CHESS: CHErenkov / Scintillation Separation Experiment

Gabriel D. Orebi Gann FROST-ii workshop, Oct 23rd, Mainz

On behalf of the CHESS group: J. Caravaca, F. B. Descamps, B. J. Land, J. Wallig, M. Yeh and G. D. Orebi Gann

- Scintillation component boosts intrinsic light yield
- High transparency \Rightarrow good light collection
 - Low energy threshold
 - Good energy (& vertex) resolution

- Scintillation component boosts intrinsic light yield
- High transparency \Rightarrow good light collection
 - Low energy threshold
 - Good energy (& vertex) resolution

All while retaining topological information from Cherenkov component

- Scintillation component boosts intrinsic light yield
- High transparency \Rightarrow good light collection
 - Low energy threshold
 - Good energy (& vertex) resolution

All while retaining topological information from Cherenkov component

- Directionality for low-energy
 - NLDBD vs solar v
 - Solar V vs radioactivity (CNO, MSW transition)
- Particle identification via ring imaging for high-energy (e vs μ)
- Particle ID via Cher/scint ratio (e+ vs recoil for antinu bkg rejection)

Separate signals in:

- Time
 - Ultra-fast detection (LAPPD?)
 - Delay scint light

Separate signals in:

- Time
 - Ultra-fast detection (LAPPD?)
 - Delay scint light

Separate signals in:

- Time
 - Ultra-fast detection (LAPPD?)
 - Delay scint light
- Charge
 - Tune relative light yields
 - Readout sensitivity

Separate signals in:

- Time
 - Ultra-fast detection (LAPPD?)
 - Delay scint light
- Charge
 - Tune relative light yields
 - Readout sensitivity
- Wavelength

• LS spectrum (fluor) / readout

λ (nm)

Cosmic Muon Ring-Imaging Experiment at Berkeley

CHESS: Supported by LBNL LDRD (FY '15-16) arXiv: 1610.02029 CHErenkov-Scintillation Separation

- Select vertical cosmic muon events
- Image Cherenkov ring in Q and T on fast-PMT array
- Allows charge- and time-based separation

12 1-inch H11934 PMTs (300ps FWHM, 42% QE) CAEN V1742 (5GHz) 675 samples (135ns window) CAEN V1730 (500MHz)

CHESS: Supported by LBNL LDRD (FY '15-16) arXiv: 1610.02029 CHErenkov-Scintillation Separation

3

2

12 1-inch H11934 PMTs (300ps FWHM, 42% QE) CAEN V1742 (5GHz) 675 samples (135ns window) CAEN V1730 (500MHz)

- LED deployed on axis above setup
 - Calibrate hardware delays
 - Cross checked with muons in block

- LED deployed on axis above setup
 - Calibrate hardware delays
 - Cross checked with muons in block
- ⁹⁰Sr source deployed on water target
 - Cherenkov light is well understood
 - Extract parameters per PMT
 - SPE spectrum, PMT pulse shape

- LED deployed on axis above setup
 - Calibrate hardware delays
 - Cross checked with muons in block
- ⁹⁰Sr source deployed on water target
 - Cherenkov light is well understood
 - Extract parameters per PMT
 - SPE spectrum, PMT pulse shape
- Tagged muon data with water target
 - No scintillation light, clear rings
 - Calibrate event selection
 - Understand backgrounds

CHESS Calibration

Fime Delays (ns)

- LED deployed on axis above setup
 - Calibrate hardware delays
 - Cross checked with muons in block
- ⁹⁰Sr source deployed on water target
 - Cherenkov light is well understood
 - Extract parameters per PMT
 - SPE spectrum, PMT pulse shape
- Tagged muon data with water target
 - No scintillation light, clear rings
 - Calibrate event selection
 - Understand backgrounds

Full simulation includes —

Detailed geometry, material properties, optics, scintillation yield and time profile, DAQ effects (TTS, pulse shapes, electronics noise, SPE...)

CHESS Calibration

Fime Delays (ns)

- LED deployed on axis above setup
 - Calibrate hardware delays
 - Cross checked with muons in block
- ⁹⁰Sr source deployed on water target
 - Cherenkov light is well understood
 - Extract parameters per PMT
 - SPE spectrum, PMT pulse shape
- Tagged muon data with water target
 - No scintillation light, clear rings
 - Calibrate event selection
 - Understand backgrounds

Full simulation includes —

Detailed geometry, material properties, optics, scintillation yield and time profile, DAQ effects (TTS, pulse shapes, electronics noise, SPE...)

CHESS Water Data

Typical ring candidate event

CHESS Water Data

arXiv: [6]0.02011 CHESS Results: Pure LAB

Typical ring candidate event

Average over data set (117 events)

Separation in Pure LAB

Time at fixed threshold Corrected by ToF, channel delays

Ratio of charge in prompt, 5ns window to charge in total (135ns) window

Addition of Fluor

Addition of PPO to LAB (at 2g / L)

- Increases light yield by ~ factor of 10
- Shortens scintillation time profile significantly

\Rightarrow Separation more challenging in both charge and time

arXiv: 1610.02011 CHESS Results: LAB / PPO

Separation in LAB / PPO

Time at fixed threshold Corrected by ToF, channel delays

NOTE: Rise time = 0.75 ± 0.25 ns

arXiv: 1610.02011

Ratio of charge in prompt, 5ns window to charge in total (135ns) window

Apparatus designed such that Cherenkov ring falls on "outer" PMTs Expect ~5-10 PEs per outer PMT due to Cherenkov photons

 \Rightarrow Hit-time of outer PMTs is due to Cherenkov photon

Hit-time of inner / middle PMTs is due to scintillation Define a threshold (in hit time or Qratio) to calculate separation

Apparatus designed such that Cherenkov ring falls on "outer" PMTs Expect ~5-10 PEs per outer PMT due to Cherenkov photons

 \Rightarrow Hit-time of outer PMTs is due to Cherenkov photon

Hit-time of inner / middle PMTs is due to scintillation Define a threshold (in hit time or Qratio) to calculate separation

Cherenkov detection efficiency = fraction of Cherenkov hits (outer PMT hits) that fall within that selection

Apparatus designed such that Cherenkov ring falls on "outer" PMTs Expect ~5-10 PEs per outer PMT due to Cherenkov photons

 \Rightarrow Hit-time of outer PMTs is due to Cherenkov photon

Hit-time of inner / middle PMTs is due to scintillation Define a threshold (in hit time or Qratio) to calculate separation

Cherenkov detection efficiency = fraction of Cherenkov hits (outer PMT hits) that fall within that selection

Scintillation contamination = fraction of hits within that selection that are due to scintillation (middle & inner PMT hits)

Apparatus designed such that Cherenkov ring falls on "outer" PMTs Expect ~5-10 PEs per outer PMT due to Cherenkov photons

 \Rightarrow Hit-time of outer PMTs is due to Cherenkov photon

Hit-time of inner / middle PMTs is due to scintillation Define a threshold (in hit time or Qratio) to calculate separation

Cherenkov detection efficiency = fraction of Cherenkov hits (outer PMT hits) that fall within that selection

Scintillation contamination = fraction of hits within that selection that are due to scintillation (middle & inner PMT hits)

	LAB Time- based	LAB Charge- based	LAB/PPO Time- based	LAB/PPO Charge- based
Cherenkov detection efficiency	83 ± 3 %	96 ± 2 %	70 ± 3 %	63 ± 8 %
Scintillation contamination	11 ± 1 %	6±3%	36 ± 5 %	38 ± 4 %

CHESS Results: 1% WbLS

CHESS Results: 1% WbLS

CHESS: Future plans

- Achieved successful detection of Cherenkov component in LAB and LAB + 2g/L PPO
- Full study of Cher / scint separation in WbLS
 - Quantify impact of LS fraction
 - Quantify impact of fluor type & fraction
 - Quantify impact of isotope loading
- Expand setup to include additional measurements
 - Light yield
 - Scintillation timing profile
 - Particle identification capabilities (α - β , β - γ separation)
- Optimize THEIA target using output from these results
 - Physics sensitivity: solar, DSNB, NLDBD

This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DEAC02- 05CH11231.

Back up

