55th International Winter Meeting on Nuclear Physics, 23-27 January 2017, Bormio

LHCb Results on Flavour Physics

Stefania Ricciardi

STFC, RAL On behalf of the LHCb Collaboration

Science & Technology Facilities Council Rutherford Appleton Laboratory

Outline

- Introduction to Flavour and LHCb
- 2016 selected highlights on mixing, CPV and FCNC
 - Mixing and CPV with B semileptonic decays
 - CKM angle gamma
 - CPV in baryonic decays
 - CPV search with charm mesons
 - Anomalies in $B^0 \rightarrow K^{*0} \mu \mu$
- Other recent anomalies and tensions
 - Lepton Flavour Universality
 - $B_{s,d} \rightarrow \mu \mu$
- Future LHCb prospects

Focus of this talk: new physics searches at LHCb with beauty and charm hadrons

Other important LHCb physics results (spectroscopy, heavy ions) will be covered in the talk by Giovanni Passaleva

Flavour in Valtellina

If you Google for Flavour ...

Different flavours...of slopes

Stefania Ricciardi, RAL

3 generations: hic est flavour physics!

"Flavour" == several copies of the same gauge representation 3 up-type and 3-down type quarks with same quantum charges but **different masses**

3 generations: hic est flavour physics!

"Flavour" == several copies of the same gauge representation 3 up-type and 3-down type quarks with same quantum charges but different masses and different couplings to W boson

Stefania Ricciardi, RAL

Why is flavour physics interesting?

 Standard Model flavour puzzle: why 3 generations, what is the origin of the hierarchy observed in the fermion masses and quark mixing parameters (and why so different from lepton mixing anarchy?)

Cosmology

Amount of CPV in Standard Model not sufficient to explain the observed matter-antimatter asymmetry in the Universe. New sources of CPV required by baryogenesis.

FCNC

Flavour Changing Neutral Current forbidden at tree-level in SM

 Discovery potential far beyond the energy frontier via studies of forbidden or SM suppressed processes, such as FCNC

26/01/2017

Indirect searches for New Physics

FCNC occur only at loop level: box or penguin diagrams. Sensitive to BSM contributions from new particles that can mediate the loops. Two examples:

New particles can be virtually produced \Rightarrow sensitivity limited by precision, not by collision energy. Sensitivity to new particles up to ~100 TeV can be reached at LHCb [A. Buras et al. JHEP1411(2014)121]

Why beauty and charm?

PRODUCTION

```
Large beauty and charm cross-
sections in pp collisions at LHC
7-13 TeV center of mass energy
In LHCb acceptance:
\sigma(c\bar{c}) = 1500-3000 \ \mu b
\Rightarrow O(10^{12}) c\bar{c} \ pairs/fb^{-1}
\sigma(b\bar{b}) = 250-500 \ \mu b
\Rightarrow O(10^{11}) b\bar{b} \ pairs/fb^{-1}
```

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2016

DECAY

- b and c are the heaviest quarks that form bound hadrons
- Many decay channels
- Long lifetime O(10⁻¹² s) enables precise measurement of production and decay vertex

LHCb detector

Single arm forward spectrometer, large acceptance for bb in forward region $2 < \eta < 5$

B-MIXING

- Introduction to Flavour and LHCb
- 2016 selected highlights on mixing, CPV and FCNC

• B-Mixing and CPV

- o CKM angle gamma
- o CPV in baryonic decays
- CPV search in charm
- Anomalies in $B^0 \rightarrow K^{*0} \mu \mu$
- Other recent anomalies and tensions
 - Lepton Flavour Universality
 - \circ B_{s,d} $\rightarrow \mu\mu$
- Future LHCb prospects

B_s mixing

B flavour eigenstates do not coincide with mass eigenstates, i.e.,

 $|B_{L,H}\rangle = p|B^0\rangle + q|\overline{B^0}\rangle$

- ⇒ B-mixing or B-flavour oscillation = periodical transformation of a B (B⁰or B_s) into its own antiparticle as a function of time. Oscillation frequency $\Delta m = m_H m_L$
- B_s fast oscillation requires: excellent decay time reconstruction
- Clean samples of self-tagged decays

SM: $\Delta m_s = 17.3 \pm 1.5 \text{ ps}^{-1}$

B⁰ mixing 3fb⁻¹ update in 2016

 Δm_d measured with full Run-1 data sample (3 fb⁻¹) and semileptonic B⁰ decays Mixing frequency directly related to mixing asymmetry

$$A(t) = \frac{N^{unmix}(t) - N^{mix}(t)}{N^{unmix}(t) + N^{mix}(t)} = \cos(\Delta m_d t)$$

Mixing asymmetry projections in 4 tagging categories with different mistag rates:

 Δm_d = 505.0 ± 2.1 ± 1.0 ns⁻¹

Most precise single measurement - compatible and similar precision to world average

CPV in B mixing

CPV in B mixing if $P(B_q \rightarrow \overline{B_q}) \neq P(\overline{B_q} \rightarrow B_q)$, q=s,d

 $a_{\rm sl} \equiv \frac{\Gamma(\overline{B} \to f) - \Gamma(B \to \overline{f})}{\Gamma(\overline{B} \to f) + \Gamma(B \to \overline{f})}$

Predicted to be very small in SM $a_{sl}^{s} = 2.22 \pm 0.27 \times 10^{-5}$ $a_{sl}^{d} = -4.7 \pm 0.6 \times 10^{-4}$

D0 measurement of like-sign dimuon 3.2 σ from SM PRL105(2010)081801 sensitive to both a_{sl}^{d} and a_{sl}^{s}

LHCb measures a_{sl}^{s} using untagged semileptonic decays: $B_s \rightarrow D_s^{-}\mu^+\nu X$

$$A_{raw} = \frac{N(D_{s}^{-}\mu^{+}) - N(D_{s}^{+}\mu^{-})}{N(D_{s}^{-}\mu^{+}) + N(D_{s}^{+}\mu^{-})}$$
$$a_{sl}^{s} = \frac{2}{1 - f_{bkg}}(A_{raw} - A_{det} - f_{bkg}A_{bkg})$$

$a_{\rm sl}^{\rm s}$ [%] Standard Model LHCb $D^{(*)}uvX$ D0 $D^{(*)}\mu\nu X$ BaBar D^*lv BaBar *ll* Belle *ll* -20 -1 a_{s1}^{d} [%] $a_{sl}^{s} = (0.39 \pm 0.26 \pm 0.20)\%$

3fb⁻¹ update in 2016

PRL 117 (2016) 061803

Most precise measurement to date And in good agreement with SM

- Introduction to Flavour and LHCb
- 2016 selected highlights on mixing, CPV and FCNC
 - B-Mixing and CPV
 - o CKM angle gamma
 - CPV in baryonic decays
 - CPV search in charm
 - Anomalies in $B^0 \rightarrow K^{*0} \mu \mu$
- Other recent anomalies and tensions
 - Lepton Flavour Universality
 - $\circ \ B_{s,d} \! \rightarrow \! \mu \mu$
- Future LHCb prospects

MORE ON CPV

CKM Unitarity Triangle- Reminder

CKM angle γ

$$\gamma = arg \left(- \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right)$$

An increasingly precise picture..but still room for New Physics at O(20%) level Precision CKM metrology required

- γ can be measured from tree level decays only \Rightarrow SM benchmark
 - negligible BSM contributions
 - negligible theoretical uncertainties
- Several experimental challenges
 - V_{ub} mediated transitions
 ⇒ Small BF involved
 - Fully hadronic decays

UTFIT $\gamma = 70.5 \pm 5.7^{\circ}$ Above averages dominated by LHCb results

CKMFITTER $\gamma = 72.1 + 5.4 \circ 5.8 \circ 10^{-5.8}$

γ CKM angle γ from B[±] \rightarrow DK[±]

Methods and D final states			
GLW : $f_D = KK, \pi\pi$	[Gronau-London-Wyler] PLB 253,483(1991), PLB 265,172 1991)		
ADS : $f_D = K\pi, K\pi\pi\pi$	[Atwood-Dunietz-Soni] prL 78,257(1997), prD 63,036005(2001)		
GGSZ : $f_D = K_S \pi \pi$, $K_S K K$	[Giri-Grossman-Soffer-Zupan] PRD 68,054018(2003)		
GLS : $f_D = K_S K \pi$	[Grossman-Ligeti-Soffer] PRD 67,071301(2003)		
-			

Same methods apply to $B^- \rightarrow D\pi^-$, but interference smaller

Stefania Ricciardi, RAL

CKM angle γ from B[±] \rightarrow DK[±] $\frac{3fb^{-1} update}{in 2016}$

Events / ($10 \text{ MeV}/c^2$ 100LHCb LHCb $B^{-} \rightarrow [\pi^{-}K^{+}]_{D}K^{-}$ $B^+ \rightarrow [\pi^+ K^-]_D K^+$ 50 LHCb LHCb 400 $B^{-} \rightarrow [\pi^{-}K^{+}]_{D}\pi^{-}$ $B^+ \rightarrow [\pi^+ K^-]_{\rho} \pi^+$ 200 5500 5500 5100 52005300 5400 5100 5200 5300 5400 $m(Dh^{\pm})$ [MeV/ c^2]

Analysis includes: D to KK, $\pi\pi$, $K\pi$, $K3\pi$, 4π

D \rightarrow K π ADS suppressed-mode Small yields but large asymmetry B[±] \rightarrow [π^{\pm} K[∓]] K[±] 553 ± 34 events B[±] \rightarrow [π^{\pm} K[∓]] π^{\pm} 1360 ± 44 events CPV at 8 σ in B \rightarrow DK

PLB 760 (2016) 117

CKM angle γ from B[±] \rightarrow DK[±] ^{3fb⁻¹ update in 2016}

PLB 760 (2016) 117 Events / ($10 \text{ MeV}/c^2$ 100 LHCb LHCb $B^{-} \rightarrow [\pi^{-}K^{+}]_{D}K^{-}$ $B^+ \rightarrow [\pi^+ K^-]_D K^+$ 50 LHCb LHCb $B^{-} \rightarrow [\pi^{-}K^{+}]_{D}\pi^{-}$ $B^+ \rightarrow [\pi^+ K^-]_{D} \pi^+$ 200 5500 5100 5200 5300 5400 5100 5200 5300 5400 5500 $m(Dh^{\pm})$ [MeV/ c^2] Events / ($10 \text{ MeV}/c^2$) 150 LHCb LHCb 100 $B^{-} \rightarrow [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{-}$ $B^+ \rightarrow [\pi^+ \pi^- \pi^+ \pi^-]_D K^+$ LHCb LHCb 2000 1500 $B^- \rightarrow [\pi^+\pi^-\pi^+\pi^-]_{D}\pi^ B^+ \rightarrow [\pi^+ \pi^- \pi^+ \pi^-]_D \pi^+$ 1000 500 5300 5400 5500 5200 5300 5400 5500 5100 5200 5100 $m(Dh^{\pm})$ [MeV/ c^2] 26/01/2017 Stefania Ricciardi, RAL

Analysis includes: D to KK, $\pi\pi$, $K\pi$, $K3\pi$, 4π

D \rightarrow K π ADS suppressed-mode Small yields but large asymmetry B[±] \rightarrow [π^{\pm} K[∓]] K[±] 553 ± 34 events B[±] \rightarrow [π^{\pm} K[∓]] π^{\pm} 1360 ± 44 events CPV at 8 σ in B \rightarrow DK

First measurement of CP parameters from D $\rightarrow 4\pi$. Large yields $B^{\pm} \rightarrow [\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}] K^{\pm} \quad 1497 \pm 60 \text{ events}$ $B^{\pm} \rightarrow [\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}] \pi^{\pm} \quad 19300 \pm 150 \text{ events}$ CP fraction F₊ = 0.737 +/- 0.028 (External input from CLEO) CPV at 2.7 σ in B \rightarrow DK Opposite sign to ADS as expected From predominantly CP-even GLW

20

γ : combination of B \rightarrow DK results

New update in 2016

Frequentist method combining 71 observables depending on 32 parameters Compatible results obtained also with alternative Bayesian approach

Most precise determination of γ from a single experiment

As all input measurements are statistically limited, uncertainty should reach ~4° with Run2

$\gamma \text{ from } B_s \rightarrow D_s K \xrightarrow{3fb^{-1} \text{ update}}_{\text{in 2016}}$ update, not yet in γ combination

 $D_s^{\pm}K^{\mp}$ not self-tagged, both B_s^0 and \overline{B}_s^0 can decay to it \Rightarrow Time-dependent required Measurement unique to LHCb

 $A_{CP}(t) = \frac{\Gamma(B_{s}^{0}(t=0) \to D_{s}^{+}K^{-}) - \Gamma(\overline{B}_{s}^{0}(t=0) \to D_{s}^{+}K^{-})}{\Gamma(B_{s}^{0}(t=0) \to D_{s}^{+}K^{-}) + \Gamma(\overline{B}_{s}^{0}(t=0) \to D_{s}^{+}K^{-})} = \frac{C\cos(\Delta m_{s}t) - S\sin(\Delta m_{s}t)}{\cosh(\Delta \Gamma_{s}t/2) + A\sin(\Delta \Gamma_{s}t/2)}$

$$S = \frac{2r}{1+r^2} \sin(\delta - (\gamma - 2\beta_s)) \qquad A = \frac{2r}{1+r^2} \cos(\delta - (\gamma - 2\beta_s)) \qquad C = -\frac{1-r^2}{1+r^2}$$

LHCb-CONF-2016-015

CPV in baryons decay

 $\infty V_{tb} V_{td}$

arXiv:1609.05216

New in 2016

Non-negligible CPV effects predicted within SM in charmless Λ_b decays Interfering amplitudes with similar size and large relative weak phase in $\Lambda_b \rightarrow p\pi\pi\pi$ or $\Lambda_b \rightarrow p\pi KK$

 $\pi^{+}(K^{+})$

 Λ_b^0

First observation of $\Lambda_{\rm b} \rightarrow p \pi \pi \pi$ LHCb Full fit (a) $p\pi^-\pi^+\pi$ Part-rec. bkg. $\rightarrow vK^{-}\pi^{+}\pi$ 6646+/- 105 500 events 5.4 5.6 5.8 $m(p\pi^{-}\pi^{+}\pi^{-})$ [GeV/c²] 26/01/2017

 $\infty V_{ub} V_{ud}^*$

4-body final states Triple product asymmetries $C_{\widehat{T}} = \overrightarrow{p}_{p} \cdot (\overrightarrow{p}_{h_{1}^{-}} \times \overrightarrow{p}_{h_{2}^{+}})$ $\overline{C}_{\widehat{T}} = \overrightarrow{p}_{\overline{p}} \cdot (\overrightarrow{p}_{h_{1}^{+}} \times \overrightarrow{p}_{h_{2}^{-}})$

$$A_{\widehat{T}}(C_{\widehat{T}}) = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)}, \qquad \Lambda_{b}$$

$$\overline{A}_{\widehat{T}}(\overline{C}_{\widehat{T}}) = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)}, \qquad \overline{\Lambda_{b}}$$

Observables largely insensitive to production and charge detection asymmetries (advantage over simple decay rates)

Stefania Ricciardi, RAL

CPV with baryons

Observables:

$$a_P^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} + \overline{A}_{\widehat{T}} \right), \ \neq \mathbf{0} \Longrightarrow \mathsf{PV}$$

New in 2016

$$a_{CP}^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right), \quad \neq 0 \Longrightarrow \mathsf{CPV}$$

Searches of localised P- and CP-violating asymmetries in distinct region of the phasespace. Two different binning schemes used.

First evidence of CPV in baryon sector

No CPV in charm yet

3fb⁻¹ update in 2016

- LHCb largest data sample of charm decays to charged tracks
- Unique environment with up-type quarks
 - D⁰ mixing firmly established
 - Expected tiny level of CPV in SM <10⁻⁻², which could be enhanced by NP

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-) \qquad A_{CP} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

• LHCb 0.6 fb⁻¹ : $\Delta A_{CP} = (-0.82 \pm 0.21)\%$, evidence of CPV PRL108(2012)111602

3fb⁻¹ update in 2016, using
$$D^{*+} \to D^0 \pi^+$$

and $D^{*-} \to \overline{D^0} \pi^-$ samples
PRL 116 191601 (2016)
 $\Delta A_{CP} = (0.10 \pm 0.08 \pm 0.03)\%$

supercedes our previous measurement

$$A_{CP}(KK) = (0.04 \pm 0.12 \pm 0.10)\%$$
$$A_{CP}(\pi\pi) = (0.07 \pm 0.14 \pm 0.11)\%$$

Time-dependent CPV with $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ Preliminary 3fb⁻¹,2016

- D* tagged sample, O(10⁶) decays
- Asymmetry A_{CP}(t) measured in bins of decay proper-time

$$A_{CP}(t) \cong a_{CP}^{dir} - \frac{t}{\tau_D} A_{\Gamma}$$

- Slope A_{Γ} measures indirect CP violation
- Detection asymmetries corrections checked on $D^0 \rightarrow K^-\pi^+$ control sample

$$A_{\Gamma}(D^0 \to K^+ K^-) = (-0.30 \pm 0.32 \pm 0.14) \times 10^{-3}$$
$$A_{\Gamma}(D^0 \to \pi^+ \pi^-) = (-0.46 \pm 0.58 \pm 0.16) \times 10^{-3}$$

Most precise measurement of these observables

Also unbinned analysis available on same data sample, consistent results (LHCB-CONF-2016-010)

LHCB-CONF-2016-009

- Introduction to Flavour and LHCb
- 2016 selected highlights on mixing, CPV and FCNC
 - B-Mixing and CPV
 - o CKM angle gamma
 - CPV in baryonic decays
 - CPV search in charm
 - Anomalies in $B^0 \rightarrow K^{*0} \mu \mu$
- Other recent anomalies and tensions
 - Lepton Flavour Universality
 - \circ B_{s,d} $\rightarrow \mu\mu$
- Future LHCb prospects

RARE DECAYS

$B^0 \rightarrow K^{*0}(892)\mu^+\mu^-$

3fb⁻¹ update in 2016

JHEP 11 (2016) 047

- Differential branching fraction of $B^0 \rightarrow K^{*0}(892)\mu^+\mu^-$
 - P-wave only determined for the first time
- Measured S-wave fraction, F_s
 - Fit to M(K $\pi\mu\mu$), M(K π) and helicity angle cos(θ_{κ})
 - $F_s = 0.101 \pm 0.017 \pm 0.009$ for 796 < M(K π) < 996 MeV and 1.1 < q^2 < 6.0 GeV²

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

3fb⁻¹ update in 2016

- Four-body final states
- System described by dimuon invariant mass q^2 and $\Omega = (\theta_1, \theta_K, \phi)$
 - Angular distributions sensitive to New Physics

$$\frac{\mathrm{d}^4\Gamma[\overline{B}{}^0 \to \overline{K}^{*0}\mu^+\mu^-]}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_i I_i(q^2) f_i(\vec{\Omega})$$

$$I_i \to \overline{I^i} \text{ for } \mathbb{B}^0$$

$$S_i = \left(I_i + \overline{I}_i\right) / \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} + \frac{\mathrm{d}\overline{\Gamma}}{\mathrm{d}q^2}\right)$$

$$A_i = \left(I_i - \overline{I}_i\right) / \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} + \frac{\mathrm{d}\overline{\Gamma}}{\mathrm{d}q^2}\right)$$

The observables depend on Wilson coefficients (short-distance physics, evaluated perturbatively, universal) and on hadronic form factors for $B \rightarrow K^*$ transition (long-distance physics, evaluated through lattice QCD or LCSR)

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular distribution

JHEP 02(2016) 104

The CP-averaged angular distribution can be explicitely written as

Prog.Part.Nucl.Phys. 92 (2017) 50-91

30

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$, P_5' observable $\frac{3fb^{-1} update}{in 2016}$

JHEP 02(2016) 104

Set of observables with reduced hadronic uncertainties can be defined using ratios

$$P_{4,5,8}' = \frac{S_{4,5,8}}{\sqrt{F_{\rm L}(1-F_{\rm L})}}$$

Independent of form-factors at leading order S.Descotes-Genon et al., JHEP01(2013)048

LHCb has performed the first full angular analysis of $B^0 \rightarrow K^{*0}\mu^+\mu^-$ Global analysis of LHCb results on CP-averaged observables at **3.4** σ from SM

Global fits to $b \rightarrow s$ data

In OPE , *B* decay amplitude is expressed by:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{CKM} \sum_i C_i O_i$$

O_i describe long-distance physics (non-perturbative)

C_i Wilson coefficients,

short-distance physics (perturbative)

i = 1,2Treei = 3 - 6,8Gluon penguini = 7Photon penguini = 9,10Electroweak penguini = SHiggs (scalar) penguini = PPseudoscalar penguin

Two examples of global fits to $b \rightarrow s$ data: constraints on Wilson coefficients

 $C_i = C_i^{SM} C_i^{NP}$

Interpretation of $b \rightarrow s$ anomalies

Vector-like contribution could come from a Z' with a mass of a few TeV

Vector-like contribution could be mimicked by poorly understood charm-loop contributions that may produce a di-muon pair via a virtual photon Lyon and Zwicky, arXiv:1406.0566 Altmannshofer, W. & Straub, D.M. Eur. Phys. J. C (2015) Ciuchini et al., JHEP 06(2016)116

More effort on-going to clarify picture: e.g., measure $C_9(q^2)$ dependence (different from charm loops and NP contribution) – Current statistics not sufficient to draw conclusions

- Introduction to Flavour and LHCb
- 2016 selected highlights on mixing, CPV and FCNC
 - B-Mixing and CPV
 - o CKM angle gamma
 - CPV in baryonic decays
 - CPV search in charm
 - Anomalies in $B^0 \rightarrow K^{*0} \mu \mu$
- Other recent anomalies and tensions
 - **o** Lepton Flavour Universality
 - $\circ \quad \mathbf{B}_{\mathsf{s},\mathsf{d}} \rightarrow \mu \mu$
- Future LHCb prospects

OTHER ANOMALIES

Lepton Universality Test: e/µ

s

.e+

 W^{-}

SM b \rightarrow sll flavour universality \Rightarrow Expect:

$$R_{K} = \frac{BF(B^{+} \to K^{+} \mu^{-} \mu^{+})}{BF(B^{+} \to K^{+} e^{-} e^{+})} = 1 \pm O(10^{-3})$$

- Theoretically clean: hadronic uncertainties cancel in the ratio
- Experimentally challenging: electronreconstruction (Bremsstrahlung tail)

LHCb Run-1 (3 fb⁻¹) for 1<q² <6 GeV²:

$$R_{K} = 0.745_{-0.074}^{+0.090} \pm 0.036$$

 R_{κ} =0.8 consistent with angular anomalies in b \rightarrow sµµ in some class of NP models E.g [Altmannshofer et al, PRD 89 (2014) 095033]

Lepton Universality Test: μ/τ

≠1 due

to phase-space

$$R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau \upsilon)}{\Gamma(B \to D^{(*)}\mu \upsilon)}$$

Experimental challenge:

missing neutrinos

SM prediction theoretically very clean Sensitive to NP: e.g. charged Higgs, leptoquark

LHCb, PRL115,111803(2015)

LHCb result at 2.1σ from SM

HFAG average of all R(D) and R(D*), including Belle, Babar, LHCb **4**σ from expectations

More measurements of other $b \rightarrow c\tau v$ processes under way at LHCb. Also using B_s , B_c , Λ_h decays

36

First observation of $B_s \rightarrow \mu^+ \mu^-$

BF can be significantly altered in many BSM models

First observation (6.2 σ) of ${\sf B}_{s}{\rightarrow}\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$

• BR = $(2.8^{+0.7}_{-0.6}) \times 10^{-9}$ compatible with SM at 1.2σ

First evidence (3 σ) of B⁰ $\rightarrow \mu^{+}\mu^{-}$ • BR = (3.9^{+1.6}_{-1.4}) x 10⁻¹⁰

compatible with SM at 2.2σ

FUTURE PROSPECTS

LHC Operation PLAN

LHCb projected statistical uncertainties

	LHCb Run 1&2 - 2018 8 fb ⁻¹	LHCb Upgrade- Run3&4 - ~2030 50 fb ⁻¹	Theory
$\frac{BF(B_d \to \mu\mu)}{BF(B_s \to \mu\mu)}$	~100%	~35%	~5%
$s_0 A_{FB}(B_d \to K^* \mu \mu)$	6%	2%	7%
$\gamma \; (B \to DK)$	4°	0.9°	negligible
$\phi_{s} (B_{s} \rightarrow J/\psi \phi)$	0.025	0.008	~0.003
$A_{\Gamma}(D \rightarrow KK)$	0.2 x 10 ⁻³	0.05 x 10 ⁻³	-

Statistical uncertainties will stay larger than theoretical ones for many years!

Conclusions

- Many new LHCb results published this year (>50 papers!)– Only a few, selected ones, presented here
- Increasing experimental precision and good agreement with SM for most of the flavour observables:
 - Mixing in the B_d (and B_s) system
 - CPV in mixing with semileptonic Bs decays (asl_s)
 - CKM- γ from direct CPV in B \rightarrow DK decays
 - First evidence of CPV in baryonic decays ($\Lambda_{\rm b}$)
 - No observation of CPV in D⁰ decays
- Some measurements showing interesting tensions with SM:
 - Some exclusive $b \rightarrow s\mu^+\mu^-$ branching fractions
 - $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular distributions (2016 first full angular analys)
 - Hints of lepton non universality in $B \rightarrow KII$ and $B \rightarrow DIv$ decays
 - $B^0 \rightarrow \mu^+ \mu^-$ branching fraction (too high?)

New Physics or unaccounted uncertainties or statistical fluctuations?

- Most results using LHC Run-1, 3fb⁻¹; b and c-quark data-samples from Run-2 on tape is already more than twice larger (accounting for larger cross-sections at 13TeV)
- Plans to collect 50fb⁻¹ by end of LHC Run-4 (2030) with upgraded detector

Flavour physics indirect discoveries

- 1970: c-quark predicted (GIM mechanism) to explain smallness of $K_L \rightarrow \mu \mu$
 - 1974: first J/ ψ observation
- 1973: 3rd generation introduced (Kobayashi & Maskawa) to explain CP violation in kaon decays, $\epsilon_{\rm K}$
 - 1977: first b-quark observed
 - 1994: first top-quark observed
- 1974: charm mass predicted from Δm_{K} (K⁰-mixing)
- 1987: Argus hints of large top mass from Δm_B (B⁰-mixing)
 - 1994: top-mass measured

CKM constraints evolution

An increasingly precise picture..

FCNC b \rightarrow sµµ decays

Stefania Ricciardi, RAL

Exclusive $b \rightarrow s\mu^+\mu^-$ decay rates

Amplitude phase-differences in $B^+ \rightarrow K^+ \mu^+ \mu^-$

Observed tensions need sizeable long-distance effects in dimuon mass regions far from the pole-masses of the resonances to be explained in terms of charm-loop contributions

First measurement of the phase difference between the short-distance and the narrow resonant contributions to the $B^+ \rightarrow K^+ \mu \mu$ decay

Fit to dimuon mass-distribution:

- Long distance (resonances) contributions modelled with relativistic Breit-Wigner with individual magnitude and phases
- Short distance with effective field theory: C_9 and C_{10} floating, $B \rightarrow K$ form factors from predictions

Same strategy could be applied to $B^0 \rightarrow K^{*0}\mu\mu$ (complicated due to different helicity amplitudes contributing with different phases)

Also BF measurement of non-resonant component

 $\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (4.37 \pm 0.15 \,({
m stat}) \pm 0.23 \,({
m syst})) imes 10^{-7}$

compatible with previous but smaller than SM

4 degenerate solutions

New

arXiv 1612.06764