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Goal: Calibrate Hamiltonian and then predict other observables

Talk on Tue by Epelbaum
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Goal: develop a theory of nuclei with predictive power
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Nuclear Structure Theory

http://unedf.org
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• How does the nucleus respond to external electroweak excitations?
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• Provide important informations in other fields of physics, where nuclear physics
    plays a crucial role:

- Astrophysics:   
- Atomic physics  
- Particle physics                                                                 

• How does the nucleus respond to external electroweak excitations?
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� � |⇥�f |Jµ|�0⇤|2

Exact knowledge limited in
energy and mass number

R(!, q)

Lorentz Integral Transform        Reduce the continuum problem to a bound-state-like equation
Efros, et al., JPG.: Nucl.Part.Phys.  34 (2007) R459 

Similar to Laplace Transform discussed on Wed by S.Gandolfi

(H � z)| ̃i = Jµ| 0i
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Selected Highlights 

Interfacing with precision atomic physics to 
search for beyond standard model physics
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e-

The proton-radius puzzle
 

The proton charge radius is measured from:
 electron-proton interactions:            0.8770 ± 0.0045 fm 

    eH spectroscopy
    e-p scattering

fm

Pohl et al., Nature (2010)
Antognini et al., Science (2013)

µ- muonic -proton interactions:            0.8409 ± 0.0004 fm
   𝜇H Lamb-shift

Merkel Talk on Tue & Vanderhaeghen Talk on Fri.
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Understanding the proton-radius puzzle

µ-

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the 
mystery by studying other muonic atoms: 

 𝜇D 
 𝜇4He+

  𝜇3He+ 

 𝜇3H 

 𝜇6Li2+, 𝜇7Li2+ 
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Pushing the limits in mass number to challenge 
our understanding of neutron-rich nuclei

Selected Highlights 

Wednesday, 25 January, 17



Recent development in nuclear structure theoryJan 26th 2017 21

5 10 15 20 25
ω [MeV]

0

5

10

15

20

25

σ
γ(
ω
) [

m
b]

Leistenschneider et al.

22O

Data from GSI

core

Pigmy Dipole Resonance (PDR)

Photoexcitation of neutron-rich nuclei

PDR

core

Wednesday, 25 January, 17



Recent development in nuclear structure theoryJan 26th 2017 21

5 10 15 20 25
ω [MeV]

0

5

10

15

20

25

σ
γ(
ω
) [

m
b]

Leistenschneider et al.

22O

Data from GSI

core

Pigmy Dipole Resonance (PDR)

Photoexcitation of neutron-rich nuclei

PDR

5 10 15 20 25
ω [MeV]

0

5

10

15

20

25

σ
γ(
ω
) [

m
b]

Leistenschneider et al.

22O

CCSDNN(N3LO)

Sexp

n

 S.B. et al., PRC 90, 064619 (2014) 

Well described by ab initio theory

core

Wednesday, 25 January, 17



Recent development in nuclear structure theoryJan 26th 2017 21

5 10 15 20 25
ω [MeV]

0

5

10

15

20

25

σ
γ(
ω
) [

m
b]

Leistenschneider et al.

22O

Data from GSI

core

Pigmy Dipole Resonance (PDR)

Photoexcitation of neutron-rich nuclei

PDR

5 10 15 20 25
ω [MeV]

0

5

10

15

20

25

σ
γ(
ω
) [

m
b]

Leistenschneider et al.

22O

CCSDNN(N3LO)

Sexp

n

 S.B. et al., PRC 90, 064619 (2014) 

Well described by ab initio theory

Theory provides a deeper understanding: microscopic interpretation of collective phenomena

Theory motivates new experiments: e.g. 8He will be measured in RIKEN by T. Aumann

core
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 48Ca from first principles

Ab initio with three nucleon forces from chiral EFT

Nature Physics 12, 186 (2016)
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Rskin will be measured with Parity violation 
electron scattering CREX 

measured at Osaka with (p,p’) ↵D

J.Birkhan, et al., arXiv:1611.07072
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Future Developments

Adding triple corrections to coupled cluster theory

M.Miorelli. et al., (2017)
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Frontiers at higher energies  

How nuclear theory can help particle physics 
searches of fundamental neutrino properties
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Neutrino scattering ⬄ electron scattering

Neutrino-Nucleus Cross Section  
Neutrino long baseline experiments require understanding of interactions of neutrinos with the detector 
material (12C, 16O, 40Ar, ...). So far very simple models are used.

How well do we understand neutrino nucleus cross sections?

Lovato et al., PRL 117, 082501 (2016)
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Monte Carlo Calculations - Talk by S.Gandolfi
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Coupled-Cluster Calculations of the Coulomb Sum Rule
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• Remarkable progress has been done in ab initio calculations of nuclear structure

20

• Electroweak probes are very reach tools to investigate nuclear dynamics  which
   allow an interplay with atomic, particle and astrophysics

Outlook
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★ Neutrinoless double beta decay

Future long term goals:
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• Electroweak probes are very reach tools to investigate nuclear dynamics  which
   allow an interplay with atomic, particle and astrophysics

Outlook

Thank you!
Merci!

Thanks to my collaborators:

N.Barnea, B.Carlsson, C. Drischler, 
A. Ekstrom, C.Forssen, G. Hagen, 
O.H. Hernandez, J.D.Holt, K.Hebeler, 
M. Hjorth-Jensen, G.R. Jansen, C.Ji, 
M.Miorelli, W. Nazarewicz, N.Nevo Dinur, 
G.Orlandini, T.Papenbrock, J. Simonis, 
A.Schwenk, S.R. Stroberg, K.Wendt, T. Xu
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Calculating TPE with HH

Drop Times 
(Seconds)

OBJECT A OBJECT B

-6.48 -6.63

0.23 0.24

-0.10 -0.11

1.00 1.02

0.08 0.05

-8.54 -8.71

8.10 8.33

0.63 0.65

1.02 1.04

-0.84 -0.86

-1.29 -1.31

2.26 2.29

-0.18 -0.19

-4.11 -4.20

-10.36 -10.62

-14.47 -14.82

-15.0 -12.0 -9.0 -6.0 -3.0 0 3.0 6.0 9.0

meV

Table 6

OBJECT C OBJECT D

-0.77 -0.78

0.03 0.03

-0.01 -0.01

0.07 0.07

0.01 0.01

0.00 0.00

0.18 0.18

0.02 0.02

0.03 0.04

-0.08 -0.08

0.03 0.03

0.05 0.05

-0.03 -0.03

-0.47 -0.48

-0.22 -0.23

-0.69 -0.71

�(0)T

�(0)C

�(0)M

�(1)R3

�(1)Z3

�(2)R2

�(2)Q

�(2)D1D3

�(1)R1

�(1)Z1

�(2)NS

�A
pol

�AZem
�ATPE

�(0)D1

�(0)L

AV18/UIX
�EFT

3He 3H

-0.8 -0.6 -0.4 -0.2 0 0.2
meV

N.Nevo-Dinur et al., PLB 755, 380 (2016)

Total error budget: numerical error, atomic physics error, nuclear physics error (in quadrature)
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Pushing the mass limits...
With M. Miorelli  

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2
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2.0

2.5

3.0

3.5
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↵
D

[fm
3 ]
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Very preliminary

GSI data
Rossi et al.(2013)

64Ni Rch = 3.8572 fm

3.8 3.9 4.0 4.1 4.2 4.3 4.4

Rch [fm]
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5.0

6.0

7.0
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↵
D

[fm
3 ]

90Zr

Consistent with DFT calculations, Roca-Maza (2015)

↵D ⇡ 5.65 fm3

Very preliminary
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Lorentz Integral Transform Method
 Equation can be solved with any bound-state method

L(�,�) =
�

d⇥
R(⇥)

(⇥ � �)2 + �2 =
�
�̃|�̃

⇥
< 1

Reduces the continuum problem to a bound-state problem

�

�
(H � E0 � � + i�)|⇥̃⇥ = Ô|⇥0⇥Jµ ̃

We solved this equation with HH, NCSM and Coupled-cluster Theory

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459 

⇥
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Nucl.Phys. A707  365 (2002)     Phys.Rev.C 69 (2004)     

Benchmarks with methods that calculate the final states

⇥
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Following Lovato et al. PRL 111 092501 (2013), we starting from the Coulomb sum rule

RL(⇤,q) =
⌅⇤

f

|⇥�f | ⇥(q) |�0⇤|2 �

�
Ef � E0 � ⇤ +

q2

2M

⇥

SL(q) =
1

Z

Z 1

!th

d!
RL(!, q)

Gp
E
2
(Q2)

Total inelastic strength

Coulomb Sum Rule
 With Tianrui Xu, undergrad at UBC
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Future:
Addressing transverse and weak 

response in 16O with two-body 
currents

Coulomb Sum Rule
 With Tianrui Xu, undergrad at UBC
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�E2S�2P = �QED +AOPEhr2c i+ �TPE

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the 
mystery by studying other muonic atoms: 

 𝜇D (results just released)
 𝜇4He+ (analyzing data)             
  𝜇3He+ (analyzing data)
 𝜇3H (impossible/possible?)
 𝜇6Li2+, 𝜇7Li2+ (future)

-9.58(38) meV     ⇒   PRL 111, 143402 (2013) 
-1.727(20) meV   ⇒   PLB 736, 334 (2014) 

-15.46(39) meV     ⇒   PLB 755, 380 (2016) 
-0.767(25) meV   ⇒   PLB 755, 380 (2016) 

Understanding the proton-radius puzzle
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 𝜇4He+ : No puzzle!

muonic atom: 1.679XX(20)exp(52)theo fm
e-scattering:   1.6810(40)

Understanding the proton-radius puzzle

Wednesday, 25 January, 17



Recent development in nuclear structure theoryJan 26th 2017 27

�E2S�2P = �QED +AOPEhr2c i+ �TPE

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the 
mystery by studying other muonic atoms: 

 𝜇D (results just released)
 𝜇4He+ (analyzing data)             
  𝜇3He+ (analyzing data)
 𝜇3H (impossible/possible?)
 𝜇6Li2+, 𝜇7Li2+ (future)

Recent experimental news - R.Pohl et al., Science 2016 

 𝜇D: There is a puzzle!
    7.5    deviations from 𝜇D and CODATA�

-9.58(38) meV     ⇒   PRL 111, 143402 (2013) 
-1.727(20) meV   ⇒   PLB 736, 334 (2014) 

-15.46(39) meV     ⇒   PLB 755, 380 (2016) 
-0.767(25) meV   ⇒   PLB 755, 380 (2016) 

1%

3%

6%

Theory provides crucial information for precision experiments

 𝜇4He+ : No puzzle!

muonic atom: 1.679XX(20)exp(52)theo fm
e-scattering:   1.6810(40)

Stay tuned!
Vanderhaeghen talk on Fri.

Understanding the proton-radius puzzle
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LIT with Coupled-cluster method

L(�,�) =
�

d⇥
R(⇥)

(⇥ � �)2 + �2
�

�
=

�
�̃|�̃

⇥
< 1

Merging the Lorentz integral transform method with coupled-cluster theory :
New many-body method to extend ab initio calculations of em reactions to medium-mass-nuclei

 S.B. et al., Phys. Rev. Lett. 111, 122502 (2013) 

⇥̄ = e�T⇥eT
H̄ = e�THeT

(H̄ � E0 � � + i�)| ̃Ri = ⇥̄|�0i

| ̃Ri = R̂|�0i

R̂ = R̂0 + R̂1 + R̂2

Presenting results in the CCSD scheme
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Successful benchmark for 4He at CCSD
 M.Miorelli et al., Phys. Rev. C 94, 034317 (2016) 
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