

Searching Sterile Neutrinos in the Laboratory

- Susanne Mertens
- Technical University Munich & Max Planck Institute for Physics
- January 27, 2017, Bormio

Standard Model (SM)

Standard Model (SM)

Active and sterile neutrinos mix

➢ 4th neutrino mass eigenstate: mostly (but not totally) sterile

Heavy sterile neutrinos (~ GeV)

 Lightness of neutrinos via See-saw mechanism

Light sterile neutrinos (~1 eV)

• Reactor anomaly, Gallium anomaly, Short baseline accelerator results

KeV-scale sterile neutrinos (~ 1 - 50 keV)

• Warm and cold dark matter candidates

Heavy sterile neutrinos (~ GeV)

 Lightness of neutrinos via See-saw mechanism

Light sterile neutrinos (~1 eV)

• Reactor anomaly, Gallium anomaly, Short baseline accelerator results

KeV-scale sterile neutrinos (~ 1 - 50 keV)

• Warm and cold dark matter candidates

The Reactor Anomaly

The Gallium Anomaly

 Test of solar neutrino radiochemical detectors GALLEX and SAGE

 \circ ⁷¹Ga + $v_e \rightarrow$ ⁷¹Ge + e^-

- 4 calibration runs with 20-60 PBq Electron Capture v_e emitters
 - GALLEX: $\langle L \rangle = 1.9 \text{ m}$ $E_{\nu} = 750 \text{ keV} (^{51}\text{Cr})$ • SAGE: $\langle L \rangle = 0.6 \text{ m}$ $E_{\nu} = 810 \text{ keV} (^{51}\text{Cr}, ^{37}\text{Ar})$

> 3 σ deficit observed

v_e disappearance (3+1)

Data consistent with ∨_e disappearance at L/E≈1 m/MeV

v_e appearance vs disappearance (3+1)

World-wide Hunt for Steriles

The Ce-SOX Experiment

Deploying a neutrino source at the Borexino detector at Gran Sasso

Observe oscillation signature inside the detector volume

The Ce-SOX Source

- Anti-neutrino source: $\bar{\nu}_e + p \rightarrow e^+ + n$ ➤ coincidence signal background discrimination
- ¹⁴⁴Ce abundant fission product, long-lived enough, endpoint above threshold
- 3.7-5.5 PBq (10¹⁵ Bq) of ¹⁴⁴Ce
- Source production started this year!

A challenging Journey

Other Challenging Journeys...

Other Challenging Journeys...

KATRIN can also look for sterile $\boldsymbol{\nu}$

V_s

S

Vs

Vs

Vs

S

The KATRIN Experiment

Goal:

Probing the effective electron anti-neutrino mass

200 meV sensitivity @90%CL (3 years)

ИR

UCSB

Hir

WESTFÄLISCHE WILKELMS-UNIVERSITÄ MÜNSTER

The KATRIN Experiment

- Kinematic determination of the neutrino mass
- Non-zero neutrino mass reduces the endpoint and distorts the spectrum

KATRIN's first light: October 14, 2016

distants.

- The first electrons found their way through the 70-m long setup
- First tritium measurements planned for this year

Imprint of sterile v's on ß-spectrum

Imprint of sterile v's on ß-spectrum

sterile neutrino

The signature eV sterile v's in KATRIN

KATRIN + SOX combined sensitivity

Heavy sterile neutrinos (~ GeV)

 Lightness of neutrinos via See-saw mechanism

Light sterile neutrinos (~1 eV)

• Reactor anomaly, Gallium anomaly, Short baseline accelerator results

KeV-scale sterile neutrinos (~ 1 - 50 keV)

• Warm and cold dark matter candidates

Experimental searches ...reminder WIMPS

Experimental searches ...keV-scale sterile v

T. Lasserre, K. Altenmueller, M. Cribier, A. Merle, S. M., M. Vivier arXiv:1609.04671

S.M. *et. al.* Phys.Rev. D91 (2015) 4, 042005 S.M. *et al.* JCAP 1502 (2015) 02, 020

Experimental searches - the challenge

Experimental searches

New Project: TRISTAN

TRISTAN: Tritium Beta Decay to Search for Sterile Neutrinos

Imprint of sterile v's on ß-spectrum

How to use KATRIN

Staged Approach

TRISTAN detector R&D

- Capability of handling high rates (10⁸ cps)
 ➤ O(10 000) pixel
- Excellent energy resolution (300eV@20keV) Low energy threshold (1 keV)
 ➤ Thin deadlayer (~10 nm)
- Large pixels (low noise at high rate) (cell size ~ 2mm)

Silicon Drift Detector design, capacity < 0.05 pF</p>

Not to scale

TRISTAN Prototypes

- Prototypes produced by Halbleiterlabor of the Max Planck Society and Lawrence Berkeley National Laboratory
- First promising results

Experimental searches

Direct detection

The "classical" idea:
 Capture on decaying target

Capture on radioactive isotope

- Inverse beta decay
- No energy threshold
- Peak at m_s above endpoint
- Possible source: tritium

The challenge !

- 10 kg of tritium for ~1 capture per year (if $\sin^2\theta \sim 10^{-6}$)
- **Compare**: for relic active neutrino background 100 g are needed
- **Compare**: KATRIN operates effectively 30µg of tritium

Direct detection

- The "classical" idea:
 Capture on decaying target
- The new idea:
 Capture on stable target

Capture on stable isotope

- $\nu_4 + M \rightarrow D + e$
- Energy balance: $M_M + m_v M_D m_e > 0$
- Almost beta decaying isotope
- Sterile neutrino mass breaks the camels back...

Dysprosium -163

- 163 Dy + $\nu_4 \rightarrow {}^{163}$ Ho + e (holmium half life: 4500 years)
- ¹⁶³Dy 25% of natural dysprosium
- Zero natural abundance of ¹⁶³Ho reported in the literature...

T. Lasserre, K. Altenmueller, M. Cribier, A. Merle, S. M., M. Vivier arXiv:1609.04671

Two Options $^{163}Dy + v_4 \rightarrow ^{163}Ho + e$

- Built a large detector out of dysprosium
 ... and measure the energy of the emitted electron
- 2. Use the natural abundance of dysprosium ... and search for holmium atoms

Number of ¹⁶³Ho atoms

Number of ¹⁶³Ho atoms

Technical realization

850 kg of Adamsite contains 3500 ¹⁶³Ho atoms

Adamsite Rock

- Na Y_{0.7} Dy_{0.1} Er_{0.05} Gd_{0.04} (CO₃)₂
 6(H₂O)
- 5% of natural dysprosium
- 25% of ¹⁶³Dy in natural dysprosium
- Contains Gd (neutron capture)
- Low U, Th content
- Minimize cosmogenic activation of ¹⁶³Ho to negligible level

Technical realization (simplified)

4) Count ¹⁶³Ho atoms in sample

Technical realization (goal)

4) Count ¹⁶³Ho atoms in sample

Counting ¹⁶³Ho in Magneto-Optical-Trap

4) Count ¹⁶³Ho atoms in sample

Expected Sensitivity

- Interesting parameter space in reach
- Limiting factor: production of ¹⁶³Ho via solar neutrinos
- Technical feasibility under investigation, seems not impossible...

Summary

Sterile neutrinos are a natural extension of the SM

• eV-scale sterile neutrinos:

- 3 σ anomalies call for clarification
- World-wide effort is ongoing
- KATRIN and SOX will be among the first (~2 years) to provide results

• keV-scale sterile neutrinos:

- Alternative dark matter candidate
- Strong indirect limits from X-ray observation
- New ideas are being explored to catch up with laboratory searches TRISTAN + DyNO

Why keV-scale sterile neutrinos?

Sensitivity

• Expected signal after 3-years with full KATRIN source strength

• Theoretical uncertainties do not destroy the sensitivity

• Wavelet transformation to detect characteristic kink-like signature

- Result largely independent of exact shape
- But good energy resolution required (200 eV)

Backgrounds: Solar neutrinos

5 keV sterile v capture on 1 ton 163 Dy:

• $7 \cdot 10^9 \cdot \sin^2 \theta_{e4}$ atoms of ¹⁶³Ho

Solar ν capture on 1 ton $^{163}\text{Dy:}$

• 3.10⁵ atoms of ¹⁶³Ho

Geo v capture on 1 ton 163 Dy:

• negligible

Backgrounds: Cosmogenic activation

Neutron irradiation

- Slow n: 0.025 eV via ²³⁸U fission
- n self-shielding by gadolinium present in rock
- Probably negligible

Proton irradiation

- Fast p: > 10 MeV via cosmic rays
- Shielded by earth
- ➤ negligible

Chemical separation of holmium

- E.g. High Performance Liquid Chromatography (HPLC)
- Radiochim. Acta 2015; 103(8): 577–585
- Reduction of Dy: 10⁶ (challenging), run 2 times \rightarrow 10¹²

few kg rare earth

• Retention of Ho: 95 %

PC for Data Acquisition

10 g

Holmium

Detector

HPLC Column

lnjector

Pump

Mass separation (a)

- E.g. @SIDONE / CSNSM Orsay
- Can handle > 1 g ?
- Reduction of ¹⁶⁵Ho: 10⁴
- Retention of ¹⁶³Ho: 20% (challenging) Sample entry Electrically

Mass separation (b)

- E.g. RISIKO / Mainz
- Can handle < 1 g ?
- Reduction of ¹⁶⁵Ho : 10⁴ (together with (a): 10⁸)
- Retention of ¹⁶³Ho : 20% (challenging)

5 ng of ¹⁶³Dy

10 mg ¹⁶⁵Ho

700¹⁶³Ho a

2 ng ¹⁶³Dy

 $1 \,\mu g \,^{165} Ho$

140¹⁶³Ho a

Calibration of efficiencies

