SM and Heavy lons results from ATLAS and CMS

Elisabetta Gallo (DESY and University of Hamburg) On behalf of the ATLAS and CMS Collaborations

Highlights from: W/Z, diboson production Top Jets (see also ATLAS A. Minaenko's talk) Heavy lons at CMS (ATLAS R. Slovak's talk)

mainly 13 TeV data shown here

Bormio , 55. International Winter Meeting on Nuclear Physics, 23-27 January 2017

A very successful 2016 Run

CMS Peak Luminosity Per Day, pp, 2016, $\sqrt{s} =$ 13 TeV

- LHC exceeded expectations for 2016, excellent performance
- LHC peak efficiency of 58% and more than 50% of the time in Stable Beam between TS2 and TS3
- Max inst luminosity achieved of 1.5 X 10³⁴ cm⁻² sec⁻¹

CMS Integrated Luminosity, pp, 2016, $\sqrt{s} =$ 13 TeV

Both ATLAS and CMS: 92% datataking efficiency and ~ 36 fb⁻¹ of data collected in 2016 for physics
1/3 of 2016 presented already last summer

Performance in 2016

Standard Model Cross-Sections

W/Z physics

E. Gallo – SM and HI Results from ATLAS and CMS – Bormio 2017

W/Z cross sections at 7 TeV

ATLAS arXiv:1612.03016

W/Z cross sections at 7 TeV

ATLAS arXiv:1612.03016

W mass

ATLAS-CONF-2016-113

• Method: reconstruct mass sensitive variables from lepton and recoil kinematics, both in muon and electron channels • fit expected templates with different masses to data for

 p_{T}^{I} and m_{T}

- excellent understanding of calibration of recoil and leptons
- excellent understanding of exp and theo uncertainties (see also previous differential measurements)
- cross-check with Z events

$$\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\,\ell} + \vec{u}_{\rm T}\right), \quad m_{\rm T} = \sqrt{2p_{\rm T}^{\,\ell}p_{\rm T}^{\rm miss}(1 - \cos\Delta\phi)}$$

2011 data, 7 TeV 4.6 fb⁻¹ electron 4.1 fb⁻¹ muon

100

W mass

ATLAS-CONF-2016-113

	Combined categories	Value [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EWK Unc.	PDF Unc.	Total Unc.	χ^2/dof of Comb.
	$m_{\rm T}, W^+, e^{-\mu}$	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
categories	$m_{\rm T}, W^-, e^{-\mu}$	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
	$m_{\rm T}, W^{\perp}, e^{-\mu}$	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
	$p_{\mathrm{T}}^{\ell}, W^+, e-\mu$	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
	$p_{\mathrm{T}}^{\ell}, W^{-}, \mathrm{e}$ - μ	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
	$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mathrm{e}$ - μ	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
	$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mathrm{e}$	80347.2	9.9	0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
	$m_{\rm T}, W^{\pm}, e$	80364.6	13.5	0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
	$m_{ m T}$ - $p_{ m T}^{\ell}, W^{+}, e$	80345.4	11.7	0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
	$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^{-}, e$	80359.4	12.9	0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
	m_{T} - $p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80349.8	9.0	0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
	$p_{\mathrm{T}}^{\ell},W^{\pm},\mu$	80382.3	10.1	10.7	0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
	$m_{\mathrm{T}}, W^{\pm}, \mu$	80381.5	13.0	11.6	0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
	m_{T} - $p_{\mathrm{T}}^{\ell},W^{+},\mu$	80364.1	11.4	12.4	0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
	$m_{ m T}$ - $p_{ m T}^\ell,W^-,\mu$	80398.6	12.0	13.0	0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
	m_{T} - $p_{\mathrm{T}}^{\ell},W^{\pm},\mu$	80382.0	8.6	10.7	0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
	$\overline{m_{\mathrm{T}}}$ - $p_{\mathrm{T}}^{\ell}, W^+, \mathrm{e}$ - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
	$m_{\rm T}$ - $p_{\rm T}^{\bar{\ell}}, W^-, e$ - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
	m_{T} - $p_{\mathrm{T}}^{\ell}, W^{\pm}, \mathrm{e}$ - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

Combined

m_w= 80370 ±7(stat.) ±11 (exp.)

±14 (mod.syst.) = ± 19 total (MeV)

Fit of all categories together taking into account correlations

E. Gallo – SM and HI Results from ATLAS and CMS – Bormio 2017

W mass

ATLAS-CONF-2016-113

.

m_w = 80.370 ± 0.019 GeV

m, = 172.84 ± 0.70 GeV

m(top) latest ATLAS measurement, m_{H} from combination ATLAS+CMS

CDF: 80389±19 MeV D0: 80375±23 MeV PDG: 80385±15 MeV

---- m_H = 125.09 ± 0.24 GeV 68/95% CL of m_w and m 68/95% CL of Electroweak Fit w/o m_w and m_t (Eur. Phys. J. C 74 (2014) 3046) 175 180 185 m, [GeV] $\left(\frac{m_W^2}{m_\pi^2}\right) = \frac{\pi\alpha}{\sqrt{2}G_{\rm F}}(1+\Delta r)$

> Also mass different measured: m(W⁺)-m(W⁻)= -29 ± 28 MeV

W+jets, Z+jets

CMS arXiv:1610.04222

ATLAS-CONF-2016-046

BlackHat+Sherpa: NLO up to 4 jets, NNLO calculation recently available Z/W+≥1j (Boughezal et al.)

Good agreement with pQCD calculations

E. Gallo – SM and HI Results from ATLAS and CMS – Bormio 2017

Diboson production

ZZ production at 13 TeV

CMS PLB 763 (2016) 280 ATLAS PRL 116, 101801(2016)

WZ production at 13 TeV

CMS arXiv:1609.05721, 1607.06943

ATLAS Phys. Lett. B 762 (2016) 1

WW cross section at 13 TeV

ATLAS-CONF-2016-090

Тор

Top cross section at 13 TeV

 $\sigma_{t\bar{t}}$ [pb]

Precision around 4% in the l+jets channel

(TOP-16-006 ready for submission)

Differential cross sections in I+jets channel at 13 TeV. Top p_T slightly softer than MCs at p_t>200 GeV, also observed at 8 TeV. Good agreement with full NNLO differential calculation available (Czakon et al. 1511.00549)

Single top

Jets

Jet cross sections

CMS arXiv:1609.05331

ATLAS-CONF-2016-092

Good agreement with the NLO QCD prediction over several orders of magnitude

Measurement of α_s

CMS arXiv:1609.05331

 $\alpha_{\rm S}(M_{\rm Z})(\rm NLO) = 0.1164^{+0.0025}_{-0.0029}(\rm PDF)^{+0.0053}_{-0.0028}(\rm scale) \pm 0.0001(\rm NP)^{+0.0014}_{-0.0015}(\rm exp) = 0.1164^{+0.0060}_{-0.0043}$

Extraction of α_s from theory prediction at NLO with CT10 NLO, also in 9 p_T ranges. Largest uncertainty due to factorisation and renormalisation scales, i.e. higher orders.

E. Gallo – SM and Hi Results from ATLAS and CMS – Bormio 2017

CMS Heavy Ions Results

ttbar \rightarrow (Wb)(Wb) \rightarrow (lvb)(lvb) candidate event

- ak4PFJetsCHS:
 - $E_{\tau_1} = 104 \text{ GeV}$, eta1 = 0.7, phi1 = 1.27, csvV2 = 0.995
 - E_{T2} = 87 GeV, eta2 =-0.2, phi2 =-2.05, csvV2 = 0.983
- Global muons:
 - (muon1) p_{T1} = 89 GeV, eta1 = 1.1, phi1 = -2.1
 - (part of jet) p₁₂ = 14 GeV, eta2 =-0.2, phi2 = -2.0

- Electron:
 - p_T = 91 GeV, eta = 0.1, phi = 1.
- MET:
 - p_T = 49 GeV, phi = -1.54

From the pPb 2016 run at Vs=8.16 TeV

2016 Heavy Ions Run

CMS Integrated Luminosity, pPb, 2016, $\sqrt{s}=$ 8.16 TeV/nucleon

Probes

• Hard probes (J/Psi, Y, jets, Z,...) are modified in the QCD medium. Nuclear modification factor:

$$R_{AA} = \frac{dN_{AA} / dp_T}{N_{coll} dN_{pp} / dp_T}$$

- Soft probes (collective phenomena): study two-particle correlations, ridge structure observed at Delta-phi~0 up to very large Delta-eta
- Two particles at very different eta are connected, collective phenomena

Isolated photons+jets

2015 data

- Study the jet-photon balance in events with one high p_{T} photon and a jet with $p_{T}{>}30~\text{GeV}$
- Photons should not be "modified" when traversing the medium
- Significant imbalance of the ratio jet/gamma is observed, especially in central collisions, compared to pp (here smeared to take into account different jet resolution in pp and PbPb)
- Clear shift of the jet spectra to lower values

R_{AA} for particles and jets

- Run1 results shown here
- Jets and charged particles are suppressed in AA collisions in central collisions
- pA used as reference, R_{pA} is ~1 for high p_T (>2 GeV for tracks) particles and jets
- It indicates energy loss of partons in the hot and dense medium

R_{AA} for charged particles

CMS arXiv: 1611.01664

- Run 2 2015 data at vs=5.02 TeV
- 0.7 < p_T< 400 GeV
- R_{AA} is 7-8 for the most central 5% collisions and p_T ~6-9 GeV
- As the collisions become more peripheral, there is a weakening of the suppression and less p_T dependence
- Models reproduce the data

R_{AA} for J/Psi and B mesons

Flavour dependence, $\psi(2S)$

CMS arXiv:1611.01438

PbPb 351 ub⁻¹, pp 28.0 pb⁻¹ (5.02 TeV) (ψ(2S)/J/ψ)_{PbPb} / (ψ(2S)/J/ψ)_{pp} 1.4 lyl < 1.6, 0-100% CMS 1.6 < lyl < 2.4, 0-100% 1.2 Prompt only 95% CL 0.8 0.6 0.4 0.2 0¹0 25 30 5 15 20 10 p_{_} (GeV/c)

Dependence instead on the binding energy in mesons, a mesurement of the temperature T_c of the deconfined QGP. Strong suppression of $\psi(2S)$ -to-J/Psi ratio in PbPb compared to pp

Υ excited states

CMS-PAS-HIN-16-008

E. Gallo – SM and HI Results from ATLAS and CMS – Bormio 2017

Anisotropic flow

CMS arXiv:1606.06198

Anisotropic flow

CMS-PAS-HIN-15-004

Anisotropic flow

CMS PLB 765 (2017) 193

Summary

- Precision measurements in W/Z, jets and top physics from ATLAS and CMS
- Textbook measurements of the W mass at ATLAS, m_W =80370 ± 19 MeV
- Theory calculations at more orders, following experimental increasing precision
- Wide range of heavy ions results: nuclear modification factor measured with several hard probes, suppression of excited quarkonium states observed, collective flow measured
- 2016 last pPb run for a long period, no heavy ion run next year
- In pp we have taken O(2%) of the data until the end of HL-LHC, exciting times ahead

Backup slides

Anomalous couplings in WW, WZ

CMS-PAS-SMP-13-008 SMP-16-012

19 fb⁻¹ (8 TeV)

New limits on anomalous TGC in the context of Effective Field Theory.

E. Gallo – SM and HI Results from ATLAS and CMS – Bormio 2017

Top double differential

ttZ, ttW

CMS-PAS-TOP-16-007

ATLAS arXiv:1609.01599

E. Gallo – SM and HI Results from ATLAS and CMS – Bormio 2017

Triple differential dijet

CMS-PAS-16-011

