Theia and the Hadean Heralds

Steve Dye University of Hawaii Hawaii Pacific University

10/22/16

Geo-neutrino Primer

- Terminology
 - DM (depleted mantle not dark matter)
 - CMB (core-mantle boundary not cosmic microwave background)
 - BSE (bulk silicate Earth)
 - HPE (heat-producing element: U, Th, K)
 - Lithophile- "rock-loving"
- Unit
 - Rate: TNU (<u>Terrestrial anti</u><u>N</u>eutrino <u>U</u>nit: 1 event per 10³² free proton targets per year ≈ 1.5 / (kT y)
 - Exposure: TNU⁻¹

Overview

- Introduction
- Geological antineutrinos
- Model-dependent results
- Model-independent measurements
- Opportunities for Theia
- Conclusions

Chemical Affinity of Elements

U, Th, K in silicate earth- crust and mantle only

10/22/16

Operating Geo-neutrino Detectors

7

10/22/16

Earth Energy Budget

Terrestrial Power Balance

 $P_{surface} \approx P_{rad} + P_{CMB} + P_{man_cool}$

Present Status

Surface heat flow P_{surf} = 47±3 TW

- Radiogenic heating P_{rad} = 15±10 TW
- Heat flow across CMB P_{CMB} = 13±3 TW

Surface Heat Flux

= Rate of mantle cooling P_{man_cool} = 19±11 TW

Constrain thermal evolution

 $\partial T/\partial t = Aq/Mc (Mh/Aq - 1) = -$ (50 to 150) K/Ga

Geo-neutrino Observations and Predictions

10/22/16

Observing Geo-neutrino Signal Rate Variation

Pacific, Himalaya, Homestake, offer good opportunities (~1 TNU⁻¹)

10/22/16

Observing Geo-neutrino Spectrum

Resolving Geo-neutrino Th/U

10/22/16

Geo-neutrino Observation Status

	Rate	Spectrum	Flux	Variation	Power	Dir
U + Th	>5 σ	Th/U < 19	Th/U=3.9		model	
K	K/U		K/U		K/U	
Crust	model		model		model	
Mantle	model		model		model	
LLSVP/ULVZ						
Core						

Demonstrated/Completed		
Limit and/or Model-dependent result		
Opportunity		

Requires ~1 TNU⁻¹ (ɛ=1)

Efficiency is Important

Conclusions

- Geo-neutrinos- low energy $\overline{\nu_e}$ (~MeV)
- Independent verification great hadean trace element partitioning
 - Test constant rate and constant spectral shape hypotheses
 - Confirm variation of surface flux- ~TNU⁻¹ (~2 kT-y) exposure
 - Confirm variation of spectral shape- 30 100 TNU⁻¹ (~50 150 kT-y) exposure
- Requirements site dependent
 - Homestake, Pyhasalmi, Korea
- Motivation to push to low energy

10/22/16