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Bird’s-Eye View
1. The Advanced Scintillation Detector Concept

2. Physics Program

• Low-energy physics

• Rare-event searches

• Long-baseline physics

3. THEIA Development

• R&D Program

• Site selection

• Path forwards
3
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• New technology with proven methodology

Advanced Scintillation 
Detector Concept (ASDC)

House light-producing target inside large monolithic detector

Novel, breakthrough target medium

Water-based liquid scin
tilla

tor —
 Minfang Yeh et al.

     
   



Powerful Target Medium
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-- Tune to specific physics goals
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Demonstrated at kt-scale (KL, Borexino)
Energy (keV)

Borexino Nature article
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ratio provides 

additional 
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particle ID
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Low-Energy Program

Low threshold Directionality Isotope loading

Neutron tag Cher/scint ratio

Neutrinoless Double Beta Decay

Reject (dominant!) 8B background 130Te or 136Xe

Solar Neutrinos

CNO and       
pep sensitivity

Signal / 
background 
separation

7Li for CC spectral 
measurement 
(low energy 8B)

Supernova neutrinos

High efficiency 
IBD tag

Antineutrinos

High efficiency 
IBD tag

Discriminate positron vs 
nuclear recoil (NC bkg)
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50kt detector
50% reduction of 8B
Particle ID / coincidence tags for int r/a
Rfit > 5.5m from PMTs (30kt fid)

Projected spectrum in SNO+: 5 years, 0.5% natTe

SNO+ collaboration

mββ=6.7 meV (1% Te),   
5.5 meV (2% enrXe) 

90% CL in 5 yrs
arXiv:1409.5864
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⇒ search for new physics, solar metallicity, MSW effect
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THEIA Spectral Sensitivity

Spectral Sensitivity (CC)

cosθ⊙< 0.4

30kt fiducial
1% 7Li by mass
Conservative 
100 pe/MeV

Unprecedented low-energy statistics (ES)

Similar to LENA — Astropart. Phys. 35 (2011) 685-732
+ directionality from Cherenkov

Enabled by use of WbLS (7Li, CC)



21

 (MeV)effT
0.6 1 2 3 4 5 6

Ev
en

ts
 / 

0.
02

 M
eV

 / 
ye

ar

310

410

510

610

710

810

910

Sum
B8

Be7

CNO
pep

U chain
Th chain

Ar39

Bi210

C11

Kr85

Po210

K40

THEIA Flux Sensitivity
R. Bonventre, Berkeley



21
θcos 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

C
ou

nt
s 

1.
0 

M
eV

 <
 E

 <
 1

.5
 M

eV

70.26

70.28

70.3

70.32

70.34

70.36

70.38

70.4

70.42

610×

Fake data set

Expected backgrounds

5% WbLS
250 ang res

 (MeV)effT
0.6 1 2 3 4 5 6

Ev
en

ts
 / 

0.
02

 M
eV

 / 
ye

ar

310

410

510

610

710

810

910

Sum
B8

Be7

CNO
pep

U chain
Th chain

Ar39

Bi210

C11

Kr85

Po210

K40

THEIA Flux Sensitivity
R. Bonventre, Berkeley



21
θcos 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

C
ou

nt
s 

1.
0 

M
eV

 <
 E

 <
 1

.5
 M

eV

70.26

70.28

70.3

70.32

70.34

70.36

70.38

70.4

70.42

610×

Fake data set

Expected backgrounds

5% WbLS
250 ang res

 (MeV)effT
0.6 1 2 3 4 5 6

Ev
en

ts
 / 

0.
02

 M
eV

 / 
ye

ar

310

410

510

610

710

810

910

Sum
B8

Be7

CNO
pep

U chain
Th chain

Ar39

Bi210

C11

Kr85

Po210

K40 CNO sensitivity
as a function of

LS fraction
and

angular resn
40K at SNO lv

THEIA Flux Sensitivity
R. Bonventre, Berkeley



21
θcos 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

C
ou

nt
s 

1.
0 

M
eV

 <
 E

 <
 1

.5
 M

eV

70.26

70.28

70.3

70.32

70.34

70.36

70.38

70.4

70.42

610×

Fake data set

Expected backgrounds

5% WbLS
250 ang res

Reduce 40K 
by x10

 (MeV)effT
0.6 1 2 3 4 5 6

Ev
en

ts
 / 

0.
02

 M
eV

 / 
ye

ar

310

410

510

610

710

810

910

Sum
B8

Be7

CNO
pep

U chain
Th chain

Ar39

Bi210

C11

Kr85

Po210

K40 CNO sensitivity
as a function of

LS fraction
and

angular resn
40K at SNO lv

THEIA Flux Sensitivity
R. Bonventre, Berkeley



Antineutrino Detection
• Detect via IBD
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• Reduce NC background that limits LS detectors
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Geo Neutrinos
• Current total geo-ν exposure:    

< 10kt-yr (KL + Borexino)

• THEIA: large statistics in a 
complementary geographical 

location

DSNB
• Enhanced n tag

• Reduced NC background

• Most sensitive search to-date

• Plus NaCl for ν signal

See geoneutrino talk, Steve Dye
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See supernova talk, Zhe Wang
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• Gd reduces n-cap time delay (200μs → 20 μs) ⇒ reduce pile up

• IBD tag allows extraction of additional signals 

• Bkg reduction for ES, doubling pointing accuracy

• ID CC & monoE γ from NC ⇒ sensitive to burst T & subsequent ν mixing

Supernova Burst in THEIA

• ~15k events for SN at 
10 kpc (50 kt volume)

• ~90% events are IBD 

Highly complementary to 
νe-dominated LAr signal

24 Early warning (PR value)

See supernova talk, Zhe Wang
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High-Energy Program

Big, Deep, Clean

Ring imaging (high E)

Sub-Cher t/h detectionNeutron tag

Cher/scint ratio

Sterile Neutrinos

Deployed 
source

Nucleon Decay

High stats, 
low bkg Event ID

Particle 
discrimination

Long baseline

Sensitivity to 
2nd oscn max

Wrong sign 
reduction 
(nu / antinu)

Low-threshold 
hadron detection

Particle ID (mu, e)

Particle ID, NC 
reduction (π0→γγ)
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Sterile Neutrinos

Figs from arXiv:1409.5864
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• Deploy 8Li decay-at-rest (IsoDAR)

• 13MeV endpoint (above r/a)

• Required detector response:                                                     
15% (E)  &  50cm (R)

• 5 yrs, 1kt (black) / 20kT fid. (blue)

Sterile Neutrinos

Figs from arXiv:1409.5864

• Heavy-water based LS: 2n tag 
(reduce bkg in IBD searches)
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• Deploy 8Li decay-at-rest (IsoDAR)

• 13MeV endpoint (above r/a)

• Required detector response:                                                     
15% (E)  &  50cm (R)

• 5 yrs, 1kt (black) / 20kT fid. (blue)

Sterile Neutrinos

Figs from arXiv:1409.5864

Nucleon Decay
• Large, deep, very clean

• Enhanced n tag

• Sub-Cherenkov threshold 
detection

• Sensitive to several modes

Sub-Chr t/h detection 
⇒ Directly visible K+

THEIA

DUNE

• Heavy-water based LS: 2n tag 
(reduce bkg in IBD searches)



Long Baseline Program

Images from arXiv:1204.2295

• Large-scale detector at Homestake, 
in the LBNF beam

• Complementary program to 
LArTPC (DUNE)

• Build on WCD studies              
(arXiv:1204.2295)

27

Production at FNAL

1300km

See long baseline talk, Mike Wilking



Long Baseline Program

Images from arXiv:1204.2295

• Large-scale detector at Homestake, 
in the LBNF beam

• Complementary program to 
LArTPC (DUNE)

• Build on WCD studies              
(arXiv:1204.2295)

27

Production at FNAL

1300km

Ring-imaging of a water Cherenkov detector

Particle ID from Cher/scint separation

n and low-E hadron detection (low threshold)

reduce wrong-sign component (nu vs anti-nu)

reduce NC background by detecting π0→γγ
Large size ⇾ sensitivity to 2nd oscn max

See long baseline talk, Mike Wilking



Long-baseline Sensitivity

28
Study by E. T. Worcester using same 
GLOBES package used for ELBNFAll figs from E. Worcester

~300 kt-MW-yr 
exposure (40kt LAr)

Performance competitive with 40kt LAr TPC !!

Synergy with LAr TPC

Independent 
systematics

High-energy events

See long baseline talk, Mike Wilking



Long-baseline Sensitivity

28
Study by E. T. Worcester using same 
GLOBES package used for ELBNFAll figs from E. Worcester

MH sensitivity for 50kt WbLS alone > 5σ

~300 kt-MW-yr 
exposure (40kt LAr)

Performance competitive with 40kt LAr TPC !!

Synergy with LAr TPC

Independent 
systematics

High-energy events

See long baseline talk, Mike Wilking



Physics Requirements

29

Size (kt) Loading
Resolution 
(light yield 
* coverage)

Direction / 
rings Cleanliness Depth Bag

NLDBD 10 Te, 
Nd…

Solar 10 Li

Geo 100 Gd

DSNB 50 Gd

Supernova 50 Gd

Nucleon 
decay 100

Sterile 10

Long 
baseline 50

Critical Important Nice to have / not important
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29

Size (kt) Loading
Resolution 
(light yield 
* coverage)

Direction / 
rings Cleanliness Depth Bag

NLDBD 10 Te, 
Nd…

Solar 10 Li

Geo 100 Gd

DSNB 50 Gd

Supernova 50 Gd

Nucleon 
decay 100

Sterile 10

Long 
baseline 50

Critical Important Nice to have / not importantSee next talk / discussion, Ed Blucher
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C. THEIA 
Development



R&D Program - i
• WbLS cocktail development 

• LS fraction

• Fluor choice & fraction

• Isotope loading

• WbLS deployment questions

• Nanofiltration 

• Purification

• Recirculation

• Background levels

• Materials compatibility 

• WbLS cocktail properties

• Light yield

• Attenuation

• Absorption

• Scattering

• Quenching

• Emission spectrum

• WbLS timing 

• Cherenkov/scintillation 
separation 
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• LS fraction

• Fluor choice & fraction

• Isotope loading

• WbLS deployment questions

• Nanofiltration 

• Purification

• Recirculation

• Background levels

• Materials compatibility 

• WbLS cocktail properties

• Light yield

• Attenuation

• Absorption

• Scattering

• Quenching

• Emission spectrum

• WbLS timing 

• Cherenkov/scintillation 
separation 
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Talk by Bob Svoboda

Talk by G. D. Orebi GannTalk by Timo Enqvist



R&D Program - ii

• Photon sensor development 

• Large-area PMTs

• High efficiency (QE)

• Ultra-fast detectors

• Hybrid scheme 

• Characterization

• THEIA physics program

• Monte Carlo model

• Detector design

• Reconstruction techniques 

• Particle ID

• Background rejection

• Physics sensitivity studies
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R&D Program - ii

• Photon sensor development 

• Large-area PMTs

• High efficiency (QE)

• Ultra-fast detectors

• Hybrid scheme 

• Characterization

• THEIA physics program

• Monte Carlo model

• Detector design

• Reconstruction techniques 

• Particle ID

• Background rejection

• Physics sensitivity studies

32

Talks by Learned, Lorenz

Talks by Wilking, Wang, Dye

Talks by Elagin, Qian

Plus afternoon discussion (Sunday)



Site Scale Target Measurements Timescale
UChicago bench top

H2O

fast photodetectors Exists

CHIPS 10 kton
electronics, readout, 

mechanical infrastructure 2019

EGADS 200 ton

H2O+Gd isotope loading, fast 
photodetectors

Exists

ANNIE 30 ton Exists

WATCHMAN 1 kton 2020

NuDot 1 ton LS directionality 2017

Penn 30 L
(Wb)LS light yield, timing, loading

Exists

SNO+ 780 ton 2017

CHESS (LBNL) bench top
WbLS

signal separation, tracking, 
reconstruction /

light yield, loading, 
attenuation

Exists

BNL 1 ton Filling

Community Interest

33
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THEIA

CHIPS
WATCHMAN

EGADS
Gd loading and 
purification Water-based 

liquid scintillator

Te loading

Neutron yield, 
LAPPD deployment

Infrastructure, 
underwater 
integration

WbLS, Gd, LAPPD, 
HQE PMT, full 
integration prototype
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Talks by Dazeley, Tzanov, 
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THEIA

CHIPS
WATCHMAN

EGADS
Gd loading and 
purification Water-based 

liquid scintillator

Te loading

Neutron yield, 
LAPPD deployment

Infrastructure, 
underwater 
integration

WbLS, Gd, LAPPD, 
HQE PMT, full 
integration prototype

Talks by Dazeley, Tzanov, 
Ludhova, Krennrich

Note: not an exhaustive list!



Site Selection

• Factors to consider —

• Depth     —     potential for low energy program

• Beam      —     potential for long-baseline program

• Current status

• Cost

• Potential sites

• SURF

• Pyhäsalmi

• Korea

• Other?
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Site Selection

• Factors to consider —

• Depth     —     potential for low energy program

• Beam      —     potential for long-baseline program

• Current status

• Cost

• Potential sites

• SURF

• Pyhäsalmi

• Korea

• Other?

35

Talk by Ken Lande

Talk by David Vardiman

Talk by Wladyslaw Trzaska

Talk by Seon-Hee Seo

Plus discussion to follow



THEIA To Date

First US meeting at LBNL (May ’14)

International workshop at FNAL (Mar ’16)

Technical Workshop, Mainz (Oct ’16)



Brookhaven National 
Laboratory
Brunel University
University of California, 
Berkeley
University of California, Davis
University of California, Irvine
University of Chicago
Columbia University
University of Hawaii at Manoa
University of Hamburg

Hawaii Pacific University
Iowa State University
Johannes Gutenberg-
University Mainz 
Lawrence Berkeley National 
Laboratory
Lawrence Livermore National 
Laboratory
Los Alamos National 
Laboratory
University of Maryland

MIT
University of Pennsylvania
Princeton University 
RWTH Aachen University
Sandia National Laboratories
TUM, Physik-Department
Virginia Polytechnic Inst. & 
State University
University of Washington

37

New participation welcome                 
contact G. D. Orebi Gann, B. Svoboda, E. Blucher, J. R. Klein, 

M. Wurm, L. Oberauer

Concept paper - arXiv:1409.5864

THEIA Interest Group



• Coordinated R&D program

• Coordinated physics studies (working groups)

• Develop white paper

• Coordinated R&D proposals —> develop full (preliminary) CDR

• Discuss international organization (form a collaboration?)

38

THEIA Moving Forwards
The plan for Monday
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• Opportunity to combine conventional neutrino physics 
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• Unique flexibility to adapt to new directions in the 
scientific program as the field evolves
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• Potentially revolutionary technology

• Opportunity to combine conventional neutrino physics 
with rare-event searches in a single detector

• Unique f
scientific program as the field evolves

• Powerful instrument of discovery

• Let’s make it happen!

THEIA



Back up

41



R&D Highlights
• WbLS cocktail development [BNL]

• Nanofiltration [Davis]

• Materials compatibility [Davis, BNL]

• WbLS timing [Chicago, Penn, Berkeley]

• Cherenkov/scintillation separation [Berkeley]

• Monte Carlo, physics reach [Penn, Berkeley, Davis, MIT]

• Reconstruction techniques [Chicago, Hawaii, MIT] 

• Photon sensor development [ANL, Chicago, Hamamatsu, Penn]

• Purification, attenuation [Munich]

• Hybrid photosensor scheme [Aachen]

• Photosensor characterization [Hamburg]

• Scattering, light yield, absorption & emission spectra [Mainz]
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Talk by Bob Svoboda

Talk by G. D. Orebi Gann

Talks by Learned, Lorenz

Caveat: to best of speaker’s 
(limited) knowledge
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Solar sensitivity [LBNL]

θcos 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0% LAB
0.5% LAB
1% LAB
2% LAB
3% LAB
4% LAB
5% LAB
10% LAB

50 kton detector
50% fiducial (neglect externals)

90% coverage
5 years data

SNO+-level backgrounds in LAB
SNO-level backgrounds in water
SNO+-level background rejection

Angular resolution

CNO flux 
sensitivity as a 

function of WbLS 
cocktail

[preliminary]

[preliminary]


