Comments on THEIA Long Baseline Physics

Mike Wilking Stony Brook University 2nd FroST Meeting, JGU Mainz October 22nd, 2016

Overview

- Reconstruction in water Cherenkov detectors has advanced since the early LBNE sensitivity calculations
- We are beginning studies to determine how much more sensitive a WC detector in the DUNE beamline can be to CP violation
- Initial studies utilize atmospheric Monte Carlo in a Super-K sized detector
 - For future studies, a new simulation of a much larger detector is now available

"Elizabeth Plots"

- At the previous FroST meeting, E. Worcester showed that if the NC background is reduced by 75%, 40 kt of LAr produces the same sensitivity as 100 kt of water
- How realistic is this reduction, and what other improvements are possible?

fiTQun: An Event Reconstruction Algorithm for Super-K

- For each Super-K event we have, for every hit PMT
 - A measured charge
 - A measured time
- For a given event topology hypothesis, it is possible to produce a change and time PDF for each PMT
 - Based on the likelihood model used by MiniBooNE (NIM A608, 206 (2009))
- Framework can handle any number of reconstructed tracks
 - Same fit machinery used for all event topologies (e.g. e and π)
- Event hypotheses are distinguished by **comparing best-fit likelihoods**
 - electron / π
 - electron / muon / π / K / p / ...
 - 1-ring / 2-ring / 3-ring ...

The Likelihood Fit

- For multi-particle states, predicted charges are summed
- Scattered and reflected light is treated separately (and more crudely: tabulation)

Single Track Particle ID

- Simple line cut can be used to separate muons and electrons
- Significantly improved particle ID

FiTQun π^0 Fitter

Vertez

- Assumes two electron hypothesis rings produced at a common vertex
- **12 parameters** (single track fit had 7)
 - Vertex (X, Y, Z, T)
 - Directions $(\theta_1, \phi_1, \theta_2, \phi_2)$
 - Momenta (p_1, p_2)
 - Conversion lengths (c_1, c_2)
- Large improvement in finding low energy 2nd ring
 - ~70% reduction in π background relative to POLFit (not used in LBNE studies)

Photon

Conversions

Other fiTQun Tools: π⁺ Fitter

tracks

- Pions and muons have very similar Cherenkov profiles
 - Main difference is the **hadronic interactions** of pions

muon

tracks

- Ring pattern observed is a "kinked" pion trajectory (thin ring with the center portion missing)
- New ability to separate charge pions from muons

electron

tracks

Multi-ring Fitter

- Fit up to 6 rings using e & π^+ hypotheses 28 fits in total (every possible e/π^+ combination)
- μ hypothesis is a subset of the π⁺ hypothesis (no "thin" ring from hadronic interactions)
- Can now separate pion, muon, and electron rings

Original LBNE v_e Studies

- Original studies based on SK1/SK2 MC
- Standard v_e "pre-cut" selection applied
 - 1-ring, e-like, with ZERO decay electrons
- "Post-cut" is an additional cut designed to remove piO events

FiTQun "Pre-cuts"

- Similar efficiencies for CCQE events
- Noticeably smaller efficiency for CCnQE
 - Improved ring counting reduces multi-ring samples (more on this later)
- NC events already significantly lower

FiTQun "Pre-cuts"

- By relaxing the zero decay electron requirement, can enhance the "1-ring" CCπ⁺ events
 - Very large gain in v_e CCnQE (nearly double at the 1st oscillation maximum)
 - This sample resulted in a 13% statistics increase in the most recent T2K ν_e analysis

π⁰ Rejection

- Naively applying the T2K FiTQun piO rejection cut seems very promising
- However, this is very misleading
- Current cut is optimized for T2K (i.e. lower) energy flux
 - Large loss of efficiency at higher energies

π^0 Cut at High E_{vis}

• The current π^{0} cut is not optimized for high energy events

$\ln(L_{\pi 0}/L_e)$ vs $M_{\pi 0}$ for the ATM MC Sample

π^0 Rejection II

- What if we only apply the existing cut below Evis of 1 GeV?
 - Still can achieve fairly high π rejection (up to 1 GeV/c π momentum)
- Which energy regions are the most important? Need a full sensitivity study
- Ultimately, a cut should be designed that varies with Evis

Final LBNE π^0 Rejection

 Original LBNE optimization included a multidimensional cut to improve piO rejection

Final LBNE π^0 Rejection

80%

65%

80%

67%

Post-Likelihood Efficiency

• Tro rejection cut depends on reconstructed ve spectrum

79%

82%

- Need to get the correct beam flux spectrum to properly predict π^0 rejection in reconstructed E_{ν} bins
- Work to do this with FiTQun has already started

Multi-Ring Events

 π^+ Downstream

Track

Previous CCn efficiency was \bullet between 20% - 35%

Large improvements are possible, since this mode is dominant at the DUNE 1st oscillation maximum

 π^+ Upstream Track

Hit Charge Distribution

Reconstructed Predicted Charge

Summary / Next Steps

- Next step is to modify sensitivity code to accept several different signal selections (CCQE, $CC\pi^+$, $CC\pi^0$, etc.)
 - Large gains may be possible at the 1st oscillation maximum
- FiTQun is now adaptable to a variety of different detector geometries and photosensors
- A large detector simulation using WCSim has been produced (via DUNE+GENIE event vectors produced by Elizabeth)
 - This can be used to produce a more realistic efficiencies in a larger detector size
- Improving THEIA's sensitivity to CP violation may be helpful in getting the first phase of the experiment built