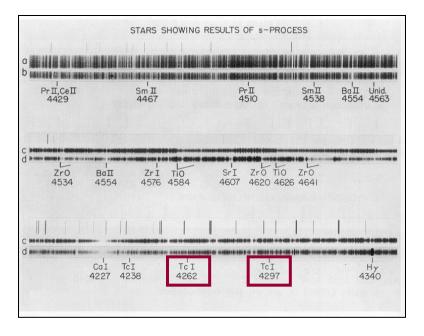

Classical Novae and the Physics of Exploding Stars

Jordi José

Dept. Física, Univ. Politècnica de Catalunya (UPC) & Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona

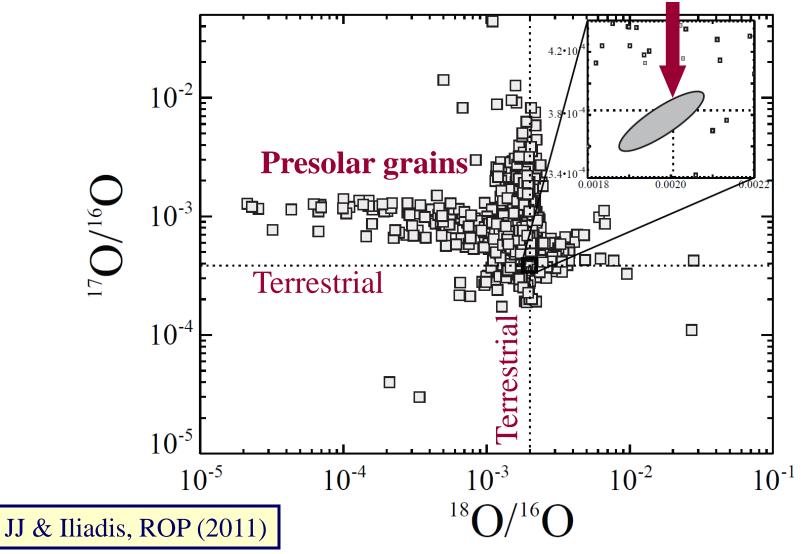
The Physics of Exploding Stars



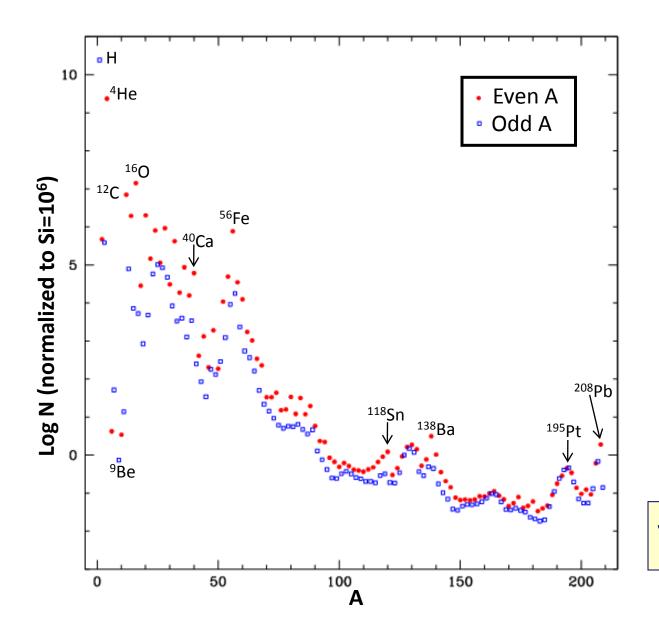
I. Stars as Nuclear Factories

The idea that **elements** could be **synthesized in stellar environments** was developed in the mid 1940s by **F. Hoyle** (following early work on 1920/30s by Bethe, Gamow, von Weizsäcker, and others...)

P.W. Merrill detected *technecium* (1952) in several S stars \rightarrow Tc has no stable isotopes (longest lived: $\tau \sim 4$ Myr): Stellar nucleosynthesis



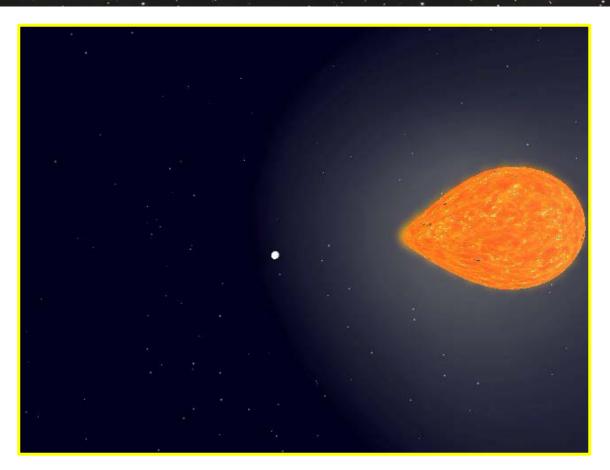
The Physics of Exploding Stars


Stars as Nuclear Factories || Type Ia Supernovae || Classical Novae || X-Ray Bursts

Solar System values

The Physics of Exploding Stars

Stars as Nuclear Factories || Type Ia Supernovae || Classical Novae || X-Ray Bursts



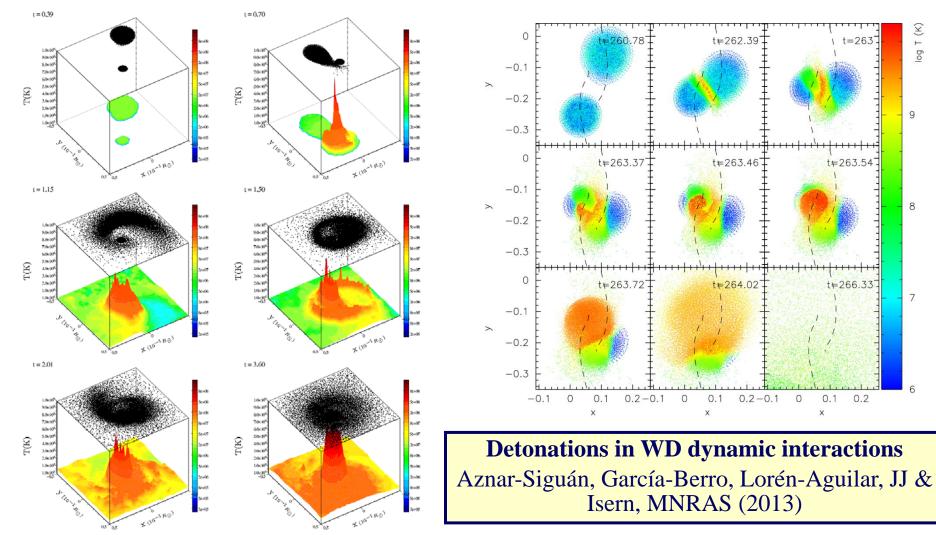
JJ & Iliadis (2011), ROP

The Origin of the Solar System Elements

1 H		big	bang f	usion			cos	mic ray	/ fissio	n -							2 He
3 Li	4 Be	mer	ging n	eutro	n stars	MNMM	expl	oding	massiv	ve star	s 🞑	5 B	6 U	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	dying low mass stars				exploding white dwarfs 🜌				13 Al	14 Si	15 P	16 S	17 CI	18 Ar		
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 T a	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																

Type Ia (or thermonuclear) Supernovae [SN Ia] Classical Nova Outbursts [CN] WD

X-Ray Bursts [XRBs]: NS


X

-

60

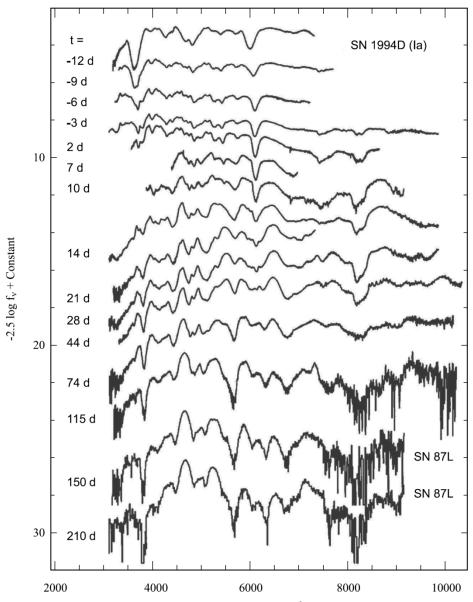
9

7

Stellar Mergers and Collisions

Guerrero, García-Berro & Isern, A&A (2004)

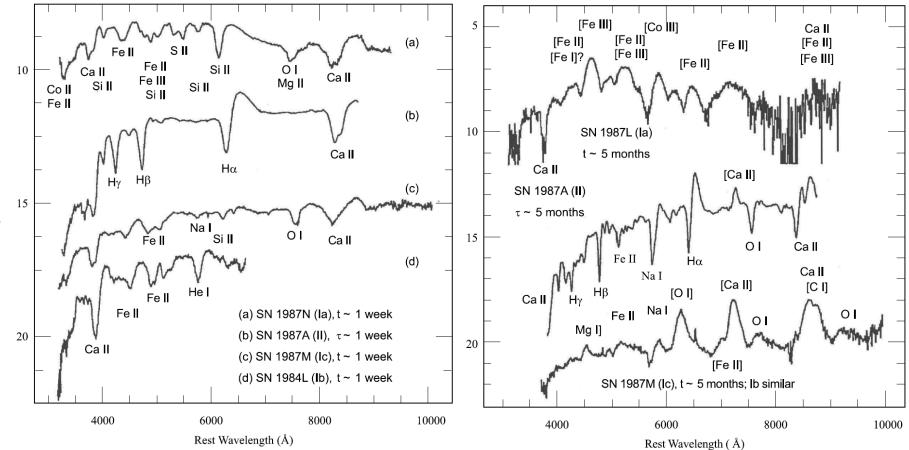
II. Type Ia Supernovae


Thermonuclear (Type Ia) Supernovae

v ~ 10⁴ km/s, L_{Peak} ~ 10¹⁰ L_{\odot} , E ~ 10⁵¹ erg, M_{ej} = 1.4 M_{\odot} no remnant left

* homogeneity: ~70% of all SN Ia have similar spectra, light curves and peak absolute magnitudes (Li et al. 2011): diversity of SNIa progenitors??

- * Scenario: not fully understood
- Single degenerate scenario:
 WD + 'Normal' companion
- Double degenerate scenario:
 WD + WD
- * main **Fe factories**


Rest Wavelength (Å)

The Physics of Exploding Stars

Stars as Nuclear Factories || Type Ia Supernovae || Classical Novae || X-Ray Bursts

Intermediate-mass elements

Fe-peak elements

Early spectra

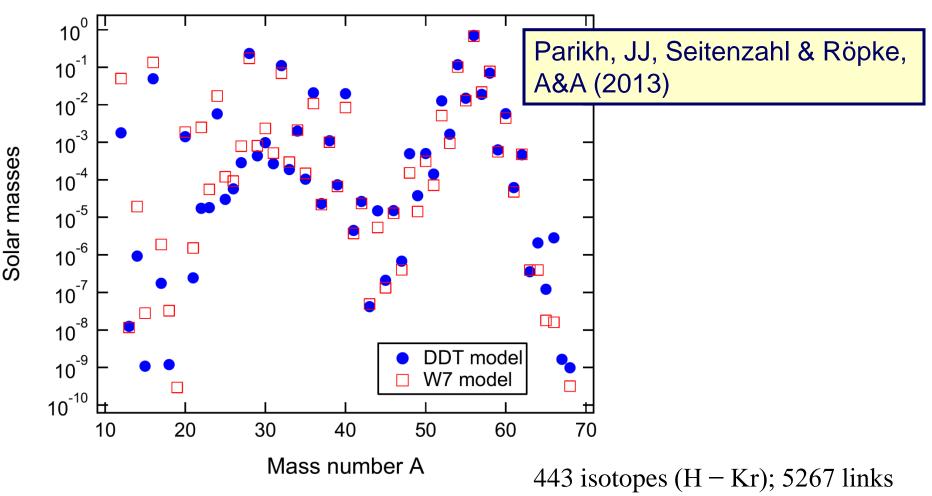
Late spectra

Thermonuclear Supernovae: Ignition mechanism

Central C-ignition in Chandrasekhar-mass WDs

 $M_{\rm CO} \sim 1.4 {\rm ~M}_{\odot}$

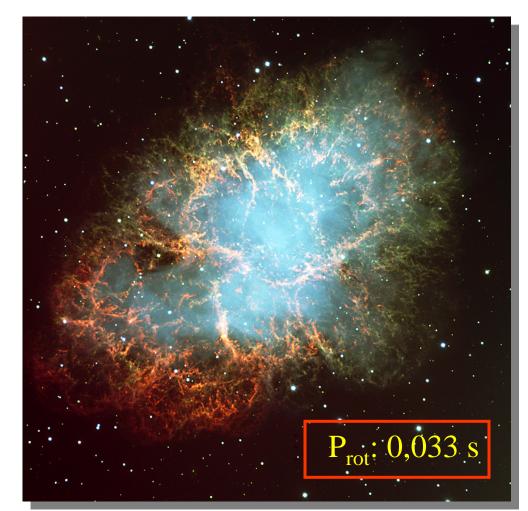
Detonation: supersonic flame

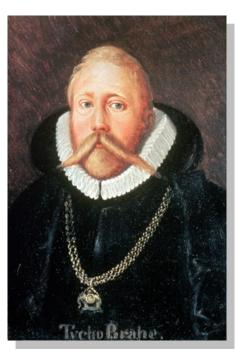

C,O → Ni

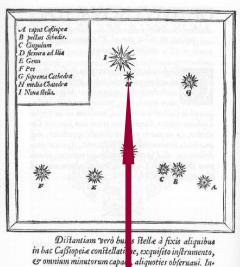
Deflagration: subsonic velocity

Deflagration <----> detonation: Delayed detonation

Thermonuclear Supernovae: Nucleosynthesis

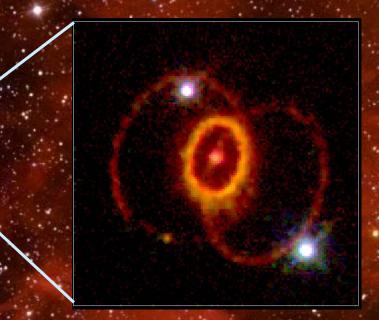

Supernovae are crucial for life... But never get too close!

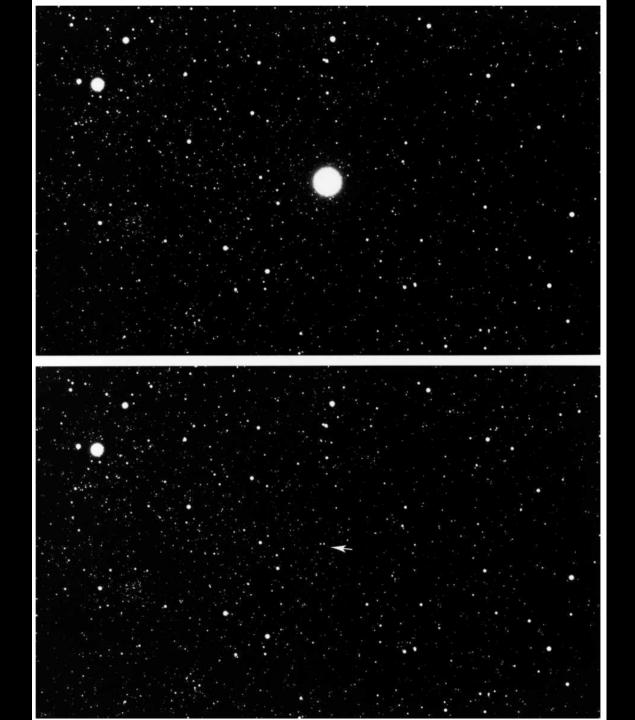

185 aC, 386, 393, 1006, 1054, 1181, 1572, 1604


Frequency: ~1 supernova every ~30 years per Galaxy

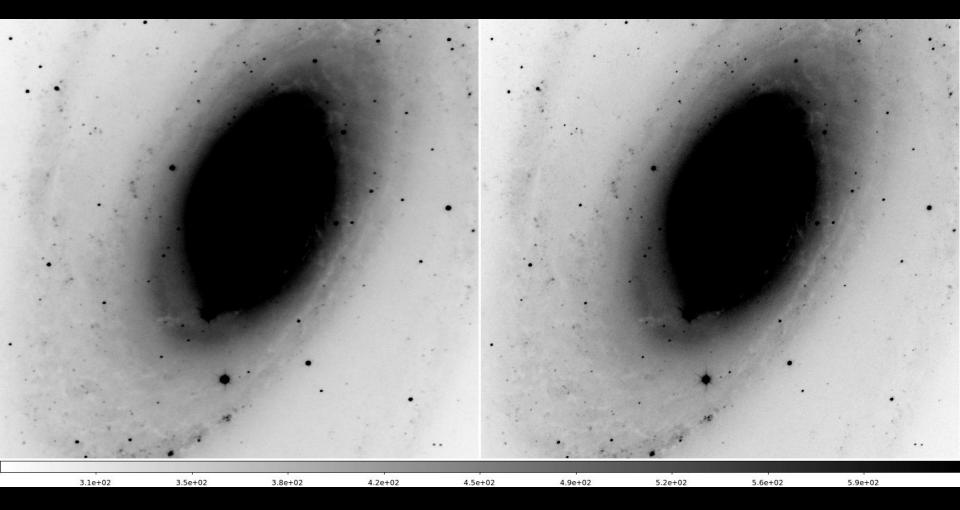
SN 1572 (Tycho)

"On the 11th day of November in the evening after sunset... I noticed that a new and unusual star, surpassing the other stars in brilliancy, was shining... and since I had, from boyhood, known all the stars of the heavens perfectly, it was quite evident to me that there had never been any star in that place of the sky [...] I was so astonished of this sight [...] a miracle indeed, one that has never been previously seen before our time, in any age since the beginning of the world."




ueni autem eam diftare ab ea u.e eft in pectore, Schedir appellata B, 7. partibus (55. minutis : à fuperiori

A "new star" (nova stella) Nov. 11, 1572 **Tycho Brahe**


> SN 1987A: the closest supernova observed since the discovery of the telescope

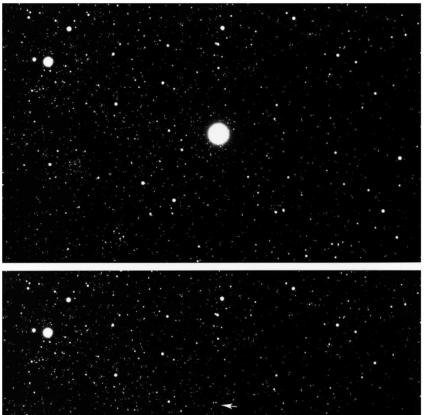
III. Classical Novae

Nova Cygni 1975

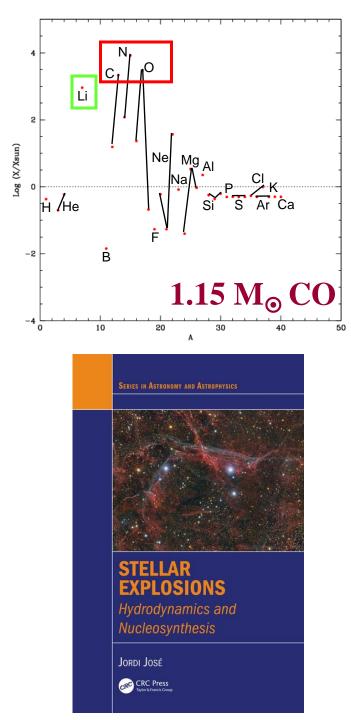
M81 Galaxy, observed with the 80 cm Joan Oró robotic telescope, Montsec Observatory (near Barcelona) April 2016

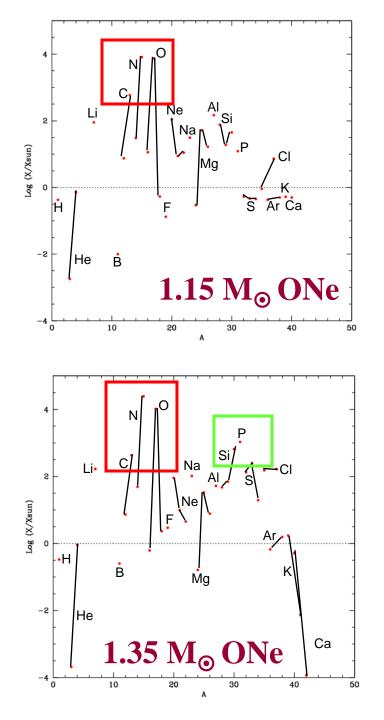
SPOILER Alert!!

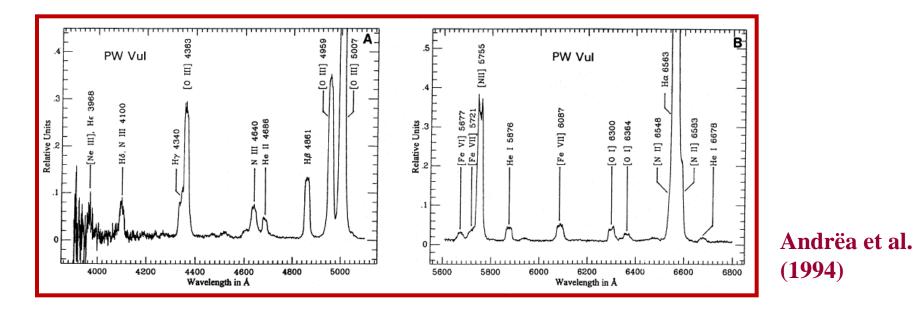
TJO. 2016-03-10


TJO. 2016-03-29 UT 21:43:41

3.2e+02 3.6e+02 3.9e+02 4.2e+02 4.5e+02 4.8e+02 5.1e+02 5.4e+02 5.7e+02										
3.2e+02 3.6e+02 3.9e+02 4.2e+02 4.5e+02 4.8e+02 5.1e+02 5.4e+02 5.4e+02 5.7e+02	page a parties	100 104 101 1840	in the second second second		100 C 10	1000 80 200000	Press and Description			
	3.2e+02	3.6e+02	3.9e+02	4.2e+02	4.5e+02	4.8e+02	5.1e+02	5.4e+02	5.7e+02	


M81 Galaxy


Novae have been observed in all wavelengths (but detected in γ -rays only at <u>E > 100 MeV</u>)


The Classical Nova ID Card Moderate rise times (<1 - 2 days): 8 - 18 magnitude increase in brigthness $L_{Peak} \sim 10^4 - 10^5 L_{\odot}$ Stellar binary systems: WD + MS (often, K-M dwarfs) Recurrence time: $\sim 1 - 10$ yr (RNe) – 10⁵ yr (CNe) Frequency: $30 \pm 10 \text{ yr}^{-1}$ Observed frequency: ~ 10 yr^{-1} $E \sim 10^{45} \text{ ergs}$ Mass ejected: $10^{-3} - 10^{-7} M_{\odot}$ $(\sim 10^3 \text{ km s}^{-1})$

Nova Cygni 1975

4				PW V	'ul 1984	1				
		Η	He	С	Ν	Ο	Ne	Na-Fe	Z	
Obser	vation	0.47	0.23	0.073	0.14	0.083	0.0040	0.0048	0.30	
Theory		0.47	0.25	0.073	0.094	0.10	0.0036	0.0037	0.28	
(JJ & H	(JJ & Hernanz 1998)									

Presolar Grains and Dust

Evidence for **dust formation** (IR) accompanying nova outbursts

Gehrz et al. (1998)

THE ASTROPHYSICAL JOURNAL, 203:490–496, 1976 January 15 © 1976. The American Astronomical Society. All rights reserved. Printed in U.S.A.

		V	
Nova	Year	<i>V</i> _ (km s ⁻¹)	Types of Dust Formed ^b
FH Ser	1970	560	с
V1229 Aql	1970	575	С
V1301 Aql	1975		С
V1500 Cyg [*]	1975	1180	
NQ Vul	1976	750	с
V4021 Sgr	1977		С
LW Ser	1978	1250	С
V1668 Cyg	1978	1300	С
V1370 Aql ^a	1982	2800	C; SiC; SiO ₂
GQ Mus	1983	600	No dust
PW Vul	1984 #1	285	С
QU Vul*	1984 #2	1 - 5000	SiO_2
OS And ^{a,e}	1986	900	C?
V1819 Cyg ⁺	1986	1000	No dust
V842 Cen	1986	1200	C; SiC; HC
V827 Her*	1987	1000	С
V4135 Sgr	1987	500	
QV Vul	1987	700	C; SiO_2 ; HC; SiC
LMC 1988 #1	1988 #1	800	C?
LMC 1988 #2	1988 #2	1500	
V2214 Oph	1988	500	
V838 Her	1991	3500	С
V1974 Cyg ¹	1992	2250	No dust
V705 Cas	1993	840	C; HC; SiO ₂
Aql 1995°	1995	1510	С

GRAINS OF ANOMALOUS ISOTOPIC COMPOSITION FROM NOVAE

DONALD D. CLAYTON AND FRED HOYLE* Department of Space Physics and Astronomy, Rice University Received 1975 April 28; revised 1975 June 26

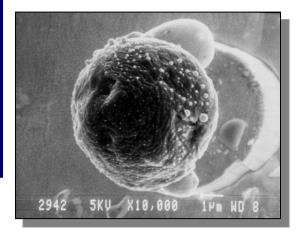
Isotopic peculiarities: ¹³C, ¹⁴C, ¹⁸O, ²²Na, ²⁶Al, ³⁰Si

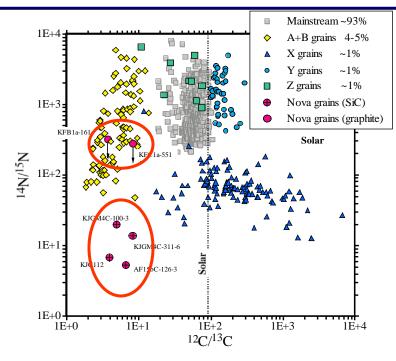
The Physics of Exploding Stars

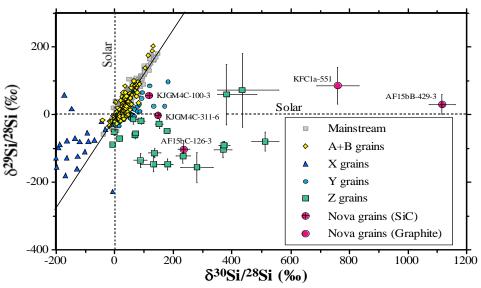
Stars as Nuclear Factories || Type Ia Supernovae || Classical Novae || X-Ray Bursts

THE ASTROPHYSICAL JOURNAL, 551:1065–1072, 2001 April 20 © 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.

PRESOLAR GRAINS FROM NOVAE

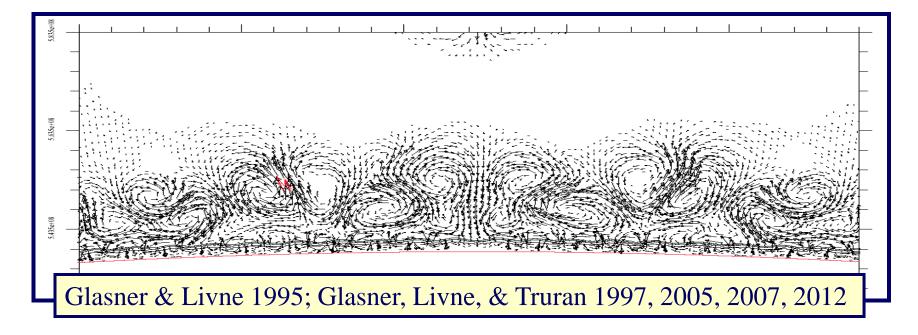

SACHIKO AMARI, XIA GAO,¹ LARRY R. NITTLER,² AND ERNST ZINNER Laboratory for Space Sciences and the Physics Department, Washington University, St. Louis, MO 63130-4899; sa@howdy.wustl.edu, ekz@howdy.wustl.edu


JORDI JOSÉ³ AND MARGARITA HERNANZ Institut d'Estudis Espacials de Catalunya (IEEC/CSIC), E-08034 Barcelona, Spain; jjose@ieec.fcr.es, hernanz@ieec.fcr.es


AND

ROY S. LEWIS Enrico Fermi Institute, University of Chicago, Chicago, IL 60637-1433; r-lewis@uchicago.edu Received 2000 September 15; accepted 2000 December 18

Presolar Grains



Current Challenges for Classical Novae

- The amount of **mass ejected** predicted by 1-D models is smaller than values *inferred* observationally
- The **mixing** mechanism at work at the core-envelope interface during nova outbursts is not fully understood

The build-up of **convective eddies** at the envelope's base (2-D) causes **shear flow** at the core/envelope interface [Kelvin-Helmholtz instability]: pure "solar-like" accreted material can be **enriched** at the late stages of the TNR by some sort of *convective overshoot* (Woosley 1986), leading to a powerful nova event!

Kelvin-Helmholtz instabilities

J. José

Casanova, JJ, García-Berro, Shore & Calder, Nature, 2011

MareNostrum II (BSC, 2006), 94.21 Tflops/s, 10,240 processors

MareNostrum III (BSC, Jan. 2013), >1 Petaflop/s, 48,000 processors [6,000 Intel SandyBridge chips (2,6 GHz), each with 8 cores]

IV. Type I X-Ray Bursts

The (Type I) X-Ray Burst ID Card

Prominent emitters in X-rays [discovered in the 1970s; Babushkina et al., Grindlay et al., Belian, Conner & Evans]

Very fast rise times (1 - 10 s), $L_{\text{peak}} \sim 10^4 - 10^5 \text{ L}_{\odot}$ $\alpha = L_{\text{persistent}}/L_{\text{burst}} \sim 100$ $E \sim 10^{39} \text{ ergs}$ (in 10 - 100 s) Stellar binary systems: NS + MS Recurrence time: ~ hr - days About 100 Galactic sources discovered; recurrence time: ~ hr - days Mass ejected? Unlikely (by the explosion)

10

Time (s)

15

10

Time (s)

15

Time (s)

15

10

Time (s)

Strohmeyer & Bildsten (2002) 4U 1728 – 34, RXTE

Nucleosynthesis in Type I X-Ray Bursts

Santa Fe, NM

J. José

NS $\longrightarrow T_{peak} > 10^9 \text{ K}, \rho_{max} \sim 10^6 \text{ g.cm}^{-3}$

Detailed nucleosynthesis studies require **hundreds of isotopes**, up to **SnSbTe** mass region (Schatz et al. 2001) or beyond (the flow in Koike et al. 2004 reaches ¹²⁶Xe), and thousands of nuclear interactions

Main nuclear reaction flow driven by the *rp-process* (rapid p-captures and β^+ -decays), the 3 α -reaction, and the α p-process (a sequence of (α,p) and (p,γ) reactions), and proceeds away from the valley of stability, merging with the proton drip-line beyond **A** = **38** (Schatz et al. 1999)

Degeneracy

At the very early stages of accretion, the envelope in both CNe and XRBs is mildly degenerate \rightarrow A small T increase is enough **to lift degeneracy** (~ 10% Tpeak)

$$NS \rightarrow M_{NS} \sim 1.4 \text{ M}_{\odot}, R_{NS} \sim 10 \text{ km} \rightarrow v_{esc} = \sqrt{2G} \text{ M}_{NS}/R_{NS} \sim 190,000 \text{ km s}^{-1}$$

 $WD \rightarrow M_{WD} \sim 1 M_{\odot}, R_{WD} \sim 6000 \text{ km} \rightarrow V_{esc} \sim 7000 \text{ km s}^{-1}$

CNe are halted by expansion while **XRBs are halted by fuel consumption** (due to efficient CNO–breakout reactions)

Thank you for your attention!

Classical Novae and the Physics of Exploding Stars 55th Winter Meeting on Nuclear Physics, Bormio (Italy), Jan. 23-27, 2017