Mesons in the medium - experimental probes for chiral symmetry restoration?

Mariana Nanova

for the CBELSA/TAPS Collaboration

JNIVERSITÄT

Outline:

- motivation
- exp. approaches to study the in-medium properties of mesons
- \blacklozenge experimental results on the η '- and ω -nucleus optical potential
- summary & outlook

55. International Winter Meeting on Nuclear Physics23 - 27 January 2017, Bormio, Italy

universität**bon**ı

UNIVERSITÄT

Gravitation

Bound system: Earth \iff Moon

Electromagnetic (+strong) interaction

Gravitation

Bound system: Earth \iff Moon

charged pion \iff nucleus

bound by superposition of attractive Coulomband repulsive strong interaction

Electromagnetic (+strong) interaction

POTENTIAL U_{STRONG} T^{-}

strong interaction

 $\omega, \eta' \iff$ nucleus

neutral mesons bound solely by strong interaction

charged pion \iff nucleus

bound by superposition of attractive Coulomband repulsive strong interaction

Gravitation

Bound system: Earth \iff Moon

2

Electromagnetic (+strong) interaction

POTENTIAL U_{STRONG} T^{-}

strong interaction

 $\omega, \eta' \iff$ nucleus

neutral mesons bound solely by strong interaction

meson-nucleus interaction

Gravitation

Bound system: Earth \iff Moon

charged pion \iff nucleus

bound by superposition of attractive Coulomband repulsive strong interaction

hadronic models: predictions for η ' in-medium mass

H. Nagahiro an S. Hirenzaki, PRL 94 (2005) 232503

U(r) = V(r) + iW(r)

H. Nagahiro an S. Hirenzaki, PRL 94 (2

34 (2005) 232503
$$U(r) = V(r) + iW(r)$$

 $V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$

real part

$\widehat{\mathbb{T}}$ in-medium mass modification

U(r) = V(r) + iW(r)

H. Nagahiro an S. Hirenzaki, PRL 94 (2005) 232503

 $V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$

real part

Û

in-medium mass modification

 $W(r) = -\Gamma_0/2 \cdot \frac{\rho(r)}{\rho_0}$ $= -\frac{1}{2} \cdot \hbar c \cdot \rho(r) \cdot \sigma_{inel} \cdot \beta$

imaginary part ① lifetime shortened

in-medium width, absorption inelastic cross section

U(r) = V(r) + iW(r)

H. Nagahiro an S. Hirenzaki, PRL 94 (2005) 232503

 $V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$

real part

imaginary part ①

 $W(r) = -\Gamma_0 / 2 \cdot \frac{\rho(r)}{\rho_0}$ $= -\frac{1}{2} \cdot \hbar c \cdot \rho(r) \cdot \sigma_{inel} \cdot \beta$

in-medium mass modification

lifetime shortened

in-medium width, absorption inelastic cross section

mass and lifetime (width) may be changed in the medium

experimental approaches to determine the meson-nucleus optical potential

$$U(r) = V(r) + iW(r$$
real part

$$V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$$

- line shape analysis
- excitation function
- momentum distribution
- meson-nucleus bound states

experimental approaches to determine the meson-nucleus optical potential

U(r) = V(r) + iW(r)

$$V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$$

- line shape analysis
- excitation function
- momentum distribution
- meson-nucleus bound states

imaginary part

$$W(r) = -\Gamma_0 / 2 \cdot \frac{\rho(r)}{\rho_0}$$
$$= -\frac{1}{2} \cdot \hbar c \cdot \rho(r) \cdot \sigma_{inel} \cdot \beta$$

transparency ratio measurement

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

D. Cabrera et al., NPA 733 (2004)130

CBELSA/TAPS experiment

 $M_{\pi^0\pi^0n}$ [MeV/c²] 7

The real part of the meson-nucleus optical potential

the real part of the meson-nucleus potential

J.Weil, U. Mosel and V. Metag, PLB 723 (2013) 120 $\omega \rightarrow \pi^0 \gamma$

sensitive to nuclear density at production point and not at decay point

measurement of the excitation function

of the meson

in case of dropping mass higher meson yield for given \sqrt{s} because of increased phase space due to lowering of the production threshold

\Rightarrow cross section enhancement

the real part of the meson-nucleus potential

J.Weil, U. Mosel and V. Metag, PLB 723 (2013) 120 $\omega \rightarrow \pi^0 \gamma$

sensitive to nuclear density at production point and not at decay point

- measurement of the excitation function of the meson
- in case of dropping mass higher meson yield for given \sqrt{s} because of increased phase space due to lowering of the production threshold

\Rightarrow cross section enhancement

⇒ downward shift of momentum distribution

 $\pi^0\gamma$ momentum distribution

excitation function and momentum distribution for η' photoproduction off C

excitation function and momentum distribution for η^\prime photoproduction off Nb

real part of η'-nucleus potential from η' kinetic energy distribution CBELSA/TAPS @ ELSA Y $E_{\gamma}=1.3-2.6 \text{ GeV}$ $P_{2^{0} \le \theta_{p} \le 11^{0}}$

the higher the attraction the lower the kinetic energy of the η ' meson

compilation of results for the real part of the η' - and ω -nucleus optical potential

compilation of results for the real part of the η' - and ω -nucleus optical potential

for the η ': in-medium mass drop of $\Delta m (\rho = \rho_0) \approx -40$ MeV observed in good agreement with QMC model predictions (S. Bass et al., PLB 634 (2006) 368) ω - and η '-nucleus interaction is attractive formation of meson-nucleus bound states? The imaginary part of the meson-nucleus optical potential: momentum dependence

momentum differential cross section for ω, η' produced off C, Nb

 $T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$

momentum dependence of transparency ratio for ω, η'

absorption of η ' mesons much weaker than for ω mesons !!

imaginary part of the potential for ω, η'

• extrapolation to production threshold:

 $|\text{Im U}| \approx |\text{Re U}|; \Rightarrow \omega \text{ not a good candidate}$ to search for meson-nucleus bound states!

 $|\text{Im U}| \approx |\text{Re U}|; \Rightarrow \omega \text{ not a good candidate}$ to search for meson-nucleus bound states!

 $|\text{Re } U| >> |\text{Im } U|; \implies \eta' \text{ promising}$ <u>candidate</u> to search for mesic states

search for η '-mesic states in hadronic reactions

FRS@GSI: PR[®]ME

¹²C(p,d)η'⊗¹¹C

K. Itahashi et al., PETP 128 (2012) 601 H. Nagahiro et al., PRC 87 (2013) 045201

search for η '-mesic states in hadronic reactions

FRS@GSI: PR[®]ME

¹²C(p,d)η'⊗¹¹C

Y. K. Tanaka et al., PRL 117 (2016) 202501

no structure in bound state region observed deep η '-nucleus potentials $|V| \ge 100$ MeV excluded!

search for η '-mesic states in hadronic reactions

FRS@GSI: PRME

¹²C(p,d)η'⊗¹¹C

Y. K. Tanaka et al., PRL 117 (2016) 202501

no structure in bound state region observed deep η '-nucleus potentials $|V| \ge 100$ MeV excluded!

semi-exclusive experiment in preparation \implies increased sensitivity by studying formation AND decay of η '-mesic states

search for η '-mesic states in photo-nuclear reactions

B1: BGO-OD@ELSA

¹²C(γ,p) η'X @ 1.5-2.8 GeV

formation and decay of η '-mesic state

BGO-OD ideally suited for exclusive measurement

approved proposal: ELSA/3-2012-BGO

search for η '-mesic states in photo-nuclear reactions

B1: BGO-OD@ELSA

¹²C(γ,p) η'X @ 1.5-2.8 GeV

formation and decay of η '-mesic state

BGO-OD ideally suited for exclusive measurement

approved proposal: ELSA/3-2012-BGO

search for η '-mesic states in photo-nuclear reactions

meson properties do change in a strongly interacting medium !!

meson properties do change in a strongly interacting medium !!

• all mesons are broadened; their lifetime is shortened through inelastic collisions $\Gamma_{\omega}(\rho=\rho_0; p=0) \approx 90 \text{ MeV}; \ \Gamma_{\eta'}(\rho=\rho_0; p=0) \approx 25 \text{ MeV};$

meson properties do change in a strongly interacting medium !!

• all mesons are broadened; their lifetime is shortened through inelastic collisions $\Gamma_{\omega}(\rho=\rho_0; p=0) \approx 90 \text{ MeV}; \ \Gamma_{\eta'}(\rho=\rho_0; p=0) \approx 25 \text{ MeV};$

• large mass modifications $|\Delta m| > 100$ MeV (as predicted by some calculations) have not been observed

meson properties do change in a strongly interacting medium !!

• all mesons are broadened; their lifetime is shortened through inelastic collisions $\Gamma_{\omega}(\rho=\rho_0; p=0) \approx 90 \text{ MeV}; \ \Gamma_{\eta'}(\rho=\rho_0; p=0) \approx 25 \text{ MeV};$

• large mass modifications $|\Delta m| > 100$ MeV (as predicted by some calculations) have not been observed

• for the η' meson an in-medium mass drop of $\Delta m~(\rho = \rho_0) \approx -~40~MeV$ has been determined

meson properties do change in a strongly interacting medium !!

• all mesons are broadened; their lifetime is shortened through inelastic collisions $\Gamma_{\omega}(\rho=\rho_0; p=0) \approx 90 \text{ MeV}; \ \Gamma_{\eta'}(\rho=\rho_0; p=0) \approx 25 \text{ MeV};$

• large mass modifications $|\Delta m| > 100$ MeV (as predicted by some calculations) have not been observed

- for the η' meson an in-medium mass drop of $\Delta m~(\rho=\rho_0)\approx$ 40 MeV has been determined
- in-medium effects described within meson-nucleus optical potential

meson properties do change in a strongly interacting medium !!

• all mesons are broadened; their lifetime is shortened through inelastic collisions $\Gamma_{\omega}(\rho=\rho_0; p=0) \approx 90 \text{ MeV}; \ \Gamma_{\eta'}(\rho=\rho_0; p=0) \approx 25 \text{ MeV};$

• large mass modifications $|\Delta m| > 100$ MeV (as predicted by some calculations) have not been observed

- for the η' meson an in-medium mass drop of $\Delta m~(\rho=\rho_0)\approx$ 40 MeV has been determined
- in-medium effects described within meson-nucleus optical potential

 \bullet the η' meson is a good candidate for forming meson-nucleus bound states since |Im U| << |Re U|

meson properties do change in a strongly interacting medium !!

• all mesons are broadened; their lifetime is shortened through inelastic collisions $\Gamma_{\omega}(\rho=\rho_0; p=0) \approx 90 \text{ MeV}; \ \Gamma_{\eta'}(\rho=\rho_0; p=0) \approx 25 \text{ MeV};$

• large mass modifications $|\Delta m| > 100$ MeV (as predicted by some calculations) have not been observed

- for the η' meson an in-medium mass drop of $\Delta m~(\rho=\rho_0)\approx$ 40 MeV has been determined
- in-medium effects described within meson-nucleus optical potential

• the η ' meson is a good candidate for forming meson-nucleus bound states since |Im U| << |Re U|

 \blacklozenge search for η' mesic states ongoing

THANK YOU!

BACKUP

hadronic models: predictions for ω -spectral functions

M. Lutz et al.,

10²

10¹

10[°]

10

0.5

 $\rho_{\rm N}$ =0

 $\rho_{\rm N} = \rho_0$

 $\rho_{\rm N}$ =2 $\rho_{\rm 0}$

0.6

lowering of in-medium mass

broadening of resonance with increasing nuclear density $Re(U) \neq 0; Im(U) \neq 0$

splitting into ω -like and N*N⁻¹ mode due to coupling to nucleon resonances

 $\sqrt{q^2}$ [GeV] spectral function for ω meson at rest:

0.8

0.9

0.7

P. Mühlich et al., NPA 780 (2006) 187

almost no mass shift; strong in-medium broadening $Re(U) \approx 0$; Im(U) large

1.0

hadronic models: predictions for ω -spectral functions

M. Lutz et al.,

10

10¹

10[°]

10

0.5

 $\rho_{\rm N}=0$

 $\rho_{\rm N} = \rho_0$

 $\rho_{\rm N}$ =2 $\rho_{\rm 0}$

0.6

F. Klingl et al.,

lowering of in-medium mass

 broadening of resonance with increasing nuclear density $Re(U) \neq 0; Im(U) \neq 0$

splitting into ω -like and N*N⁻¹ mode due to coupling to nucleon resonances

 $\sqrt{q^2}$ [GeV] spectral function for ω meson at rest:

0.8

0.9

0.7

P. Mühlich et al., NPA 780 (2006) 187

almost no mass shift; strong in-medium broadening $Re(U) \approx 0$; Im(U) large

experimental task: search for 4

mass shift ? broadening? structures?

of hadronic spectral functions

1.0

in-medium mass shift and width from line shape measurements

$$m(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2}$$

reconstruction of meson mass distribution from 4-momenta of decay products

theoretical prediction for $\rho = \rho_0$ and meson at rest

in-medium mass shift and width from line shape measurements

$$m(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2}$$

reconstruction of meson mass distribution from 4-momenta of decay products

0.85

theoretical prediction for $\rho = \rho_0$ and meson at rest

- **<u>in reality</u>:** \blacklozenge mesons see nuclear density profile $\rho(r)$
 - \Rightarrow density dependent mass shift smeared out
 - mesons have recoil momenta $p \approx m$;
 - \Rightarrow only small fraction of decays occur inside nucleus since decay length $\beta\gamma c\tau$ > R
 - only mass shifts $\gg \sigma_m$ observable

in-medium mass shift and width from line shape measurements

$$m(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2}$$

reconstruction of meson mass distribution from 4-momenta of decay products

0.85

theoretical prediction for $\rho = \rho_0$ and meson at rest

- **<u>in reality</u>**: \blacklozenge mesons see nuclear density profile $\rho(r)$
 - \Rightarrow density dependent mass shift smeared out
 - mesons have recoil momenta $p \approx m$;
 - \Rightarrow only small fraction of decays occur inside nucleus since decay length $\beta\gamma c\tau > R$
 - \blacklozenge only mass shifts $\gg \sigma_m$ observable
 - mass distribution further smeared out by in-medium broadening

26

ω line shape from $ω \rightarrow π^0 \gamma$ in photo-nuclear reaction

CB/TAPS @ **MAMI** M.Thiel et al., EPJA 49 (2013) 132

 $\gamma Nb \rightarrow \omega + X \rightarrow \pi^0 \gamma + X$ at $E_{\gamma} = 0.9$ -1.3 GeV

different in-medium modification scenarios almost indistinguishable

ω line shape from $ω \rightarrow π^0 \gamma$ in photo-nuclear reaction

CB/TAPS @ **MAMI** M.Thiel et al., EPJA 49 (2013) 132

 $\gamma Nb \rightarrow \omega + X \rightarrow \pi^0 \gamma + X$ at $E_{\gamma} = 0.9$ -1.3 GeV

<u>ω meson</u>

◆ c⊤ = 22 fm

for $<p_{\omega}>\approx 600$ MeV/c: $\beta\gamma c\tau = 17$ fm fraction of ω decays in Nb: $\approx 36\%$

different in-medium modification scenarios almost indistinguishable

 ω line shape from $\omega \rightarrow \pi^0 \gamma$ in photo-nuclear reaction

CB/TAPS @ **MAMI** M.Thiel et al., EPJA 49 (2013) 132

 $\gamma Nb \rightarrow \omega + X \rightarrow \pi^0 \gamma + X$ at $E_{\gamma} = 0.9-1.3$ GeV

<u>ω meson</u>

♦ cT = 22 fm

for $<p_{\omega}>\approx 600$ MeV/c: $\beta\gamma c\tau = 17$ fm fraction of ω decays in Nb: $\approx 36\%$

• only mass shifts $\gg \sigma=3\%$ observable

different in-medium modification scenarios almost indistinguishable

 ω line shape from $\omega \rightarrow \pi^0 \gamma$ in photo-nuclear reaction

CB/TAPS @ **MAMI** M.Thiel et al., EPJA 49 (2013) 132

 $\gamma Nb \rightarrow \omega + X \rightarrow \pi^0 \gamma + X$ at $E_{\gamma} = 0.9-1.3$ GeV

different in-medium modification scenarios almost indistinguishable

<u>ω meson</u>

♦ cT = 22 fm

for $<p_{\omega}>\approx 600$ MeV/c: $\beta\gamma c\tau = 17$ fm fraction of ω decays in Nb: $\approx 36\%$

- only mass shifts $\gg \sigma=3\%$ observable
- ♦ ω signal smeared out due to in-medium broadening (Γ≈140 MeV)

ω line shape from $ω \rightarrow π^0 \gamma$ in photo-nuclear reaction

CB/TAPS @ **MAMI** M.Thiel et al., EPJA 49 (2013) 132

 $\gamma Nb \rightarrow \omega + X \rightarrow \pi^0 \gamma + X$ at $E_{\gamma} = 0.9-1.3$ GeV

different in-medium modification scenarios almost indistinguishable

<u>w meson</u>

♦ cT = 22 fm

for $<p_{\omega}>\approx 600$ MeV/c: $\beta\gamma c\tau = 17$ fm fraction of ω decays in Nb: $\approx 36\%$

- only mass shifts $\gg \sigma=3\%$ observable
- ω signal smeared out due to
 in-medium broadening (Γ≈140 MeV)
- ♦ due to π⁰ absorption (π⁰-FSI) ω→π⁰γ decays in the center of the nucleus are suppressed

 ω line shape from $\omega \rightarrow \pi^0 \gamma$ in photo-nuclear reaction

CB/TAPS @ **MAMI** M.Thiel et al., EPJA 49 (2013) 132

 $\gamma Nb \rightarrow \omega + X \rightarrow \pi^0 \gamma + X$ at $E_{\gamma} = 0.9-1.3$ GeV

different in-medium modification scenarios almost indistinguishable

<u>ω meson</u>

♦ cT = 22 fm

for $<p_{\omega}>\approx 600$ MeV/c: $\beta\gamma c\tau = 17$ fm fraction of ω decays in Nb: $\approx 36\%$

- only mass shifts $\gg \sigma=3\%$ observable
- ♦ ω signal smeared out due to in-medium broadening (Γ≈140 MeV)
- due to π^0 absorption (π^0 -FSI) $\omega \rightarrow \pi^0 \gamma$ decays in the center of the nucleus are suppressed

<u>η' meson</u>

♦ cT = 1000 fm
for <p_{η'}>≈1000 MeV/c: βγcT = 1000 fm
fraction of η' decays in Nb: ≈ 0.5%

 ω line shape from $\omega \rightarrow \pi^0 \gamma$ in photo-nuclear reaction

CB/TAPS @ **MAMI** M.Thiel et al., EPJA 49 (2013) 132

 $\gamma \text{ Nb} \rightarrow \omega + X \rightarrow \pi^0 \gamma + X \text{ at } E_{\gamma} = 0.9-1.3 \text{ GeV}$

different in-medium modification scenarios almost indistinguishable

<u>ω meson</u>

cτ = 22 fm

for $<p_{\omega}>\approx 600$ MeV/c: $\beta\gamma c\tau = 17$ fm fraction of ω decays in Nb: $\approx 36\%$

- only mass shifts $\gg \sigma=3\%$ observable
- ♦ ω signal smeared out due to in-medium broadening (Γ≈140 MeV)
- ♦ due to π^0 absorption (π^0 -FSI) $ω \rightarrow \pi^0 \gamma$ decays in the center of the nucleus are suppressed

<u>η' meson</u>

♦ cT = 1000 fm for $<p_{\eta'}>≈1000$ MeV/c: βγcT = 1000 fm fraction of η' decays in Nb: ≈ 0.5%

line shape analysis very difficult or even impossible

excitation function for ω photoproduction off C comparison with GiBUU calculation

CB/TAPS @ MAMI

V. Metag et al., PPNP, 67 (2012) 530 M. Thiel et al., EPJA 49 (2013) 132 excitation function momentum distribution **σ/A** [μ**b**] דׂי 1000' Carbon 800 **10**⁻¹ ***CB/TAPS@MAMI** CBELSA/TAPS 600 GiBUU collisional broad. 400 vacuum and mass shift collisional broadening(CB) 0 MeV V =CB+mass shift (-16%) 200 V = -20 MeV10⁻² mass shift (-16%) $V = -40 \, MeV$ V = -55 MeV°0 V = -94 MeV100 900 1000 300 600 800 500 700 400 $p_{\pi^{0}\nu}$ [MeV/c] $= -125 M_{0}$ 0.9 1.1 1.2 1.3 1.4 E_v [GeV]

 $V(\rho = \rho_0) = -(42 \pm 17(\text{stat}) \pm 20(\text{syst})) \text{ MeV}$

data not consistent with strong mass shift scenario ($\Delta m/m \approx -16\%$)

CBELSA/TAPS @ ELSA Y $F_{\gamma}=1.25-3.1 \text{ GeV}$ $P_{1^{0} \le \theta_{p} \le 11^{0}}$

the higher the attraction the lower the kinetic energy of the ω meson

real part of ω -nucleus potential from ω kinetic energy

the higher the attraction the lower the kinetic energy of the ω meson

CBELSA/TAPS @ ELSA Y $F_{\gamma}=1.25-3.1$ GeV $P_{1^{0} \le \theta_{p} \le 11^{0}}$

the higher the attraction the lower the kinetic energy of the ω meson

H. Nagahiro, priv. com.

S. Friedrich et al., PLB 736 (2014) 26

real part of ω -nucleus potential from ω kinetic energy ω CBELSA/TAPS @ ELSA E_y=1.25-3.1 GeV $\mathbf{p}_{|0| \le \theta_p \le ||0|}$ the higher the attraction the lower the kinetic energy of the ω meson H. Nagahiro, priv. com. S. Friedrich et al., PLB 736 (2014) 26 peak position [MeV] Carbon **80 70** 60 0.5 1.7 50 (V₀, W_∩) 1.6 56.70) MeV 00,70) MeV 40 1.5 50,70) MeV 0.70) MeV 20,70) MeV 1.4 50.70) MeV 30 $E_{kin} = (60.5 \pm 7) MeV$ -0.5 80 90 Ε_{...} -782 [MeV] 20 30 40 50 -150 -100 50 -50 0 potential depth [MeV] -300 -200 -100 100 200 300 400 0 E_q. -782 [MeV]

 $V_{\omega}(p_{\omega} \approx 300 \text{ MeV/c}; \rho = \rho_0) = -(15 \pm 35) \text{ MeV}$

in-medium width from transparency ratio

momentum dependence of ω , η ' in-medium width

S. Friedrich et al., EPJA 52 (2016) 297

P. Mühlich et al., NPA 780 (2006) 187 O. Buss et al., Phys. Rep. 512 (2012) 1

A. Ramos et al., EPJA 49 (2013) 148

D. Cabrera and R. Rapp, PLB 729 (2014)67

inelastic absorption cross section σ_{inel}

low density approximation

$$\Gamma(p) = \hbar c \cdot \beta \cdot \rho_0 \cdot \sigma_{inel}(p) \rightarrow \sigma_{inel}(p) = \frac{\Gamma(p)}{\hbar c \beta \rho_0}$$

 $\langle \sigma_{inel}(p) \rangle = (13\pm3) \text{ mb}$