

JUNO

Livia Ludhova for the JUNO collaboration

FroST – Topical Workshop for THEIA, 22 – 24 October, JGU Mainz, Germany

Jiangmen Underground Neutrino Observatory

the first multi-kton liquid scintillator detector ever

JUNO Collaboration

Observers (7):

HEPHY Vienna

PUC Brazil

Jyvaskyla U. Finlan

UFA Brazil

CENBG France

Asia (31)

BNU	Nanjing U	SYSU
CAGS	Nankai U	Tsinghua
CQ U	Natl. CT U	UCAS
CIAE	Natl. Taiwan U	USTC
DGUT	Natl. United U	U of S China
ECUST	NCEPU	Wuhan II
Guangxi U	Pekin U	
HIT	Shandong U	vvuyi U Viemen II
IHEP	Shanghai ITU	Alamen U
Jilin U	Sichuan II	XI'an JI U
Jinan U.	SUT	

America (4) PCUC – BISEE Chile

Maryland U.- 2 groups

Europe (27)

France (5) **APC** Paris CPPM Marseille INFN-Frascati IPHC Strasbourg INFN-Ferrara LLR Paris Subatech Nantes INFN-Bicocca Finland (1) U Oulu Czech (1) Charles U

Italy (8) **INFN** Catania **INFN-Milano INFN-Padova INFN-Perugia INFN-Roma 3** Russia (3) JINR **INR Moscow MSU**

Germany (7) FZ Julich **RWTH** Aacher TUM **U** Hamburg **IKP FZI Jülich** U Mainz U Tuebingen **Belgium (1)** ULB Amenia (1) YPI

UTFSM Chile IMP CAS China

Neutrino mass hierarchy

Oscillation interference

Method from Petcov and Piai, Physics Letters B 553, 94-106 (2002)

Interference term

ÜLICH

FORSCHUNGSZENTRUM

Survival probability

$$P_{R_{e} \rightarrow R_{e}} = 1 - \frac{\sin^{2} 2\theta_{13} \left(\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32}\right)}{-\cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}} \text{ slow solar oscillations} \qquad \Delta_{ij} \equiv \Delta m_{ij}^{2} L/4E,$$

$$= 1 - \frac{1}{2} \sin^{2} 2\theta_{13} \left[1 - \sqrt{1 - \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}} \cos\left(2 \right] \Delta_{ee} \left(\pm \phi \right) \right] \qquad \text{NH}: + \frac{1}{1 + 1}$$

$$- \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21},$$

$$\Delta m_{\phi}^{2} = 4E\phi/L,$$
Can be looked at as an extra effective mass-squared difference $\Delta m_{\phi}^{2} = f(E,L)$

$$\int_{0}^{1} \frac{1}{9} \int_{0}^{10} \int_{0}^{1} \frac{1}{9} \int_{0}^{10} \int_{0}^{1} \frac{1}{9} \int_{0}^{1} \frac{1}{$$

Oscillation pattern for JUNO

$\Delta\chi^2$ as the standard statistics in a nutshell

Spectra generated with NH and fit with both hypothesis

First, we have the observed spectrum of measurements.

Second, fit the (pseudo-)data with both hypotheses (normal and inverted hierarchies).

Third, define $\Delta \chi^2$ as our standard statistics.

Finally, use $\Delta \chi^2$ as the discriminator for experimental design and optimization.

$$\Delta \chi^{2}_{\rm MH} = |\chi^{2}_{\rm min} (\rm N) - \chi^{2}_{\rm min} (\rm I)|,$$

Systematic effects

	Ideal	Core distr.	Shape	B/S (stat.)	B/S (shape)	$ \Delta m^2_{\mu\mu} $
Size	$52.5\mathrm{km}$	Real	1%	4.5%	0.3%	1%
$\Delta\chi^2_{ m MH}$	+16	-4	-1	-0.5	-0.1	+8

Spectrum, an experimental challenge

- Detection of few MeV electron flavour antineutrinos from reactor:
 liquid scintillator detector
- Inverse Beta Decay interaction (IBD)

Spectrum, an experimental challenge

Resolving signature wiggles in the L/E spectrum

- excellent energy resolution 3%/sqrt(E)
- better than 1% understanding of the energy scale
 Large statistics (O(100k) = large mass (20 kton)

Backgrounds: radio-purity and rock overburden of ~700 m

Stochastic terms (photon statistics)

- High light yield
- Good transparency
- PMT geometrical coverage
- PMT collection efficiency
- PMT quantum efficiency

Systematic effects

- Calibration
- ✓ $\alpha/\beta/\gamma$ sources
- ✓ Light pulses
- ✓ UV-laser
- **Double calorimetry concept** (large and small PMTs)

JUNO detector challenges

Experiment	Daya Bay	BOREXINO	KamLAND	JUNO
LS mass	20 ton	~300 ton	~1 kton	20 kton
Coverage	~12%	~34%	~34%	~80%
Energy resolution	~7.5%/√E	~5%/ √ E	~6%/√E	~3%/ √ E
Light yield	~ 160 p.e. / MeV	~ 500 p.e. / MeV	~ 250 p.e. / MeV	~ 1200 p.e. / MeV

Fit with both hypothesis: NH and IH

Other physics goals of JUNO

Precision measurement of the oscillation parameters

Probing the unitarity of U_{PMNS} to ~1% more precise than CKM matrix elements !

	Statistics	+BG +1% b2b +1% EScale +1% EnonL
$\sin^2 \theta_{12}$	0.54%	0.67%
Δm^2_{21}	0.24%	0.59%
Δm^2_{ee}	0.27%	0.44%

New physics tests in lowenergy oscillation phenomena:

- Light sterile neutrinos
- Non-standard neutrino interactions 1310.5917, 1408.6301
- Lorentz and CPT violation

Observatory for astrophysical neutrinos

Indirect DM search
→ discover DM or extend excluded parameter space

Supernova neutrinos v burst established → extract information on core-collapse and neutron star formation

Solar neutrinos pp-chain measured → CNO neutrino flux → study solar interior

Observation Range <1 to 50 MeV

Diffuse SN neutrinos still unobserved

→ discovery, z-dep. SN rate and average spectrum

Geoneutrinos now: 4σ observation → geology: radiogenic heat, U/Th conc.

Detector design

Experimental site and baseline optimization

JÜLICH

Going 720 m underground

JUNO detector design

JUNO detector design

JUNO expected background JUNO sector background

	Selection	IBD efficiency	IBD	$\text{Geo-}\nu \mathbf{s}$	Accidental	⁹ Li/ ⁸ He	Fast n	(α, n)
	-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Geo:1.8%	Fiducial volume	91.8%	76	1.4		77	0.1	0.05
1 50/	Energy cut	97.8%			410			
Acc: 1.5%	Time cut	99.1%	73	1.3		71		
91 i/8He. 2 7%	Vertex cut	98.7%			1.1			
L1/ 110. 2.770	Muon veto	83%	60	1.1	0.9	1.6		
	Combined	73%	60			3.8		

Expected upper limit for each material (Preliminary)

Matarial	Magg		Upper limit				Singles(Hz)	
Material	111455	238 U	232 Th	40 K	222 Rn	⁶⁰ Co	All volume	Fiducial volume
LS *	20kt	10^{-6} ppb	10^{-6} ppb	10^{-7} ppb	1.4×10^{-13} ppb		2.39	2.2
Acrylic 🗯	561t	1ppt	1ppt	$1 \mathrm{ppt}$			6.92	0.36
Oxygen-free copper	10t	0.099ppb	0.1ppb	$0.14 \mathrm{ppt}$		$1.8 \mathrm{mBq/kg}$	2.44	0.2
Dust							1	0.1
Pulley and Ultrasonic receiver Array							1	0.1
SS tank	350t	0.097 ppb	1.97 ppb	$0.05 \mathrm{ppb}$		$2.0 \mathrm{mBq/kg}$	0.89	0.087
PMT close +	156+	400ppb	400ppb	40ppb	Hamamastu PM	T	17.03	9.49
T MTT glass	1300	50ppb	50ppb	20ppb	NNVT PMT		11.55	2.42
PMT potting sealant	6.6t	12ppb	26ppb	25 ppb			1	0.1
PMT protection cover	177.5t	10ppt	10ppt	10ppt				0.01
PMT potting shell	177.5t	10ppt	10ppt	10ppt				0.01
Cable								0.01
CUU								0.01
Radon in water \star	35kt					$0.2 \mathrm{Bq/m^3}$	16	1.3
Rock		10ppm	30ppm	5ppm			7.4	0.984
						Sum	57.0	7.9

> The most critical materials are shown with "stars" in the material column.

JUNO Central Detector

JUNO Central Detector

Acrylic Sphere and Stainless Steel truss

- ✓ safety was given a priority
- ✓ 260 acrylic panels of 120 mm thickness
- ✓ Total weight: ~600 t of acrylic and ~600 t of steel

Worst stress case: the total vertical load is ~2600t up, ~560 connecting nodes will carry it

JUNO Muon Veto

Water Cherenkov

20~30kt ultra-pure water

Water acting as moderator & pool instrumented to detect Cherenkov light

2000 20" PMTs located as in the picture

Maximise detection efficiency of Cherenkov light

Top Tracker

Using **OPERA** plastic scintillator (49m²/module) **Three layers** to ensure good muon tracking Partial coverage due to available modules

- Reject ~50% muons
- Provide tagged muon sample to study reconstruction and background contamination with central detector

JUNO Liquid Scintillator

LAB solvent linear-alkylbenzene

- Developed by SNO+
- Used in Daya Bay
- Planned for JUNO

Compared to pseudocumene:

- Non toxic
- High flash point
- Cheap
- Compatible with acrylic
- Excellent transparency
- Worse particle discrimination

JUNO Liquid Scintillator cocktail

Required properties:

- High light yield: ~10⁴ ph/MeV
 - \rightarrow pure organic solvent
 - \rightarrow high fluor (PPO) concentration
- High transparency: ~20m
 - \rightarrow choose transparent solvent \rightarrow LAB
 - \rightarrow the producer matters!
- \rightarrow shift light to long wavelength \rightarrow **bisMSB**

Goals

- Purify 20 t LAB to test the overall design and operation at Daya Bay. Replace the target LS in one detector.
- ✓ Quantify the subsystems effectiveness:
 - → optical : > 20 m at 430 nm → radio-purity : 10^{-15} g/g (U, Th)

✓ Allow to select the best sub-system
 → Al₂O₃ column, distillation, gas

stripping, water extraction

Al,O3 column Pure LAB Steam stripping system Distillation system LAB and Al₂O₃ mixing tank

Distillation and steam stripping Installed at Daya Bay

Optimizing light collection

• optical coverage: 78%

→ 18,000 large PMTs (20") → 75%
 → 36,000 small PMTs (3") → 3%
 (double calorimetry + timing)

JUNO Large 20-inch PMTs

TRANSMISSION

TRANSMISSION + REFLECTION

IÜLICH

JUNO Large PMTs

Optimize light collection: • optical coverage: 75% • quantum efficiency QE x collection efficiency CE	Parameter	Dynode-PMT R12860 Hamamatsu Japan 5000 units	MCP-PMT NNCV – IHEP China 15000 units
= 35%	Photocathode	transmission	transmission + reflection
~26%	QE (400nm)	30%(T)	26%(T) + 4%(R)
	relative CE	100%	110%
More in the talk	peak-to-valley ratio	>3	>3
on Sunday @ 11:15!	transit time spread	~3 ns	~12 ns
	dark rate	~30 kHz	~30 kHz
	afterpulsing	10%	3%

JUNO Double Calorimetry

- 2 independent read-put systems
 18,000 20-inch Large PMTs (LPMTs)
 36,000 3-inch Small PMTs (SPMTs)
- Concept approved in July 2015
- Optimization of the final number ongoing

Investigation of PMTs from different suppliers

Current baseline design • ~18,000 20-inch PMTs • ~36,000 3-inch PMTs

JUNO Double Calorimetry

- 75% photo-covergae
- Stochastic term: 3%/sqrt(E)
- Slower and worse p.e. resolution
- Large dark noise

- 3% photo-covergae
- Stochastic term: 10%/sqrt(E)
- Faster and better p.e. resolution
- Small dark noise
- Reducing non-stochastic terms in the energy resolution dependence
- Extending the dynamical range
- Improving time and vertex resolution, muon reconstruction
- Importance in high-rate SN detection

Integrated PMT-redout Chip

Developed at ZEA FZJ, Germany

Key features of VULCAN

Sampling rate	$1 \mathrm{GHz}$
Bandwidth	$500 \mathrm{~MHz}$
Input impedance	<10 Ω
Dynamic range	$\frac{1}{16}$ - 2000 p.e.
ADC resolution	8 bit [3 ×]
High gain	0.06 p.e./bit
Medium gain	0.4 p.e./bit
Low gain	8 p.e./bit
Power	1 W
Area	22.09 mm^2

- Data processing for signal reconstruction
- Fast trigger generation parallel to signal data
- Three large dynamic range ADCs
- Highly configurable alternative operating modes
- Optional compensation for signal overshoot

Selection of gain mode (best precision & not saturated) Data reduction: 3 GB/s → 1 GB/s

Analog Unit

- Transimpedance amplifier (TIA)
- Phase locked loop (PLL)
- Analog to digital converter (ADC)

Digital Unit

- Programmable adaptive memory (PAM)
- Digital signal processor (DSP) for trigger
- Configuration Interface (JTAG)
- Built-in self test (BIST)
- Head of assigned liabilities for start up control (HAL)

JUNO calibration system

Goals

- ✓ Overall energy resolution : $3\%/\sqrt{E}$
- ✓ Energy scale, non linearities : < 1%

Four Complementary Systems

- ✓ 1D : Automatic Calibration Unit ACU for central axis scan
- ✓ 2D : Cable Loop System CLS for vertical planes scan and Guide Tube Calibration System GTCS for CD outer surface
- ✓ 3D : Remotely Operated under-liquid-scintillator Vehicles ROV for whole CD scan

Method	System
Rope Length Calculation	CLS, ACU and GTCS
Ultrasonic receiver	ROV, CLS
CCD(Independent)	ROV, CLS

Radioactive Sources

- ✓ photons : ⁴⁰K, ⁵⁴Mn, ⁶⁰Co, ¹³⁷Cs
- ✓ positrons : ²²Na, ⁶⁸Ge
- ✓ neutrons : 241 Am-Be, 241 Am- 13 C 241 Pu- 13 C, 252 Cf

JUNO schedule

BACKUP SLIDES

Optimal baseline is at L = 50-60 km, at the oscillation maximum of Δm_{12}^2

Choice of the experimental site

In case of multiple reactors, minimize the spread of L

Cores	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6
Power (GW)	2.9	2.9	2.9	2.9	2.9	2.9
Baseline (km)	52.75	52.84	52.42	52.51	52.12	52.21
Cores	TS-C1	TS-C2	TS-C3	TS-C4	DYB	HZ
Power (GW)	4.6	4.6	4.6	4.6	17.4	17.4
Baseline (km)	52.76	52.63	52.32	52.20	215	265

Step 3, 4: $\Delta \chi^2$ definition and MH discrimination

$$\chi_{\text{REA}}^2 = \sum_{i=1}^{N_{\text{bin}}} \frac{\left[M_i - T_i \left(1 + \sum_k \alpha_{ik} \epsilon_k\right)\right]^2}{M_i} + \sum_k \frac{\epsilon_k^2}{\sigma_k^2}$$

 $\Delta \chi^2_{\rm MH} = |\chi^2_{\rm min} ({\rm N}) - \chi^2_{\rm min} ({\rm I})|,$ fit with NH assumption fit with IH assumption

 M_i = number of measured IBD events in the ith bin (200 bins between 1.8 – 8 MeV)

 T_i = number of expected IBD events in the ith bin after oscillation f(MH; E, L, sin² θ_{12} , sin² θ_{13} , Δm^2_{12} , Δm^2_{ee})

T_i for NH and IH is considered separately, two separate minimizations

- ϵ_k = pull parameters for reactor and detector-related systematic effects
- $\sigma_{\rm k}$ = uncertainty of the parameters used in pull terms
- α_{ik} = fraction of neutrino event contribution of the ith pull parameter to the ith energy bin

Supernova (SN) burst neutrinos

- ✤ Huge amount of energy (3x10⁵³erg) emitted in neutrinos (~0.2M_☉) over long time range
- ✤ 3 phases equally important > 3 experiments teaching us about astro- and particle-physics

Process	Туре	Events $\langle E_v \rangle {=} 14 MeV$						
$\overline{v}_e {+} p \rightarrow e^{+} {+} n$	CC	5.0×10 ³						
$v+p \rightarrow v+p$	NC	1.2×10 ³						
$v + e \rightarrow v + e$	ES	3.6×10 ²						
$v+{}^{12}C \rightarrow v+{}^{12}C^{\star}$	NC	3.2×10 ²						
$v_e {+}^{12}C \rightarrow e^{-} {+}^{12}N$	$v_e + {}^{12}C \rightarrow e^- + {}^{12}N$ CC 0.9×10^2							
$\overline{v}_e {}^{+12}C \rightarrow e^{+} {}^{+12}B$	CC	1.1×10 ²						
NB Other $\langle E_v \rangle$ values need to b	e considere	d to get complete picture.						

Expected events in JUNO for a typical SN distance of 10kpc

We try to be able to handle Betelgeuse (d~0.2kpc) resulting in ~10MHz trigger rate

ÜLICH

J.Phys. G43 (2016) no.3, 030401

Solar neutrinos

Fusion reactions in solar core: powerful source of electron neutrinos O(1 MeV)

JUNO: neutrinos from ⁷Be and ⁸B chains

Investigate **MSW effect**: Transition between vacuum and matter dominated regimes

Constrain **Solar Metallicity** Problem: Neutrinos as proxy for Sun composition

Diffuse SN Neutrino Background

Never observed yet!

10 Years' sensitivity

ÜLICH

Syst. uncertainty BG	5	5%	2	0%
$\langle E_{\bar{\nu}_e} \rangle$	rate only	spectral fit	rate only	spectral fit
$12 \mathrm{MeV}$	1.7σ	1.9σ	1.5σ	1.7σ
$15\mathrm{MeV}$	3.3σ	3.5σ	3.0σ	3.2σ
$18{ m MeV}$	5.1σ	5.4σ	4.6σ	4.7σ
$21{ m MeV}$	6.9σ	7.3σ	6.2σ	6.4σ

Geoneutrinos

Big advantage:

Big volume and thus high statistics!

Main limitations:

- ✓ Huge reactor neutrino background;
- Relatively shallow depth cosmogenic background;

Critical:

 Keep other backgrounds (²¹⁰Po contamination!) at low level and under control;

Source	Events/year
Geoneutrinos	$408 \pm 60 \longrightarrow$
U chain	311 ± 55
Th chain	92 ± 37
Reactors	16100 ± 900
Fast neutrons	3.65 ± 3.65
⁹ Li - ⁸ He	657 ± 130
$^{13}\mathrm{C}(\alpha,n)^{16}\mathrm{O}$	18.2 ± 9.1
Accidental coincidences	401 ± 4

Simulated JUNO antineutrino spectrum (prompt energy) and the best fit

- Current (Borexino and KamLAND) precision on geoneutrino flux is ~25%
- JUNO can reach 17% precision within the first year and 6% after 10 years
- Geological study of the local crust: separate mantle contribution

Sensitivity: Energy resolution & exposure

80% IBD efficiency

Detector Resolution Requirement

parametrization for the detector energy resolution is defined as

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2} , \qquad (2.12)$$

where the visible energy E is in the unit of MeV.

Based on the numerical calculation of sensitivity studies in terms of $\Delta \chi^2_{\rm MH}$, we find the approximate relation for the effects of non-stochastic terms (i.e., b, c) using the a term as,

$$\sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2} \simeq \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + \left(\frac{1.6 \ b}{\sqrt{E}}\right)^2 + \left(\frac{c}{1.6 \ \sqrt{E}}\right)^2} \ , \tag{2.13}$$

which demonstrates that the effect of b is 1.6 times larger than the a term, and the non-trivial c term is less significant than a by a factor of 1.6. Therefore, a requirement for the resolution of a/\sqrt{E} better than 3% is equivalent the following requirement,

$$\sqrt{(a)^2 + (1.6 \times b)^2 + \left(\frac{c}{1.6}\right)^2} \le 3\% .$$
(2.14)