Timo Enqvist University of Oulu, Finland

FroST16/Mainz, October 22-24, 2016 - 1/15 -

Introduction & Motivation

- Measurements of ¹⁴C concentrations in various liquid scintillator samples
- Collaboration between
 - university of Oulu, Finland
 - university of Jyväskylä, Finland (Wladek Trzaska et al.)
 - Russian Academy of Sciences, Institute of Nuclear Research, Moscow (Bayarto Lubsandorzhiev *et al.*)
- Two independent measurements
 - Pyhäsalmi mine, Finland (Callio Lab), at 4100 mwe
 - Baksan Underground Laboratory, Russia, at 4900 mwe
 - ~similar method, ~similar shielding
- The decay energy of ^{14}C is low (Q=156 keV)
 - often below the threshold
- If the ¹⁴C concentration too large \implies pulses may pile-up

Earlier measurements for the concentration

$^{14}{\rm C}/^{12}{\rm C}~(\times 10^{-18})$	Liquid Scintillator	Experiment	[Ref]
(1.94±0.09)	PC+PP0	Borexino CTF	[1]
(9.1±0.4)	PXE+p-Tp+	Borexino CTF	[2]
(3.98±0.94)	PC-Dodecane+PPO	KamLAND	[3]
(12.6±0.4)	PXE+p-Tp+	Dedicated setup	[4]

[1] G. Alimonti et al., Physics Letters B 422 (1998) 349

[2] H.O. Back *et al.*, Nuclear Instrum. Methdos A 585 (2008) 48

- [3] G. Keefer, arXiv:1102.3786
- [4] C. Buck et al., Instrum. and Experim. Techniques 55 (2012) 34

A Dedicated Experiment

ISSN 0020-4412, Instruments and Experimental Techniques, 2012, Vol. 55, No. I, pp. 34–37. © Pleiades Publishing, Ltd., 2012. Original Russian Texu & C. Buck, O. Besida, C.M. Catadori, F.X. Hartmann, Th. Lasserre, D. Motta, A. di Vacri, L. Pandola, S. Schoenert, U. Schwan, I.R. Barabanov, L.B. Bezrukov, N.A. Danilov, E.A. Yanovich, 2012, published in Proboy 'IteKnika Experimenta, 2012, No. 1, pp. 40–43.

NUCLEAR EXPERIMENTAL TECHNIQUE

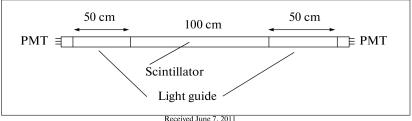
Measuring the ¹⁴C Isotope Concentration in a Liquid Organic Scintillator at a Small-Volume Setup

C. Buck^a, O. Besida^b, C. M. Cattadori^c, F. X. Hartmann^a, Th. Lasserre^b, D. Motta^{†a}, A. di Vacri^c, L. Pandola^c, S. Schoenert^a, U. Schwan^a, I. R. Barabanov^d, L. B. Bezrukov^d, N. A. Danilov^e, and E. A. Yanovich^d

 ^a Max Planck Institut fur Kernphysik Saupfercheckweg, 1, D-69117, Heidelberg, Germany ^b CEA (Commissariat a l'energie atomique)/Saclay F-91191, Gif-sur-Yvette, France
^c Laboratory Nazionali del Gran Sasso (LNCS), S.S. 17bis km, 1.8,910, 1-67010, Assergy (AQ), Italy ^d Institute for Nuclear Research, Russian Academy of Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow, 117312 Russia
^e Frumkin Institute of Physical Chemistry, Aura dElectrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119991 Russia

Received June 7, 2011

Abstract—A low-background scintillation setup situated in the Gran Sasso National Laboratory is described. The facility is composed of nine identical cells, each 2 L in volume. The ¹⁴C content of a PXE-based scintillator has been measured using this setup; the value obtained is $R^{(14}C/^{12}C) = (12.6 \pm 0.4) \times 10^{-18}$. This result can be used for comprehensive investigation of possible ¹⁴C production channels in organic scintillators.


DOI: 10.1134/S0020441212010022

A Dedicated Experiment

ISSN 0020-4412, Instruments and Experimental Techniques, 2012, Vol. 55, No. I, pp. 34–37. © Pleiades Publishing, Ltd., 2012. Original Russian Texu & C. Buck, O. Besida, C.M. Catadori, F.X. Hartmann, Th. Lasserre, D. Motta, A. di Vacri, L. Pandola, S. Schoenert, U. Schwan, I.R. Barabanov, L.B. Bezrukov, N.A. Danilov, E.A. Yanovich, 2012, published in Proboy 'IteKnika Experimenta, 2012, No. 1, pp. 40–43.

NUCLEAR EXPERIMENTAL TECHNIQUE


Measuring the ¹⁴C Isotope Concentration in a Liquid Organic Scintillator at a Small-Volume Setup

Abstract—A low-background scintillation setup situated in the Gran Sasso National Laboratory is described. The facility is composed of nine identical cells, each 2 L in volume. The ¹⁴C content of a PXE-based scintillator has been measured using this setup; the value obtained is $R(^{14}C/^{12}C) = (12.6 \pm 0.4) \times 10^{-18}$. This result can be used for comprehensive investigation of possible ¹⁴C production channels in organic scintillators.

DOI: 10.1134/S0020441212010022

Experimental components

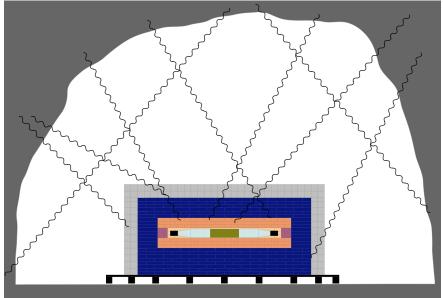
light guide ($\times 2$)

FroST16/Mainz, October 22-24, 2016 - 6/15 -

• quartz vessel, 1.6 ℓ

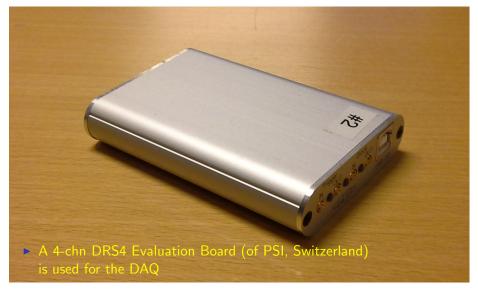
- The black box and the rail is made out of Copper
- \blacktriangleright Size: 15 cm \times 15 cm \times 100 cm
- ► No screws, no glues
- The PMT-Lightguide-Vessel system easy to move in and out

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

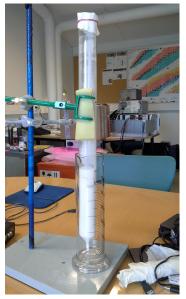

Radiation shielding

 Lead and Copper bricks: 5 cm × 10 cm × 20 cm
Pb: 310 bricks (3.5 t)
Cu: 100 bricks (0.9 t)

FroST16/Mainz, October 22-24, 2016 - 8/15 -

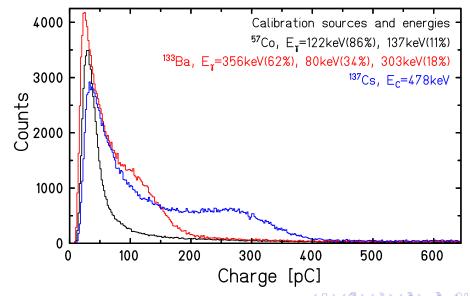

$^{\rm 14}{\rm C}$ Concentration Measurements

Schematic drawing


FroST16/Mainz, October 22-24, 2016 - 9/15 -

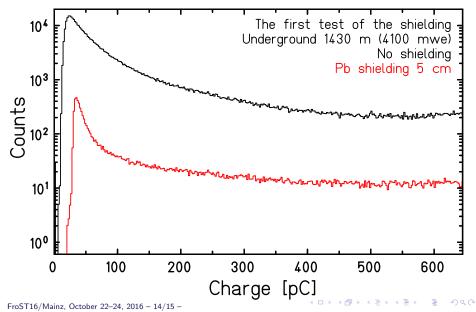
$^{14}\mathrm{C}$ Concentration Measurements $_{\mathrm{DAQ}}$

FroST16/Mainz, October 22-24, 2016 - 10/15 -


¹⁴C Concentration Measurements Purification

FroST16/Mainz, October 22-24, 2016 - 11/15 -

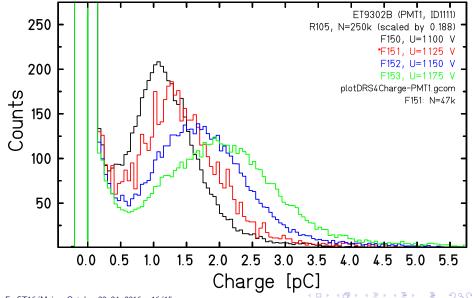
- Purification of the scintillator is performed with Al₂O₃ column
 - couple of days for 2 liters


Energy calibration – ⁵⁷Co, ¹³³Ba, and ¹³⁷Cs

Current status - the setup

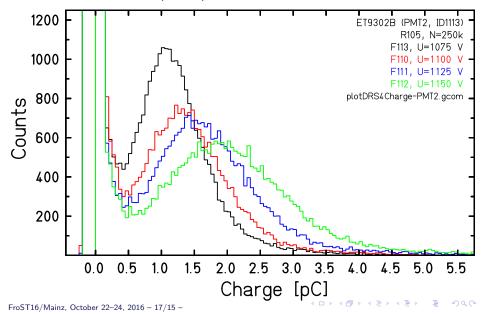
- ► The Black Box is currently shield∉d by 5 cm of lead.
 - in a temporary test bench
- Another 5 cm of lead will be added in the beginning of November

Current status - reduction of background (by 5 cm of Pb)


Conclusions

- A dedicated setup consisting of a vessel, two light guides and two PMTs – is used to measure the concentration of ¹⁴C in liquid scintillator
 - ► underground at 1430 m (or 4100 mwe) in the Pyhäsalmi mine, Finland
 - similar setup constructed at Baksan, Russia
- Measurements (background reduction) just started
 - adding the shielding step by step: another 5 cm of Pb will be added in the beginning of November

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → つへで


Purpose to measure several samples of different origin

PMT calibration – ET9302B (PMT 1)

FroST16/Mainz, October 22-24, 2016 - 16/15 -

PMT calibration – ET9302B (PMT 2)

