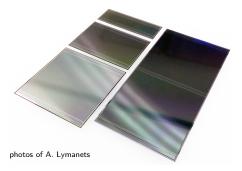
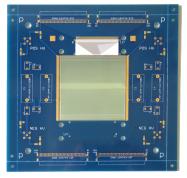

Introduction

CBM experiment is dedicated for studying rare probes at moderate energies

STS carbon ladders

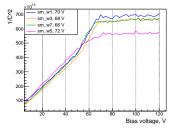


STS units (drawings of O. Vasylyev)


- Silicon Tracking System is a core tracking detector of CBM
 - momentum resolution $\Delta p/p\simeq 1.5\%$
 - hit efficiency $\gtrsim 95\%$
- Technical challenges:
 - ultra low material budget ($\simeq 8\% X_0$)
 - ★ electronics outside of acceptance
 - * connected to sensors with microcables
 - \star double-sided sensors
 - occupancy up to $10 \, {
 m MHz/cm^2}$
 - self-triggering electronics
 - hundreds of sensors to be checked:
 - ★ QA procedures are required
- Operational conditions:
 - $1\,\mathrm{T} imes \mathrm{m}$ magnetic field
 - constant temperature of $-5^{\circ}\,\mathrm{C}$ maintained $_{1/3}$

Silicon micro-strip sensors

- Sensor characteristics:
 - n-type silicon
 - double sided, 7.5° strip inclination angle on p-side
 - $300 \,\mu\mathrm{m}$ thick, $58 \,\mu\mathrm{m}$ pitch
 - required radiation hardness $2 \times 10^{14} \, 1 \, \mathrm{MeV} \, \mathrm{n_{eq}/cm^2}$
- Two vendors: CiS, Hamamatsu


$6.2\times 6.2\,{\rm cm}^2$ microstrip sensor inside the supporting PCB frame

- Various sizes ($\simeq 1000$ in total):
 - ▶ $2.2 \times 6.2 \,\mathrm{cm}^2$ (tens)
 - $4.2 \times 6.2 \,\mathrm{cm}^2 \,(\simeq 300)$
 - $6.2 \times 6.2 \,\mathrm{cm}^2 \,(\simeq 300)$
 - ▶ $12.4 \times 6.2 \,\mathrm{cm}^2 \,(\simeq 300)$

Tests with sensors and electronics

- QA procedures:
 - optical inspection
 - electrical tests:

- R&D studies in a laboratory
 - irradiated/non-irradiated sensors
 - tests with β source
 - electrical tests
 - laser tests (to be implemented)
- Proton beam tests
 - ultimate test of the integrated system
 - COSY accelerator in Jülich
 - $1.7 \, \text{GeV}/c$ protons in August 2016

