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Supernova Neutrino 
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1987A 

Supernova 

Neutrino 

• Supernova burst neutrino detection is hard  

 -- about one chance per century. 



Supernova relic neutrino (SRN)  
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Or Diffused Supernova Neutrino Background (DSNB) 

Neutrino-rich Core collapse supernova's 

(ccSN) are the main contributors 



SRN spectrum 
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1. RccSN - supernova rate 

    (known with precision) 

  

2. dN/dE' - neutrino spectrum  

    (Some knowledge) 

 

3. Others: redshift or constant 

PRD 85, 

052007 (2012) 



SRN Detection 
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 Equal amount for each flavors;  

 SRN are identified primarily through IBD 

interactions in a hydrogen-rich detector 

 

 

Liquid scintillator – KamLAND [scintillation light]  

Water – SuperK w/ or w/o neutron tagging [Cherenkov light] 

Gd-Water - Super K with neutron tagging [Cherenkov light] 

 LAr-TPC - DUNE 

Elastic scattering 



Statistical comparison for H or Ar 
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50 kt LS 17 kt LAr 

arxiv:1205.6003 

Water case is similar with LS 



Experimental results 
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Accidental 

Reactor 

Muon-

induced 

Atmospheric neutrinos 

Super K result 

w/ n-tag ~1900 days 

w/o n-tag 2853 days 

KamLAND result 

can be found at 

Astrophys. J. 745, 

193 (2012)  



Backgrounds for SRN detection 

Site dependent: 

 Reactor neutrino E < 10 MeV 

 Cosmogenic muons, Li9/He8 E < 15 MeV 

 

Irreducible: 

 Atmospheric ne background, E> 25-30 

MeV 

 

=> Signal window [10, 30] MeV 
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Atmospheric 𝜈 𝜇/𝜈𝜇 charged current (CC) Bkg. 

𝜈 𝑒 IBD Xsec 

𝜈 𝜇 - Hydrogen 

𝜈 𝜇 - Carbon 

𝜈𝜇– Carbon 

 Total CC cross 
section 

 Quasi-elastic 
scattering (QES) 
dominated < 500 
MeV 

Shaded area: Atmospheric 𝜈 𝜇/𝜈𝜇 CC background 

responsible for 10-30 MeV SRN detection 
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 𝜈 𝜇 +      𝑝 → 𝜇+ + 𝑛 

 𝜈 𝜇 + 𝐶12 → 𝜇+ + 𝑛 + 𝐵11 (+𝛾) 

 𝜈𝜇 + 𝐶12 → 𝜇− + 𝑛 + 𝑁11  

 𝜈 𝜇 + 𝐶12 → 𝜇+ + 𝑛 + 𝐿𝑖 + 𝛼7  



Atmospheric 𝜈/𝜈  neutral current (NC) Bkg. 

𝜈 𝜇/𝜈 𝑒- Carbon 

𝜈𝜇/𝜈𝑒 – Carbon 
 Total NC cross 

section 
 NC elastic 

scattering 
dominated 

 Quite a few 
percent 
resonant/coherent 
single 𝜋 
production and 𝜈-𝑒 
scattering 

 <1 GeV Atmospheric 𝜈/𝜈  NC 

background responsible for 10-30 MeV 

SRN detection 

N
C

 

𝜈 𝜇/𝜈 𝑒- Hydrogen 

𝜈𝜇/𝜈𝑒 – Hydrogen 
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 𝜈 𝜈 + 𝐶12 → 𝜈 𝜈 + 𝑛 + 𝐶11 + 𝛾 

 𝜈 𝜈 + 𝐶12 → 𝜈 𝜈 + 𝑛 + 𝐵10 + 𝑝 

 𝜈 𝜈 + 𝐶12 → 𝜈 𝜈 + 𝑛 + 𝐿𝑖6 + 𝛼 + 𝑝 

N
C

 



Key issues on SRN detections 
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effi Atmos. CC  Atmos. NC Optical 

LS ~90% 

triple coin. from 𝝁±, 

decay 𝒆±, and neutron 

capture. 

𝝁± visible in 10-30 MeV 

Energetic neutrons 

from high energy 

atmos. Neutrinos 

Scintillati

on 

water  

w/o n-

tag  

~75% 

Decay 𝒆± from invisible 

𝝁±,  

𝝁± invisible in 10-30 MeV 

Secondaries (decays) 

of 𝒏 or 𝝅±/𝝅𝟎 below 

Cherenkov threshold 

or different hit pattern Cherenk

ov water  

w/ n-tag 
~13% Reduced a lot by neutron 

tagging. The efficiency is 

increased a lot in Gd-

water. 

Further reduced by 

neutron tagging. Gd-

water  
~70% 

•  Green: advantage / Blue: disadvantage 



Slow liquid scintillator candidate - LAB 
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 Other candidates: oil-based or water-based 

 Feature: scintillation components slow enough  

 Distinguish Cherenkov and scintillation 

Recent LAB study 
Ref. NIM A 830 (2016) 303-308 

• Rising time (𝛕𝐫):  
7.7 ± 3.0 ns 

• Decay time (𝛕𝐝):  

36.6 ± 2.4 ns 

• PMT time resolution: 

~2ns 

• Scintillation light 

yield: ~1000/MeV 

Red: Cherenkov + Scintillation 

(bottom PMT) 

Blue: Scintillation (top PMT) 



Separation of particles with LAB 
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Simulation of all types 

of particles 

 

• Geant4 true 

information 

 

• 10% QE efficiency 

for all photons 

 

• No other detector 

effect 
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Separation of particles with LAB  

More realistic: 
 
• 10 ns cut for 

Cherenkov counting 
 

• Attenuation in a10 
m R detector  
(Eff: 10% for S and 
50% for C) 
 

• 10% efficiency for 
all photons 
 



Simulation study 
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 [Detector response] Use LAB, PID in the realistic case  

 [Signal flux] HBD model for SRN prediction 

 [Background flux] Atmospheric neutrino flux  

1. > 100 MeV (Honda)  

2. < 100 MeV (Barr), basically for atmos. 𝜈 𝑒, (𝜈 𝜇/𝜈𝜇 CC 

interaction threshold ~105 MeV, NC neutron mainly 

contributed from >100 MeV atmos. flux) 

3. MSW effect considered, which would reduce the flux of 

𝜈 𝜇/𝜈𝜇 by 30%-50% in the interested energy range for 

SRN study 

 GENIE cross sections for neutrino interactions 

 Simulation validated by KamLAND SRN result (2012) 

 

 

 



Suppression of Atmos. nu backgrounds 
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 CC background is suppressed as liquid 

scintillator to tag muon 

  

 

 

 

 NC background is suppressed with particle id for 

electron and neutron recoils and others 

 

 𝜈 𝜇 +      𝑝 → 𝜇+ + 𝑛 

 𝜈 𝜇 + 𝐶12 → 𝜇+ + 𝑛 + 𝐵11 (+𝛾) 

 𝜈𝜇 + 𝐶12 → 𝜇− + 𝑛 + 𝑁11  

 𝜈 𝜇 + 𝐶12 → 𝜇+ + 𝑛 + 𝐿𝑖 + 𝛼7  

N
C

 

 𝜈 𝜈 + 𝐶12 → 𝜈 𝜈 + 𝑛 + 𝐶11 + 𝛾 

 𝜈 𝜈 + 𝐶12 → 𝜈 𝜈 + 𝑛 + 𝐵10 + 𝑝 

 𝜈 𝜈 + 𝐶12 → 𝜈 𝜈 + 𝑛 + 𝐿𝑖6 + 𝛼 + 𝑝 



Result in a 20 kton-year detector 
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Environmental background at Jinping level 



Comparison with other techniques 
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Note:  
1. Traditional PSD in LS should improve the LS result. 

2. For LAr, we expect the same S/N and Eff. 



Comparison in a plot 
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Band is background only uncertainty at 1 sigma 



Final comments on the result 
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The information is valid for a wide range of slow 

liquid scintillators. 

 

 What about water-based LS? Insufficient 

scintillation? 

- Fine, as long as a little scintillation components 

is added 

 What about oil-based LS? Separation is poor 

- A little separation is still needed. 



Thank you. 
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More detail of the work can be found at arXiv:1607.01671. 


