The 2nd Hyper-K detector in Korea

$T2KK \rightarrow T2HKK$

Off-axis Beam

T2HKK Physics Reach

Physics programs: the same as the Hyper-K Physics sensitivities: better in the following topics

HKK can serve as a neutrino telescope for 20~30 years.

Sunny Seo, SNU

Neutrino mass ordering

• GUT

- origin of the universe
- Connection to Dirac or Majorana nature of v

δ_{CP} & MO Sensitivity Studies

Simulation parameters

• 2.7x10²² POT with $v : \overline{v} = 1 : 3$ operation ratio

ightarrow 10 years of operation with 1.3 MW beam

- 187 kton fiducial volume (compared to 22.5 kton for SK)
- Baseline to Korea is 1100 km
- Off-axis beam: 1.3°, 1.5°, 2.0°, 2.5°
- Oscillation parameters:

 $|\Delta m_{32}^{2}| = 2.5 \times 10^{-3} \text{ eV}$ $\sin^{2}\theta_{23} = 0.5$ $\sin^{2}2\theta_{13} = 0.085$ $\Delta m_{21}^{2} = 7.53 \times 10^{-5} \text{ eV}$ $\sin^{2}\theta_{12} = 0.304$ $\delta_{cp} = 0, \pi/2, \pi, 3\pi/2$

Note: Relatively simple systematic uncertainty model is used.
 More realistic systematic uncertainty implementation is needed.

v_e appearance probability: address 3 key parameters

v_e appearance probability (mass ordering)

- 1) The amplitude of the oscillation is enhanced or suppressed via the $(1 r_A)^2$ in the denominator, which @ 1.2GeV is a ± 24% effect.
- 2) the position of the oscillation extremum, this especially apparent in the 1st oscillation minimum, L/E $\approx 4\pi$ / ($\Delta_{31} * (1 / + r_A)$) this changes the energy of the first oscillation minimum by ± 10%.

Off-axis Beam and Matter Density

FroST @ Mainz

Mass Ordering Sensitivities

Work in progress

v_e appearance probability: CP violation

$$\begin{split} P(\stackrel{()}{\nu_{\mu}} \rightarrow \stackrel{()}{\nu_{e}}) &\approx 4s_{23}^{2}s_{13}^{2} \frac{1}{(1\mp r_{A})^{2}} \sin^{2}\frac{(1\mp r_{A})\Delta_{31}L}{4E} & \mathsf{CP} \\ &+ \sin 2\theta_{12} \sin 2\theta_{23} s_{13} \left(\underbrace{\frac{\Delta_{21}L}{2E}}_{2E} \right) \sin \frac{(1\mp r_{A})\Delta_{31}L}{4E} \cos(\pm\delta - \underbrace{\frac{\Delta_{31}L}{4E}}_{4E}) \\ &+ c_{23}^{2} \sin^{2} 2\theta_{12} \left(\underbrace{\frac{\Delta_{21}L}{4E}}_{2E} \right)^{2} - 4s_{23}^{2}s_{13}^{4} \frac{1}{(1\mp r_{A})^{2}} \sin^{2}\frac{(1\mp r_{A})\Delta_{31}L}{4E} \end{split}$$

 $L/E = (\pi/2)\chi(4/\Delta_{31}) \text{ for } 1^{\text{st}} \text{ max. and } (3\pi/2)\chi(4/\Delta_{31}) \text{ for } 2^{\text{nd}} \text{ max.:}$ $\rightarrow x3 \text{ more CP effect @ 2nd max}$

Degeneracies

- $sin 2\theta_{23} \rightarrow More precise study to be done by T2K/HK$
- matter (1+r_A) term causes "discrete" degeneracy with CP: study with E_{rec}>1.2GeV
- degeneracy in phase with Δ_{31} limits CP phase resolution: 2nd max. @T2HKK needed

HK x 1 (295 km) v_{e} candidates KD (1100 km)

δ_{CP} Sensitivities

δ_{CP} Precision Sensitivities

Work in progress

Fraction of δ_{CP}

How much fraction of $\,\delta_{ m CP}^{}\,$ can we cover ? Work in progress

Additional benefits

sources

2. Deeper site:

lower muon flux, lower spallation BKG

3. Geological separation: signal coincidence,

degeneracy break-up

Muon shielding(Mt. Bisul)

Additional benefits

Solar neutrino physics

(1) Day/night asymmetry due to MSW matter effect in Earth

(2) HEP solar neutrinos

(3) energy spectrum upturn

Super-Nova Relic neutrino detection

(1) SRN detection capability below 20 MeV improves

(2) Detection efficiency is more than twice in [16, 18] MeV than HK site.

Geo neutrino & Low energy DM

Non-standard new physics

(1) Quantum decoherence,

Phys. Rev. D 77, 073007 (2008)

Sensitivity improves

(2) tiny violation of Lorentz symmetry without/with CPT invariance,

(3) nonstandard neutrino interactions with matter

\rightarrow In most cases, these are improved with T2HKK configuration $_{20}$

Some candidate sites in Korea

Site candidates for a 2nd osc. maximum detector in Korea

- -- Baselines with 1,000~1,200 km
- -- 2.0~2.5° or 1.5~2.0° off axis beam directions
- -- >1,000 m high mountains with hard granite rocks

Site	OAB	Baseline [km]	Height [m]
Mt. Bisul	~1.3°	1088 km	1084 m
Mt. Hwangmae	~1.8°	1140 km	1113 m
Mt. Sambong	~1.9°	1180 km	1186 m
Mt. Bohyun	~2.2°	1040 km	1126 m
Mt. Minjuii	~2.2°	1140 km	1242 m
Mt. Unjang	~2.2°	1190 km	1125 m

Candidate Sites

22

Mt. Bisul

Mt. Bisul (I)

~1,088 km baseline, ~ 1.3° OAB, 1,084 m height

Latitude: N 35° 43' 00" longitude: E 128° 31' 28"

Mt. Bisul (II)

Mt. Bohyun

~1,040 km baseline, ~ 2.2° OAB, 1,126 m height

latitude N 36° 09' 47" longitude E 128° 58' 26"

Brief History of T2HKK (I)

❑ 2005/2006/2007: a large Cherenkov detector in Korea using
 J-PARC neutrino beam (T2KK) by T. Kajita.
 → 3 joint workshops supported by KOSEF and JSPS.

2015: staged construction of two HK detectors at Kamioka
 2 X 250 kton

June 1, 2016: offline meeting to begin discussions (Canada/Japan/Korea/USA)

□ June 2016: a working group effort for sensitivity study

Brief History of T2HKK (II)

July 10, 2016: official kick-off meeting in London → T2HKK proposal accepted in Hyper-K

Sept. 2, 2016: 1st Korean T2HKK workshop at SNU

Cct. 20, 2016: KPS pioneer symposium on T2HKK

Nov, 2016: T2HKK white paper release to arXiv

Nov. 21-22 2016: 1st International T2HKK workshop at SNU

T2HKK Inauguration London, July 10th 2016

Announcement of The 1st T2HKK International Workshop

• <u>When</u> : Nov. 21 - 22

• <u>Where</u>: Seoul National Univ., Korea

Workshop indico https://indico.snu.ac.kr/indico/event/6/

We invite all of you !

"Anyone" is very welcome to join this workshop !

Summary & Conclusion

- Robust and sensitive mass ordering study with T2HKK
- CP violation study with less impact from systematics with T2HKK
 - Important for the discovery of CP violation
 - Resolving degeneracies, e.g. for δcp precision
 - Redundancy: good for exploring new physics effects
- Does it help for θ₂₃ Octant?
 - Solving degeneracy with matter effect may help.
- There are additional benefits in low energy physics.
- T2HKK's impact would be much more if it starts earlier
 - The neutrino beam is already coming to Korea!
 - > World class discoveries are expected.

T2HKK can serve as a neutrino telescope for 20~30 years.