the
new-physics reach of present S ! Zh searches.

C. Non-polynomial operators

It is interesting to consider the hypothetical limit
mt � mS in (7). Then the parameter integral yields
F = 1 + O(m2

S/m
2

t ). The fermion is a very heavy par-
ticle, which can be integrated out from the low-energy
theory. The contribution (6) then corresponds to a one-
loop matching contribution to the Wilson coe�cient of a
local dimension-5 operator with a tree-level S ! Zh ma-
trix element. Our operator analysis in Section IIA did
not reveal the existence of such an operator. However, in
extensions of the SM containing heavy particles whose
masses arise (or receive their dominant contributions)
from electroweak symmetry breaking, operators with a
non-polynomial dependence on the Higgs field can arise
[16]. The non-polynomial structure appears because the
particle integrated out (the hypothetical heavy fermion)
receives its mass from electroweak symmetry breaking,
so it is heavy only in the broken phase of the theory. In
our case, the relevant operator reads

O
5

= (@µS)
�
�†iDµ �+ h.c.

�
ln
�†�

µ2

=̂ � S
�
�†iDµ �+ h.c.

� @µ(�†�)
�†�

,

(15)

where in the second step we have again used an inte-
gration by parts and neglected fermionic currents. The
latter expression has a one-to-one map onto the structure
of the parameter integral (7).

Consider, as an illustration, a sequential fourth genera-
tion of heavy leptons, and assume that the heavy charged
state L has a mass mL & mS/2 and a coupling c̃LL to the

pseudoscalar resonance defined in analogy to (5). Inte-
grating out this heavy lepton generates the contribution

C
5

=
y2L c̃LL

16⇡2

=
m2

L c̃LL

8⇡2v2
& m2

S c̃LL

32⇡2v2
(16)

to the Wilson coe�cient C
5

/M of the operator O
5

. Using
this expression instead of Ctop

5

in (8), we obtain the up-
per bounds |c̃LL| < 1.3 (M/TeV) for mS = 750GeV and
|c̃LL| < 0.6 (M/TeV) for mS = 1.5TeV. In such a model
it would be natural to obtain S ! Zh decay rates close
to the present experimental upper bounds, see Figure 3.
The e↵ective Lagrangian L

e↵

= (C
5

/M)O
5

yields a
loop correction to the T parameter given by ↵(mZ)T =
�⇧ZZ(0)/m2

Z ⇡ C2

5

/(4⇡)2. Electroweak precision mea-
surements then imply |C

5

| < 0.66 at 95% confidence level
[22]. This constraint is much weaker than the bounds de-
rived from S ! Zh decay.
The operator O

5

and analogous non-polynomial op-
erators of higher dimension are absent in models where
the new heavy particles have masses not related to the
electroweak scale. We now study such a model in detail.

III. HEAVY VECTOR-LIKE FERMIONS

It is instructive to consider a concrete new-physics
model, which generates the e↵ective interactions of the
scalar resonance with SM particles via loop diagrams in-
volving heavy vector-like fermions that are mixed with
the SM fermions. Such a scenario is realized, e.g., in mod-
els of partial compositeness or warped extra dimension
[17–19]. We consider an SU(2)L doublet  = (T B)T of
vector-like quarks with hypercharge Y = 1

6

, which mixes
with the third-generation quark doublet of the SM. The
most general Lagrangian reads

L =  ̄ (i /D �M) + Q̄L i /DQL + t̄R i /D tR + b̄R i /D bR

� yt
�
Q̄L�̃ tR + h.c.

�� �
gt ̄ �̃ tR + gb ̄ � bR + h.c.

�

� c
1

S  ̄ i�
5

 � ic
2

S
�
Q̄L �  ̄QL

�
, (17)

where we neglect the small Yukawa coupling |yb| ⌧ 1 of
the bottom quark. The terms in the last line contain the
couplings to the pseudoscalar resonance S. The mass
mixing induced by the couplings gi leads to modifica-
tions of the masses and Yukawa couplings of the SM top
and bottom quarks by small amounts of order g2i v

2/M2.
Likewise, the masses of the heavy T and B quarks are
split by a small amount MT �MB ⇡ (g2t � g2b ) v

2/(4M).
Integrating out the heavy fermion doublet at tree level,

by solving its equations of motion, we generate the op-
erators in the e↵ective Lagrangians (5) and (11) with
coe�cients c̃tt = �c

2

gt/yt and (for f = t, b)

cf
6

= g2f , cf
7a = c

2

gf , cf
7b = c

1

g2f . (18)

The coe�cient cb
6

is constrained by precision measure-
ments of the Z-boson couplings to fermions performed

mS

Bounds implies by the ATLAS data on the 
effective new-physics scales:
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production. Relation (9) then implies the bounds �(pp !
S
750

! Zh)D=5

< 1.1 fb and �(pp ! S
1500

! Zh)D=5

<
0.1 fb, which are two orders of magnitude below the direct
experimental upper limits �(pp ! S

750

! Zh) < 123 fb
and �(pp ! S

1500

! Zh) < 40 fb at
p
s = 13TeV [10].

Note that the former bounds do not apply if mS < 2mt.

B. D = 7 operator analysis of S ! Zh decay

The dominance of the loop-induced dimension-5 con-
tribution to the S ! Zh decay rate is far from guaran-
teed. This contribution can be very small if the CP-odd
coupling c̃tt of S to top quarks is suppressed. Also, as
we have seen, the one-loop matrix element in (6) is sup-
pressed by a factor m2

t/m
2

S . If mS is not much smaller
than the new-physics scale M , the loop contributions
arising at dimension 7 can give rise to similar e↵ects.
Moreover, at dimension 7 there exists a unique operator
giving rise to a tree-level contribution to the S ! Zh
amplitude. It reads

O
7

= (@µS)
�
�†iDµ �+ h.c.

�
�†�

=̂ � S
�
�†iDµ �+ h.c.

�
@µ(�†�)

! g

2cw
S Zµ (v + h)3 @µh ,

(10)

where in the second step we have used an integration by
parts and the equations of motion for the Higgs field,
neglecting the fermionic terms in (4), which do not con-
tribute to S ! Zh decay at tree level. The expression in
the third line, valid in unitary gauge, gives rise to non-
vanishing S ! Zh and S ! Zhh matrix elements.

At one-loop order there exist several dimension-7 op-
erators contributing to the decay S ! Zh. Those which
mix with O

7

under renormalization are

LD=7

e↵

=
C

7

M3

O
7

+
ct
6

M2

t̄R �̃†i /D �̃ tR

+
ct
7a

M3

⇣
iS Q̄Li /D i /D �̃ tR + h.c.

⌘

+
ct
7b

M3

(@µS) t̄R �̃†�µ�̃ tR + . . . ,

(11)

plus analogous operators containing the right-handed
bottom quark. The dimension-6 operator proportional
to ct

6

contributes in conjunction with the operator in (5)
to give a contribution of order 1/M3.

Let us focus on the potentially dominant tree-level con-
tribution from O

7

, which yields the decay rate

�(S ! Zh) ⇡ m3

S

16⇡M2

����C
top

5

+
v2

2M2

C
7

����
2

�3/2(1, xh, xZ) .

(12)

FIG. 3. Predictions for the pp ! S ! Zh ! Zbb̄ signal
rate vs. mS , compared with the ATLAS upper bounds [10].
The red line shows the contribution from C

7

evaluated with
B1/2

gg |C
7

|/M3 = 1/TeV3, while the blue line shows a generic

dimension-5 contribution with B1/2
gg |C

5

|/M = 0.1/TeV (see
Section II C), where Bgg ⌘ Br(S ! gg). The green line shows

the contribution from Ctop

5

for B1/2
gg |c̃tt|/M = 1/TeV, while

the dashed green line incorporates the upper bound on |c̃tt|
implied by the ATLAS limits on the pp ! S ! tt̄ rate [15].

With C
7

= 1 and M = 1TeV this partial width is about
7MeV for mS = 750GeV and 60MeV for mS = 1.5TeV.
The contribution from Ctop

5

can be safely neglected in this
case, except in the kinematic region where mS < 2mt.
However, in Section IIC below we will consider a more
general class of new-physics models, where the coe�cient
Ctop

5

is replaced by a generic coe�cient C
5

. Figure 3
shows our results for the pp ! S ! Zh ! Zbb̄ signal rate
under the assumption that S is produced in gluon fusion
and that a single Wilson coe�cient gives the dominant
contribution to the S ! Zh rate. The relevant rate can
then be written as

�(pp ! S) Br(S ! Zh) =
⇡m2

S

128s

Kpp!S

KS!gg
�3/2(1, xh, xZ)

⇥ffgg

⇣m2

S

s

⌘
Br(S ! gg)

����
C

5

M
+

v2C
7

2M3

����
2

, (13)

where ffgg is the gluon luminosity function, and the
Kpp!S and KS!gg factors accounting for higher-order
QCD corrections have been computed in [3]. We fix the

products B
1/2
gg |C

5

|/M , B
1/2
gg |C

7

|/M3 and B
1/2
gg |c̃tt|/M

(for the case of the top-quark contribution Ctop

5

) to the
values shown in the plot, denoting Bgg ⌘ Br(S ! gg).
The rate scales with the squares of these combinations.
Our results show that S ! Zh rates close to the present
experimental bounds are possible for reasonable param-
eter values, provided that the S ! gg branching ratio is
not too small. They can be translated into lower bounds
on the e↵ective new-physics scales

M
5

⌘ M

|C
5

|B1/2
gg

, M
7

⌘ M

|C
7

|1/3 B1/6
gg

, (14)



Conclusions
❖ Thanks to the phantom of the 750 GeV resonance, several 

interesting new development have been started, which are of lasting 
value!

❖ I have discussed three examples (many others exist):
✤ precision determination of the photon PDF, because it finally mattered
✤ models of warped extra dimensions should contain a new bulk scalar 

field (the “fermion localizer”), whose lowest-lying KK mode is a gauge-
singlet scalar particle with TeV-scale mass 

✤ S → Z+h decay offers a novel way for probing the CP properties of a 
new, heavy spin-0 boson

❖ This motivates continued experimental searches for heavy scalar 
particles in the LHC Run-2!
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