Complete Experiments in pseudoscalar meson photoproduction

Yannick Wunderlich

HISKP, University of Bonn

October 5, 2016

Motivation for photoproduction

- N* spectrum
- Predictions of the Bonn CQM on the left [Loring et al. (2001)]
- Resonances from [PDG (2014)] on the right

*) Photoproduction is studied at photon facilities in Bonn (CBELSA/TAPS), Mainz (MAMI/A2), Newport News (CLAS), ...

[[]Andrew Wilson]

Motivation for photoproduction

- N* spectrum
- Predictions of the Bonn CQM on the left [Loring et al. (2001)]
- Resonances from [PDG (2014)] on the right

[Andrew Wilson]

- *) Photoproduction is studied at photon facilities in Bonn (CBELSA/TAPS), Mainz (MAMI/A2), Newport News (CLAS), ...
- *) What I do: Identify a sufficient data base to get a unique solution for photoproduction amplitudes (or multipoles) \rightarrow Complete Experiments.

Photoproduction amplitudes

Photoproduction amplitude in the CMS:

$$\begin{array}{c} & \overset{\mathbf{a}_{T_{T_{n_{n_{r_{i}}}}}}}{\bigvee} \varphi \\ & \overset{\mathbf{a}_{T_{n_{r_{i}}}}}{\bigvee} = \mathcal{T}_{fi} = \mathcal{C}\chi^{\dagger}_{m_{s_{f}}} \Big[i\vec{\sigma}\cdot\hat{\epsilon}F_{1} + \vec{\sigma}\cdot\hat{q}\vec{\sigma}\cdot\left(\hat{k}\times\hat{\epsilon}\right)F_{2} + i\vec{\sigma}\cdot\hat{k}\hat{q}\cdot\hat{\epsilon}F_{3} \\ & & +i\vec{\sigma}\cdot\hat{q}\hat{q}\cdot\hat{\epsilon}F_{4} \Big]\chi_{m_{s_{i}}} \qquad \begin{array}{c} [\text{Chew, Goldberger, Low} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

 \rightarrow Process fully described by 4 complex amplitudes $F_i(W, \theta)$.

Photoproduction amplitudes

Photoproduction amplitude in the CMS:

 \rightarrow Process fully described by 4 complex amplitudes $F_i(W, \theta)$.

Important concept: expansion of full amplitudes into partial waves:

$$F_{1}(W,\theta) = \sum_{\ell=0}^{\infty} \left\{ \left[\ell M_{\ell+} + E_{\ell+} \right] P_{\ell+1}^{'}(\cos(\theta)) + \left[(\ell+1) M_{\ell-} + E_{\ell-} \right] P_{\ell-1}^{'}(\cos(\theta)) \right\}$$

$$F_{2}(W,\theta) = -\frac{1}{2} \left\{ \left[\ell M_{\ell+} + E_{\ell+} \right] P_{\ell+1}^{'}(\cos(\theta)) + \left[(\ell+1) M_{\ell-} + E_{\ell-} \right] P_{\ell-1}^{'}(\cos(\theta)) \right\}$$

*) $J = |\ell \pm 1/2|, P = (-)^{\ell+1}$. *) *s*-chn. resonance J^P ; (1) \uparrow multipole $E_{\ell\pm}^{(I)}, M_{\ell\pm}^{(I)}$

Photoproduction amplitudes

Photoproduction amplitude in the CMS:

 \rightarrow Process fully described by 4 complex amplitudes $F_i(W, \theta)$.

Important concept: expansion of full amplitudes into partial waves:

$$F_{1}(W,\theta) = \sum_{\ell=0}^{\infty^{\ell_{\max}}} \left\{ \left[\ell M_{\ell+} + E_{\ell+} \right] P_{\ell+1}^{'}(\cos(\theta)) + \left[(\ell+1) M_{\ell-} + E_{\ell-} \right] P_{\ell-1}^{'}(\cos(\theta)) \right\}$$

 $F_2(W,\theta) = \ldots$

In practice:

Truncate at some finite ℓ_{\max}

 $\label{eq:max} \rightarrow \mbox{Try to extract the } 4\ell_{max} \\ \mbox{complex multipoles in a fit} \\ \mbox{to the data}.$

Polarization observables

Generic definition of an observable

$$\Omega = \frac{\beta}{\sigma_0} \left[\left(\frac{d\sigma}{d\Omega} \right)^{(B_1, T_1, R_1)} - \left(\frac{d\sigma}{d\Omega} \right)^{(B_2, T_2, R_2)} \right]$$

Polarization observables

Generic definition of an observable

$$\Omega = \frac{\beta}{\sigma_0} \left[\left(\frac{d\sigma}{d\Omega} \right)^{(B_1, T_1, R_1)} - \left(\frac{d\sigma}{d\Omega} \right)^{(B_2, T_2, R_2)} \right]$$

*) In total, 16 non-redundant observables

$$\Omega^{lpha}\left(W, heta
ight)=rac{1}{2\sigma_{0}}\sum_{i,j}F_{i}^{*}\hat{A}_{ij}^{lpha}F_{j}, \hspace{1em} lpha=1,\ldots,16$$

can be defined, involving Beam-, Target- and Recoil Polarization.

Beam		Target		Recoil			Target + Recoil				
	-	-	-	-	x'	y'	<i>z</i> ′	<i>x</i> ′	<i>x</i> ′	z'	<i>z</i> ′
	-	x	У	Ζ	-	-	-	x	z	x	z
unpolarized	$\left(\frac{d\sigma}{d\Omega}\right)_0 = \sigma_0$		т			Ρ		$T_{x'}$	$L_{x'}$	$T_{z'}$	$L_{z'}$
linear	Σ	н	Ρ	G	<i>O</i> _{<i>x'</i>}	Т	$O_{z'}$				
circular		F		Е	$C_{x'}$		$C_{z'}$				

Observables in the transversity basis

Observable	Transversity representation	Туре	*) Transversity amplitudes:
σ_0	$rac{1}{2}\left(b_1 ^2+ b_2 ^2+ b_3 ^2+ b_4 ^2 ight)$		$b_i = \sum_j M_{ij} F_j$.
Σ́	$rac{1}{2}\left(\left. \left(-\left b_{1} ight ^{2} - \left b_{2} ight ^{2} + \left b_{3} ight ^{2} + \left b_{4} ight ^{2} ight) ight.$	${\mathcal S}$	*) Different scheme of
Ť	$\frac{1}{2} \left(b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2 \right)^2$		spin-quantization:
. Ď	$\frac{1}{2}\left(- b_1 ^2+ b_2 ^2- b_3 ^2+ b_4 ^2\right)$		$\langle m_{s_f} \mathcal{T} m_{s_i} \rangle$
Ğ	$\operatorname{Im}\left[-b_{1}b_{3}^{*}-b_{2}b_{4}^{*}\right]$		↓
Н	$-\mathrm{Re}\left[b_1b_3^*-b_2b_4^*\right]$	\mathcal{BT}	$\langle t_f \dot{\mathcal{T}} t_i \rangle$.
Ě	$-\mathrm{Re}\left[b_1b_3^*+b_2b_4^* ight]$		(+) $+1$.
Ě	$\operatorname{Im}\left[b_1b_3^*-b_2b_4^*\right]$		$t_i(t_f) = \pm \frac{1}{2}$
Ď _{x'}	$-\operatorname{Re}\left[-b_{1}b_{4}^{*}+b_{2}b_{3}^{*}\right]$		spin-projection of initial
Ď,,	$\operatorname{Im}\left[-b_{1}b_{4}^{*}-b_{2}b_{3}^{*}\right]$	\mathcal{BR}	(final) baryon on the
$\check{C}_{x'}$	$\operatorname{Im}\left[b_{1}b_{4}^{*}-b_{2}b_{3}^{*}\right]$		normal of the reaction
Č _{z'}	$\operatorname{Re}\left[b_{1}b_{4}^{*}+b_{2}b_{3}^{*}\right]$		plane.
$\check{T}_{x'}$	$-\mathrm{Re}\left[-b_1b_2^*+b_3b_4^* ight]$		*) Observables simplify
$\check{T}_{z'}$	$-\mathrm{Im}\left[b_1b_2^*-b_3b_4^* ight]$	\mathcal{TR}	() Observables simplify:
$\mathcal{L}_{x'}$	$-\mathrm{Im}\left[-b_1b_2^*-b_3b_4^*\right]$		$\check{\Omega}^{\alpha} = \frac{1}{2} \sum_{i} b_{i}^{\alpha} \check{\Gamma}_{i}^{\alpha} b_{i}$
Ľ′	$\operatorname{Re}\left[-b_{1}b_{2}^{*}-b_{3}b_{4}^{*} ight]$		2 <i>2</i> 1, <i>j</i> 1 1 <i>j</i> 2 <i>j</i>

*) <u>Question</u>: How many and which observables $\check{\Omega}^{\alpha}$ have to be measured in order to uniquely extract the full amplitudes (e.g. transversity amplitudes b_i)?.

) <u>Mathematical solution</u>: [Chiang & Tabakin, Phys. Rev. C 55, 2054 (1997)] Utilize b.t.p.-form $\check{\Omega}^{\alpha} = \frac{1}{2} \sum_{i,j} b_i^ \tilde{\Gamma}_{ij}^{\alpha} b_j$ and the completeness of the $\tilde{\Gamma}^{\alpha}$ -matrices ($\tilde{\Gamma}^{\alpha}$ form an orthonormal basis): $\frac{1}{4} \sum_{\alpha} \tilde{\Gamma}_{ba}^{\alpha} \tilde{\Gamma}_{st}^{\alpha} = \delta_{as} \delta_{bt}$

) <u>Mathematical solution:</u> [Chiang & Tabakin, Phys. Rev. C 55, 2054 (1997)] Utilize b.t.p.-form $\check{\Omega}^{\alpha} = \frac{1}{2} \sum_{i,j} b_i^ \tilde{\Gamma}_{ij}^{\alpha} b_j$ and the completeness of the $\tilde{\Gamma}^{\alpha}$ -matrices ($\tilde{\Gamma}^{\alpha}$ form an orthonormal basis): $\frac{1}{4} \sum_{\alpha} \tilde{\Gamma}_{ba}^{\alpha} \tilde{\Gamma}_{st}^{\alpha} = \delta_{as} \delta_{bt}$

$$\sum_{\alpha} \tilde{\Gamma}^{\alpha}_{ac} \check{\Omega}^{\alpha} = \frac{1}{2} \sum_{\alpha} \tilde{\Gamma}^{\alpha}_{ac} \sum_{i,j} b^{*}_{i} \tilde{\Gamma}^{\alpha}_{ij} b_{j} = \frac{1}{2} \sum_{i,j} b^{*}_{i} \sum_{\alpha} \tilde{\Gamma}^{\alpha}_{ac} \tilde{\Gamma}^{\alpha}_{ij} b_{j}$$

) <u>Mathematical solution:</u> [Chiang & Tabakin, Phys. Rev. C 55, 2054 (1997)] Utilize b.t.p.-form $\check{\Omega}^{\alpha} = \frac{1}{2} \sum_{i,j} b_i^ \tilde{\Gamma}_{ij}^{\alpha} b_j$ and the completeness of the $\tilde{\Gamma}^{\alpha}$ -matrices ($\tilde{\Gamma}^{\alpha}$ form an orthonormal basis): $\frac{1}{4} \sum_{\alpha} \tilde{\Gamma}_{ba}^{\alpha} \tilde{\Gamma}_{st}^{\alpha} = \delta_{as} \delta_{bt}$

$$\sum_{\alpha} \tilde{\Gamma}^{\alpha}_{ac} \check{\Omega}^{\alpha} = \frac{1}{2} \sum_{\alpha} \tilde{\Gamma}^{\alpha}_{ac} \sum_{i,j} b^{*}_{i} \tilde{\Gamma}^{\alpha}_{ij} b_{j} = \frac{1}{2} \sum_{i,j} b^{*}_{i} \sum_{\alpha} \tilde{\Gamma}^{\alpha}_{ac} \tilde{\Gamma}^{\alpha}_{ij} b_{j}$$
$$= 2 \sum_{i,j} b^{*}_{i} \delta_{ic} \delta_{aj} b_{j} = 2 b^{*}_{c} b_{a}$$

) <u>Mathematical solution:</u> [Chiang & Tabakin, Phys. Rev. C 55, 2054 (1997)] Utilize b.t.p.-form $\check{\Omega}^{\alpha} = \frac{1}{2} \sum_{i,j} b_i^ \tilde{\Gamma}_{ij}^{\alpha} b_j$ and the completeness of the $\tilde{\Gamma}^{\alpha}$ -matrices ($\tilde{\Gamma}^{\alpha}$ form an orthonormal basis): $\frac{1}{4} \sum_{\alpha} \tilde{\Gamma}_{ba}^{\alpha} \tilde{\Gamma}_{st}^{\alpha} = \delta_{as} \delta_{bt}$

$$\begin{split} \sum_{\alpha} \tilde{\Gamma}^{\alpha}_{ac} \check{\Omega}^{\alpha} &= \frac{1}{2} \sum_{\alpha} \tilde{\Gamma}^{\alpha}_{ac} \sum_{i,j} b^{*}_{i} \tilde{\Gamma}^{\alpha}_{ij} b_{j} = \frac{1}{2} \sum_{i,j} b^{*}_{i} \sum_{\alpha} \tilde{\Gamma}^{\alpha}_{ac} \tilde{\Gamma}^{\alpha}_{ij} b_{j} \\ &= 2 \sum_{i,j} b^{*}_{i} \delta_{ic} \delta_{aj} b_{j} = 2 b^{*}_{c} b_{a} \\ &\to b^{*}_{i} b_{j} = \frac{1}{2} \sum_{\alpha} \left(\tilde{\Gamma}^{\alpha}_{ij} \right)^{*} \check{\Omega}^{\alpha} \\ &\to |b_{i}| = \sqrt{b^{*}_{i} b_{i}} \& e^{\phi_{ij}} = \frac{b^{*}_{j} b_{i}}{|b_{j}| |b_{i}|} \end{split}$$

) <u>Mathematical solution</u>: [Chiang & Tabakin, Phys. Rev. C 55, 2054 (1997)] Utilize b.t.p.-form $\check{\Omega}^{\alpha} = \frac{1}{2} \sum_{i,j} b_i^ \tilde{\Gamma}_{ij}^{\alpha} b_j$ and the completeness of the $\tilde{\Gamma}^{\alpha}$ -matrices ($\tilde{\Gamma}^{\alpha}$ form an orthonormal basis): $\frac{1}{4} \sum_{\alpha} \tilde{\Gamma}_{ba}^{\alpha} \tilde{\Gamma}_{st}^{\alpha} = \delta_{as} \delta_{bt}$

$$b_i^*b_j = rac{1}{2}\sum_lpha \left(ilde{\Gamma}_{ij}^lpha
ight)^*\check{\Omega}^lpha o |b_i| = \sqrt{b_i^*b_i} \& e^{\phi_{ij}} = rac{b_j^*b_i}{|b_j|\,|b_i|}$$

) <u>Mathematical solution</u>: [Chiang & Tabakin, Phys. Rev. C 55, 2054 (1997)] Utilize b.t.p.-form $\check{\Omega}^{\alpha} = \frac{1}{2} \sum_{i,j} b_i^ \tilde{\Gamma}_{ij}^{\alpha} b_j$ and the completeness of the $\tilde{\Gamma}^{\alpha}$ -matrices ($\tilde{\Gamma}^{\alpha}$ form an orthonormal basis): $\frac{1}{4} \sum_{\alpha} \tilde{\Gamma}_{ba}^{\alpha} \tilde{\Gamma}_{st}^{\alpha} = \delta_{as} \delta_{bt}$

$$b_i^* b_j = rac{1}{2} \sum_{lpha} \left(\widetilde{\Gamma}_{ij}^{lpha}
ight)^* \check{\Omega}^{lpha} o |b_i| = \sqrt{b_i^* b_i} \& e^{\phi_{ij}} = rac{b_j^* b_i}{|b_j| |b_i|}$$

- *) Use "Fierz-identities" $\check{\Omega}^{\alpha}\check{\Omega}^{\beta} = C^{\alpha\beta}_{\delta\eta}\check{\Omega}^{\delta}\check{\Omega}^{\eta}$ (with known coefficients $C^{\alpha\beta}_{\delta\eta}$) to prove:
 - <u>8 observables</u> can yield $|b_i|$ & ϕ_{ij} .
 - Double-polarization obs. with recoil-polarization (type \mathcal{BR} and \mathcal{TR}) have to be measured.
 - No more than two observables from the same double-polarization class are allowed.
 - The phase $\phi(W, \theta)$ remains undetermined.

*) Multipoles: consider TPWA truncated at ℓ_{\max}

$$\begin{split} \check{\Omega}^{\alpha}\left(W,\theta\right) &= \rho \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} \left(a_{L}\right)_{k}^{\check{\Omega}^{\alpha}}\left(W\right) P_{k}^{\beta_{\alpha}}\left(\cos\theta\right),\\ \left(a_{L}\right)_{k}^{\check{\Omega}^{\alpha}}\left(W\right) &= \left< \mathcal{M}_{\ell_{\max}}\left(W\right) \right| \left(\mathcal{C}_{L}\right)_{k}^{\check{\Omega}^{\alpha}} \left| \mathcal{M}_{\ell_{\max}}\left(W\right) \right>, \end{split}$$

*) Multipoles: consider TPWA truncated at ℓ_{max}

$$\begin{split} \check{\Omega}^{\alpha}\left(W,\theta\right) &= \rho \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} \left(a_{L}\right)_{k}^{\check{\Omega}^{\alpha}}\left(W\right) P_{k}^{\beta_{\alpha}}\left(\cos\theta\right),\\ \left(a_{L}\right)_{k}^{\check{\Omega}^{\alpha}}\left(W\right) &= \left< \mathcal{M}_{\ell_{\max}}\left(W\right) \right| \left(\mathcal{C}_{L}\right)_{k}^{\check{\Omega}^{\alpha}} \left| \mathcal{M}_{\ell_{\max}}\left(W\right) \right>, \end{split}$$

 \rightarrow Algebraic inversion of this bilinear equation system \underline{not} possible

) <u>Full amplitudes:</u> [Chiang & Tabakin, Phys. Rev. C 55, 2054 (1997)] $\check{\Omega}^{\alpha} = \frac{1}{2} \langle b | \tilde{\Gamma}^{\alpha} | b \rangle \leftrightarrow$ $b_{i}^{} b_{j} = \frac{1}{2} \sum_{\alpha} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^{*} \check{\Omega}^{\alpha}$ $\rightarrow \underline{8 \text{ observables}}$ $b_{i}^{\alpha} d_{ij}^{\alpha} = \frac{1}{2} \sum_{\alpha} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^{*} \check{\Omega}^{\alpha}$ $b_{i}^{\alpha} d_{ij}^{\alpha} = \frac{1}{2} \sum_{\alpha} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^{*} \check{\Omega}^{\alpha}$ $b_{i}^{\alpha} d_{ij}^{\alpha} = \frac{1}{2} \sum_{\alpha} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^{*} \check{\Omega}^{\alpha}$ $b_{i}^{\alpha} d_{ij}^{\alpha} = \frac{1}{2} \sum_{\alpha} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^{*} \check{\Omega}^{\alpha}$ $b_{i}^{\alpha} d_{ij}^{\alpha} = \frac{1}{2} \sum_{\alpha} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^{*} \check{\Omega}^{\alpha}$ $b_{i}^{\alpha} d_{ij}^{\alpha} = \frac{1}{2} \sum_{\alpha} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^{*} \check{\Omega}^{\alpha}$ $b_{i}^{\alpha} d_{ij}^{\alpha} = \frac{1}{2} \sum_{\alpha} \left(\tilde{\Gamma}_{ij}^{\alpha} \right)^{*} \check{\Omega}^{\alpha}$ $b_{i}^{\alpha} d_{ij}^{\alpha} d_{ij}^{\alpha} d_{ij}^{\alpha}$ $b_{i}^{\alpha} d_{ij}^{\alpha} d_{ij}^{\alpha} d_{ij}^{\alpha} d_{ij}^{\alpha}$ $b_{i}^{\alpha} d_{ij}^{\alpha} d_{ij}^{\alpha}$

*) Multipoles: consider TPWA truncated at $\ell_{\rm max}$

$$\check{\Omega}^{\alpha}(W,\theta) = \rho \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} (a_{L})_{k}^{\check{\Omega}^{\alpha}}(W) P_{k}^{\beta_{\alpha}}(\cos\theta)$$

$$\left(\mathsf{a}_{L}
ight)_{k}^{\hat{\Omega}^{lpha}}\left(W
ight)=\left\langle\mathcal{M}_{\ell_{\max}}\left(W
ight)|\left(\mathcal{C}_{L}
ight)_{k}^{\hat{\Omega}^{lpha}}\left|\mathcal{M}_{\ell_{\max}}\left(W
ight)
ight
angle,$$

 \rightarrow Algebraic inversion of this bilinear equation system <u>not</u> possible

→ Instead: [Omelaenko, (1981)] & [Y.W., R. Beck and L. Tiator, (2014)] Study discrete ambiguities of the group S { σ_0 , Σ , T, P} \implies "Exact" TPWA can be complete with just <u>5 observables</u>, e.g. { σ_0 , Σ , T, P, F}. Two step method:

1. Fit the angular distributions of observables, parametrized by

$$\check{\Omega}^{\alpha}(W,\theta) = \rho \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} (a_{L})_{k}^{\alpha}(W) P_{k}^{\beta_{\alpha}}(\cos\theta)$$

 \Rightarrow Angular fit parameters $(a_L^{\rm Fit})_k^{\alpha}$

Two step method:

1. Fit the angular distributions of observables, parametrized by

$$\check{\Omega}^{\alpha}(W,\theta) = \rho \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} (a_{L})_{k}^{\alpha}(W) P_{k}^{\beta_{\alpha}}(\cos\theta)$$

 \Rightarrow Angular fit parameters $\left(a_L^{\mathrm{Fit}}
ight)_k^{lpha}$

2. Minimize the function ("multi-indices" $(i,j) = (\{\alpha,k\},\{\alpha',k'\})$):

$$\chi^{2} = \sum_{i,j} \left[\left(\mathbf{a}_{L}^{\mathrm{Fit}} \right)_{i} - \left\langle \mathcal{M}_{\ell} \right| \left(\mathcal{C}_{L} \right)_{i} \left| \mathcal{M}_{\ell} \right\rangle \right] \mathrm{C}_{ij}^{-1} \left[\left(\mathbf{a}_{L}^{\mathrm{Fit}} \right)_{j} - \left\langle \mathcal{M}_{\ell} \right| \left(\mathcal{C}_{L} \right)_{j} \left| \mathcal{M}_{\ell} \right\rangle \right],$$

using the MATHEMATICA method

FindMinimum $\left[\chi^2(\mathcal{M}_{\ell}), \{\{\operatorname{Re}[E_{0+}], (x_1)_0\}, \ldots, \{\operatorname{Im}[\mathcal{M}_{\ell_{\max}-}], (y_n)_0\}\}\right]$ and varying the real and imaginary parts of the (possibly phase constrained) multipoles in the fit.

 C_{ij} is the covariance matrix of the Legendre coefficients stemming from step 1.

1. The total cross section

$$\hat{\sigma}(W) = \sum_{M_{\ell}}^{\ell_{\max}} c_{M_{\ell}} |M_{\ell}|^2$$

constrains the $(8\ell_{\max} - 1)$ -dimensional
multipole space M_{ℓ} .

$$\mathcal{M}_{\ell} \setminus \operatorname{Re}[\mathcal{E}_{0+}]$$

1. The total cross section

$$\hat{\sigma}(W) = \sum_{M_{\ell}}^{\ell_{\max}} c_{M_{\ell}} |\mathcal{M}_{\ell}|^2$$

constrains the ($8\ell_{\max} - 1$)-dimensional
multipole space \mathcal{M}_{ℓ} .

2. $\hat{\sigma}(W)$ defines an $(8\ell_{\max} - 2)$ dimensional ellipsoid in \mathcal{M}_{ℓ} .

$$\mathcal{M}_{\ell} \setminus \operatorname{Re}[E_{0+}]$$

1. The total cross section

$$\begin{split} \hat{\sigma}\left(\mathcal{W}\right) &= \sum_{\mathcal{M}_{\ell}}^{\ell_{\max}} c_{\mathcal{M}_{\ell}} \left|\mathcal{M}_{\ell}\right|^{2} \\ \text{constrains the } (8\ell_{\max}-1)\text{-dimensional} \\ \text{multipole space } \mathcal{M}_{\ell}. \end{split}$$

- 2. $\hat{\sigma}(W)$ defines an $(8\ell_{\max} 2)$ dimensional ellipsoid in \mathcal{M}_{ℓ} .
- 3. Solutions to the TPWA problem lie on the ellipsoid defined by $\hat{\sigma}(W)$.

$$\mathcal{M}_{\ell} \setminus \operatorname{Re}[\mathcal{E}_{0+}]$$

1. The total cross section

$$\begin{split} \hat{\sigma}\left(\mathcal{W}\right) &= \sum_{\mathcal{M}_{\ell}}^{\ell_{\max}} c_{\mathcal{M}_{\ell}} \left|\mathcal{M}_{\ell}\right|^{2} \\ \text{constrains the } (8\ell_{\max}-1)\text{-dimensional} \\ \text{multipole space } \mathcal{M}_{\ell}. \end{split}$$

- 2. $\hat{\sigma}(W)$ defines an $(8\ell_{\max} 2)$ dimensional ellipsoid in \mathcal{M}_{ℓ} .
- 3. Solutions to the TPWA problem lie on the ellipsoid defined by $\hat{\sigma}(W)$.
- 4. The start values for the FindMinimum-Fit are chosen randomly on the $\hat{\sigma}(W)$ -ellipsoid.
 - \Rightarrow Monte Carlo sampling of the multipole space.

 $\mathcal{M}_{\ell} \setminus \operatorname{Re}[E_{0+}]$

5. A FindMinimum-minimization is performed for each of the randomly generated start configurations.

 $\Rightarrow N_{MC} = \# \text{ of M.C. start}$ configurations = # of (possibly redundant)solutions

$$\mathcal{M}_{\ell} \setminus \operatorname{Re}[\mathcal{E}_{0+}]$$

- 5. A FindMinimum-minimization is performed for each of the randomly generated start configurations.
 - $\Rightarrow N_{MC} = \# \text{ of M.C. start}$ configurations = # of (possibly redundant)solutions
- Analysis described up to now is fully model-independent. <u>However:</u> if wished for or needed, individual partial-wave parameters can be fixed to model-constraints quite freely.

 $\mathcal{M}_{\ell} \setminus \operatorname{Re}[E_{0+}]$

- Analysis described up to now is fully model-independent. <u>However:</u> if wished for or needed, individual partial-wave parameters can be fixed to model-constraints quite freely.
- 7. In this way, map out the global minimum as well as all local minima of the χ^2 -function.

$$\mathcal{M}_{\ell} \setminus \operatorname{Re}[E_{0+}]$$

The following datasets were investigated for $\gamma p \rightarrow \pi^0 p$:

- I. Data taken at the MAMI facility:
 - σ₀: 266 energy points for E^{LAB}_γ ∈ [218, 1573] MeV
 [P. Adlarson et al., arXiv:1506.08849 [hep-ex]]

The following datasets were investigated for $\gamma p \rightarrow \pi^0 p$:

- I. Data taken at the MAMI facility:
 - σ₀: 266 energy points for E^{LAB}_γ ∈ [218, 1573] MeV
 [P. Adlarson et al., arXiv:1506.08849 [hep-ex]]
- II. Data taken at the GRAAL facility:
 - Σ : 31 energy points for $E_{\gamma}^{\text{LAB}} \in [551, 1450]$ MeV [O. Bartalini et al., Eur. Phys. J. A 26, 399 (2005)]

The following datasets were investigated for $\gamma p \rightarrow \pi^0 p$:

- I. Data taken at the MAMI facility:
 - σ_0 : 266 energy points for $E_{\gamma}^{\text{LAB}} \in [218, 1573]$ MeV [P. Adlarson et al., arXiv:1506.08849 [hep-ex]]
- II. Data taken at the GRAAL facility:
 - Σ: 31 energy points for $E_{\gamma}^{\text{LAB}} \in [551, 1450]$ MeV
 [O. Bartalini et al., Eur. Phys. J. A 26, 399 (2005)]
- III. Data from CBELSA/TAPS:
 - \mathcal{T} : 24 energy points for $\mathcal{E}_{\gamma}^{\mathrm{LAB}} \in$ [700, 1900] MeV
 - P: 8 (!) energy points, i.e. $E_{\gamma}^{\mathrm{LAB}} \in$ [650, 950] MeV
 - H: 8 (!) energy points, i.e. E^{LAB}_γ ∈ [650, 950] MeV for all 3 obs. cf. [J. Hartmann et al., Phys. Lett. B 748 (2015), prelim.]
 - E: 33 energy points for $E_{\gamma}^{\mathrm{LAB}} \in$ [600, 2300] MeV
 - [M. Gottschall et al., Phys. Rev. Lett. 112 no. 1, 012003 (2014)]
 - G: 19 energy points for E^{LAB}_γ ∈ [630, 1950] MeV
 [A. Thiel et al., Phys. Rev. Lett. 109, 102001 (2012)]

The following datasets were investigated for $\gamma p \rightarrow \pi^0 p$:

- I. Data taken at the MAMI facility:
 - σ_0 : 266 energy points for $E_\gamma^{
 m LAB} \in$ [218, 1573] MeV

[P. Adlarson et al., arXiv:1506.08849 [hep-ex]]

II. Data taken at the GRAAL facility:

- Σ : 31 energy points for $E_{\gamma}^{\text{LAB}} \in [551, 1450]$ MeV

[O. Bartalini et al., Eur. Phys. J. A 26, 399 (2005)]

- III. Data from CBELSA/TAPS:
 - \mathcal{T} : 24 energy points for $\mathcal{E}_{\gamma}^{\mathrm{LAB}} \in$ [700, 1900] MeV
 - *P*: 8 (!) energy points, i.e. $E_{\gamma}^{\text{LAB}} \in [650, 950]$ MeV
 - H: 8 (!) energy points, i.e. E_γ^{LAB} ∈ [650, 950] MeV for all 3 obs. cf. [J. Hartmann et al., Phys. Lett. B 748 (2015), prelim.]
 - *E*: 33 energy points for $E_{\gamma}^{\mathrm{LAB}} \in$ [600, 2300] MeV

[M. Gottschall et al., Phys. Rev. Lett. 112 no. 1, 012003 (2014)]

- G: 19 energy points for $E_{\gamma}^{\mathrm{LAB}} \in$ [630, 1950] MeV

[A. Thiel et al., Phys. Rev. Lett. 109, 102001 (2012)]

ightarrow Datasets overlap on 8 (!) energy-points ${\it E}_{\gamma}^{
m LAB} \in$ [650, 950] MeV!

The following datasets were investigated for $\gamma p \rightarrow \pi^0 p$:

 $\{\sigma_0, \Sigma, T, P, E, G, H\}.$

From investigations of the angular distributions of the data (and later confirmed by χ^2/ndf in the multipole fit): $\underline{\ell_{\max}} = 2$ and $\underline{\ell_{\max}} = 3$ truncation approximations can already describe the data.

Results of fully un-constrained analyses

Results of fully un-constrained analyses

- There exists a global minimum.
- Global min. is well separated from other local minima.

$$\ell_{\rm max} = 3$$
-fit ($N_{MC} = 24000$)

- There exists a global minimum.
- Local minima (ambiguities) exists that have a very similar χ^2 to the global min.

Y. Wunderlich

Complete Experiments

Y. Wunderlich

Complete Experiments

Y. Wunderlich

Complete Experiments

- Under-fitting for higher E_{γ}
- Missing the $\langle S, F \rangle$ -, $\langle P, F \rangle$ and $\langle D, F \rangle$ -interferences.

- Over-fitting for lower E_{γ}
- Accidential ambiguities:

 $N_{\max}^{AC} = \frac{1}{2} \left(4^{2 \times 3} - 1 \right) = 2047.$

- Under-fitting for higher E_{γ}
- Missing the $\langle S, F \rangle$ -, $\langle P, F \rangle$ and $\langle D, F \rangle$ -interferences.

- Over-fitting for lower E_{γ}
- Accidential ambiguities:

 $N_{\rm max}^{\rm AC} = \frac{1}{2} \left(4^{2 \times 3} - 1 \right) = 2047.$

 \rightarrow Way out: Introduce model dependence by fixing the F-waves to BnGa 2014-02, letting all other multipoles float freely in the fit.

$\chi^2_{ m ndf}$ vs. E_γ for the fit including BnGa-F-waves

$\chi^2_{ m ndf}$ vs. E_γ for the fit including BnGa-*F*-waves

The best solution for S-, P- and D-waves

Y. Wunderlich

Complete Experiments

The best solution for S-, P- and D-waves

Y. Wunderlich

Complete Experiments

S-, P- and D-waves in the interval $\left(\chi^2_{ m best}+1.0 ight)$

Y. Wunderlich

Complete Experiments

S-, P- and D-waves in the interval $\left(\chi^2_{ m best}+1.0 ight)$

Y. Wunderlich

Complete Experiments

Results for the S-, P- and D-waves

Results for the S-, P- and D-waves

Summary & Outlook

*) A monte-carlo sampling fit method was applied to $\{\sigma_0, \Sigma, T, P, E, G, H\}$ -data for $\gamma p \to \pi^0 p$ in the 2nd resonance region.

Summary & Outlook

- *) A monte-carlo sampling fit method was applied to $\{\sigma_0, \Sigma, T, P, E, G, H\}$ -data for $\gamma p \rightarrow \pi^0 p$ in the 2nd resonance region. \rightarrow "LFits" suggest an $\ell_{max} = 2$ (or 3)-truncation to describe the data. $\rightarrow \ell_{max} = 2$ multipole fit: the best solution is "unique" but χ^2 too large (high-low partial wave interferences!)
 - $\rightarrow \ \ell_{\rm max} = 3 \ \text{multipole fit: a "unique" global minimum exists, however} \\ \text{there are many side-minima (ambiguities!)}$
 - \rightarrow S-, P-wave multipoles varied, F-waves fixed to BnGa:

Monte Carlo method yields a global minimum, well separated from other local minima. χ^2/ndf and the behaviour of the solution are reasonable

Summary & Outlook

- *) A monte-carlo sampling fit method was applied to $\{\sigma_0, \Sigma, T, P, E, G, H\}$ -data for $\gamma p \to \pi^0 p$ in the 2nd resonance region. \rightarrow "LFits" suggest an $\ell_{\rm max} = 2$ (or 3)-truncation to describe the data. $\rightarrow \ell_{\rm max} = 2$ multipole fit: the best solution is "unique" but χ^2 too large (high-low partial wave interferences!) $\rightarrow \ell_{max} = 3$ multipole fit: a "unique" global minimum exists, however there are many side-minima (ambiguities!) \rightarrow S-, P-wave multipoles varied, F-waves fixed to BnGa: Monte Carlo method yields a global minimum, well separated from other local minima. χ^2/ndf and the behaviour of the solution are reasonable.
- *) What to do with the obtained solution?
 - \rightarrow Fitting a model independent pole+background parametrization
 - ("L+P"-method of Alfred Švarc): yields D_{13} -pole-parameters \checkmark
 - \rightarrow Iteration of multipole-fitting with BnGa-code applied to SE-results: under construction ...

Thank You!

Additional Slides

Details on the multipole fit procedure II

<u>Ansatz</u>: Use the total cross section $\hat{\sigma}(W)$. Example: $\ell \leq \ell_{\max} = 1$, phase constraint $\operatorname{Im} \left[E_{0+}^{C} \right] = 0$ & $\operatorname{Re} \left[E_{0+}^{C} \right] > 0$:

$$\hat{\sigma}(W) \approx 4\pi \frac{q}{k} \left(\operatorname{Re}\left[E_{0+}^{C} \right]^{2} + 6 \operatorname{Re}\left[E_{1+}^{C} \right]^{2} + 6 \operatorname{Im}\left[E_{1+}^{C} \right]^{2} + 2 \operatorname{Re}\left[M_{1+}^{C} \right]^{2} \right. \\ \left. + 2 \operatorname{Im}\left[M_{1+}^{C} \right]^{2} + \operatorname{Re}\left[M_{1-}^{C} \right]^{2} + \operatorname{Im}\left[M_{1-}^{C} \right]^{2} \right)$$

Details on the multipole fit procedure II

<u>Ansatz</u>: Use the total cross section $\hat{\sigma}(W)$. Example: $\ell \leq \ell_{\max} = 1$, phase constraint $\operatorname{Im} \left[E_{0+}^{\mathcal{C}} \right] = 0$ & $\operatorname{Re} \left[E_{0+}^{\mathcal{C}} \right] > 0$:

$$\hat{\sigma}(W) \approx 4\pi \frac{q}{k} \left(\operatorname{Re}\left[E_{0+}^{C} \right]^{2} + 6 \operatorname{Re}\left[E_{1+}^{C} \right]^{2} + 6 \operatorname{Im}\left[E_{1+}^{C} \right]^{2} + 2 \operatorname{Re}\left[M_{1+}^{C} \right]^{2} \right. \\ \left. + 2 \operatorname{Im}\left[M_{1+}^{C} \right]^{2} + \operatorname{Re}\left[M_{1-}^{C} \right]^{2} + \operatorname{Im}\left[M_{1-}^{C} \right]^{2} \right)$$

*) $\hat{\sigma}(W)$ constrains the intervals of the multipoles:

$$\operatorname{Re}\left[E_{0+}^{\mathcal{C}}\right] \in \left[0, \sqrt{\frac{k}{q}\frac{\hat{\sigma}(W)}{4\pi}}\right], \, \dots, \, \operatorname{Im}\left[M_{1-}^{\mathcal{C}}\right] \in \left[-\sqrt{\frac{k}{q}\frac{\hat{\sigma}(W)}{4\pi}}, \sqrt{\frac{k}{q}\frac{\hat{\sigma}(W)}{4\pi}}\right]$$

*) The total cross section, being quadratic form in the multipoles, also defines an ellipsoid in the multipole space.

) [B. Efron, The Annals Of Statistics 7 no. 1, 1 (1979)]: Estimate an unknown distribution function of a random variable $R\left(X_1, \ldots, X_n, \hat{F}\right)$, by generating bootstrap random samples $x_b = (x_1^, \ldots, x_n^*)$ from the data (x_1, \ldots, x_n) and approximating the *R*-distribution-fct. by $R_b\left(x_b, \hat{F}\right)$.

[B. Efron, The Annals Of Statistics 7 no. 1, 1 (1979)]: Estimate an unknown *) distribution function of a random variable $R(X_1, \ldots, X_n, \hat{F})$, by generating bootstrap random samples $x_b = (x_1^*, \dots, x_n^*)$ from the data (x_1, \ldots, x_n) and approximating the *R*-distribution-fct. by $R_b(x_b, \hat{F})$. $E_{\gamma} = 883.8 \, [\text{MeV}]$ 1.00.5 C 0.0-0.5-1.0-0.50.0 0.51.0 $\cos(\theta)$

[B. Efron, The Annals Of Statistics 7 no. 1, 1 (1979)]: Estimate an unknown *) distribution function of a random variable $R(X_1, \ldots, X_n, \hat{F})$, by generating bootstrap random samples $x_b = (x_1^*, \dots, x_n^*)$ from the data (x_1, \ldots, x_n) and approximating the *R*-distribution-fct. by $R_b(x_b, \hat{F})$. $E_{\nu} = 883.8 \, [\text{MeV}]$ 1.00.5 C 0.0-0.5-1.0-0.50.00.51.0 $\cos(\theta)$

- *) [B. Efron, The Annals Of Statistics 7 no. 1, 1 (1979)]: Estimate an unknown distribution function of a random variable $R(X_1, \ldots, X_n, \hat{F})$, by generating bootstrap random samples $x_b = (x_1^*, \ldots, x_n^*)$ from the data (x_1, \ldots, x_n) and approximating the *R*-distribution-fct. by $R_b(x_b, \hat{F})$. $E_{\gamma} = 883.8 \, [\text{MeV}]$ 1.00.5 C 0.0 Use gaussian distribution function centered at Ω^{α} . -0.5with $\sigma = \Delta \Omega^{\alpha}$. -1.0 \rightarrow Resample data with -0.50.5 -1.00.01.0replacement. $\cos(\theta)$
- \rightarrow Ensemble of (1 + N_{Ens.}) bootstrap samples. Do TPWA for each.
- \rightarrow Histogram results for each multipole-fit-parameter.

- *) [B. Efron, The Annals Of Statistics 7 no. 1, 1 (1979)]: Estimate an unknown distribution function of a random variable $R(X_1, \ldots, X_n, \hat{F})$, by generating bootstrap random samples $x_b = (x_1^*, \ldots, x_n^*)$ from the data (x_1, \ldots, x_n) and approximating the *R*-distribution-fct. by $R_b(x_b, \hat{F})$. $E_{\gamma} = 883.8 \, [\text{MeV}]$ 1.0 $N_{\rm Ens.} = 1$ 0.5 C 0.0 Use gaussian distribution function centered at Ω^{α} . -0.5with $\sigma = \Delta \Omega^{\alpha}$. \rightarrow Resample data with -1.0-0.50.50.01.0replacement. $\cos(\theta)$
- \rightarrow Ensemble of (1 + N_{Ens.}) bootstrap samples. Do TPWA for each.
- \rightarrow Histogram results for each multipole-fit-parameter.

- *) [B. Efron, The Annals Of Statistics 7 no. 1, 1 (1979)]: Estimate an unknown distribution function of a random variable $R(X_1, \ldots, X_n, \hat{F})$, by generating bootstrap random samples $x_b = (x_1^*, \ldots, x_n^*)$ from the data (x_1, \ldots, x_n) and approximating the *R*-distribution-fct. by $R_b(x_b, \hat{F})$. $E_{\gamma} = 883.8 \, [\text{MeV}]$ 1.0 $N_{\rm Ens.} = 5$ 0.5 C 0.0 Use gaussian distribution function centered at Ω^{α} . -0.5with $\sigma = \Delta \Omega^{\alpha}$. -1.0 \rightarrow Resample data with -0.50.5-1.00.01.0replacement. $\cos(\theta)$
- $\rightarrow\,$ Ensemble of (1 + $\textit{N}_{\rm Ens.})$ bootstrap samples. Do TPWA for each.
- \rightarrow Histogram results for each multipole-fit-parameter.

- *) [B. Efron, The Annals Of Statistics 7 no. 1, 1 (1979)]: Estimate an unknown distribution function of a random variable $R(X_1, \ldots, X_n, \hat{F})$, by generating bootstrap random samples $x_b = (x_1^*, \ldots, x_n^*)$ from the data (x_1, \ldots, x_n) and approximating the *R*-distribution-fct. by $R_b(x_b, \hat{F})$. $E_{\gamma} = 883.8 \, [\text{MeV}]$ 1.0 $N_{\rm Ens.} = 10$ 0.5 0.0C Use gaussian distribution function centered at Ω^{α} . -0.5with $\sigma = \Delta \Omega^{\alpha}$. -1.0 \rightarrow Resample data with -1.0-0.50.5 1.00.0replacement. $\cos(\theta)$
- \rightarrow Ensemble of (1 + N_{Ens.}) bootstrap samples. Do TPWA for each.
- \rightarrow Histogram results for each multipole-fit-parameter.

- *) [B. Efron, The Annals Of Statistics 7 no. 1, 1 (1979)]: Estimate an unknown distribution function of a random variable $R(X_1, \ldots, X_n, \hat{F})$, by generating bootstrap random samples $x_b = (x_1^*, \ldots, x_n^*)$ from the data (x_1, \ldots, x_n) and approximating the *R*-distribution-fct. by $R_b(x_b, \hat{F})$. $E_{\gamma} = 883.8 \, [\text{MeV}]$ 1.0 $N_{\rm Ens.} = 400$ 0.5 C 0.0 Use gaussian distribution function centered at Ω^{α} . -0.5with $\sigma = \Delta \Omega^{\alpha}$. -1.0 \rightarrow Resample data with -1.0-0.50.5 1.00.0replacement. $\cos(\theta)$
- $\rightarrow\,$ Ensemble of (1 + $\textit{N}_{\rm Ens.})$ bootstrap samples. Do TPWA for each.
- \rightarrow Histogram results for each multipole-fit-parameter.

Y. Wunderlich

Y. Wunderlich

Complete Experiments

Y. Wunderlich

Y. Wunderlich

Complete Experiments

Y. Wunderlich

Y. Wunderlich

<u>Problem:</u> 4 complex amplitudes $F_i(W, \theta) \equiv 8$ real numbers $\Rightarrow 1$ observable $\left(\frac{d\sigma}{d\Omega}\right)_0$ insufficient to determine the amplitudes!

The observable Σ appears as amplitude of the ϕ -modulation

$$\left(\frac{d\sigma}{d\Omega}\right)(\theta,\phi) = \left(\frac{d\sigma}{d\Omega}\right)_0 (1 - \epsilon_L \Sigma \cos(2\phi)).$$

 Σ is an asymmetry between different polarization states:

$$\Sigma = \frac{1}{2\left(\frac{d\sigma}{d\Omega}\right)_0} \left[\left(\frac{d\sigma}{d\Omega}\right)^{(\perp,0,0)} - \left(\frac{d\sigma}{d\Omega}\right)^{(\parallel,0,0)} \right].$$

Y. Wunderlich

*) Question: How many and which observables are needed if multipoles $\overline{\{E_{\ell\pm}, M_{\ell\pm}\}}$ are the goal in a PWA truncated at some ℓ_{\max} ?.

*) Important hint: [A.S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981).] Study of discrete ambiguities in a TPWA using the following trick: switch $\cos(\theta) \leftrightarrow t := \tan(\theta/2)$, use $b_4(\theta) = b_3(-\theta)$, $b_2(\theta) = b_1(-\theta)$ and do a linear factor decomposition of b_2 and b_4 :

$$b_{2}(\theta) = -\mathcal{C}a_{2\ell_{\max}}\frac{\exp\left(i\frac{\theta}{2}\right)}{(1+t^{2})^{\ell_{\max}}}\left[\left(t-\beta_{1}\right)\left(t-\beta_{2}\right)\ldots\left(t-\beta_{2\ell_{\max}}\right)\right]$$
$$b_{4}(\theta) = \mathcal{C}a_{2\ell_{\max}}\frac{\exp\left(i\frac{\theta}{2}\right)}{(1+t^{2})^{\ell_{\max}}}\left[\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right)\ldots\left(t-\alpha_{2\ell_{\max}}\right)\right]$$

→ A set of Omelaenko-roots { α_k, β_k } is fully equivalent to a multipole-solution { $E_{\ell\pm}, M_{\ell\pm}$ }.

*) Important hint: [A.S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981).]

$$b_{2}(\theta) = -\mathcal{C}a_{2\ell_{\max}}\frac{\exp(i\frac{\theta}{2})}{(1+t^{2})\ell_{\max}}\left[(t-\beta_{1})(t-\beta_{2})\dots(t-\beta_{2\ell_{\max}})\right]$$
$$b_{4}(\theta) = \mathcal{C}a_{2\ell_{\max}}\frac{\exp(i\frac{\theta}{2})}{(1+t^{2})\ell_{\max}}\left[(t-\alpha_{1})(t-\alpha_{2})\dots(t-\alpha_{2\ell_{\max}})\right]$$

*) Complex conjugation of all $\{\alpha_k, \beta_k\}$, or some subset of them, leaves $|b_i|^2$ invariant and therefore also the group S

$$\left\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\right\} \equiv \check{\Omega}^{\alpha_S} = \frac{1}{2} \left(\pm |b_1|^2 \pm |b_2|^2 \pm |b_3|^2 + |b_4|^2\right)$$

*) Important hint: [A.S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981).]

$$b_{2}(\theta) = -\mathcal{C}a_{2\ell_{\max}}\frac{\exp(i\frac{\theta}{2})}{(1+t^{2})\ell_{\max}}\left[(t-\beta_{1})(t-\beta_{2})\dots(t-\beta_{2\ell_{\max}})\right]$$
$$b_{4}(\theta) = \mathcal{C}a_{2\ell_{\max}}\frac{\exp(i\frac{\theta}{2})}{(1+t^{2})\ell_{\max}}\left[(t-\alpha_{1})(t-\alpha_{2})\dots(t-\alpha_{2\ell_{\max}})\right]$$

*) Complex conjugation of all $\{\alpha_k, \beta_k\}$, or some subset of them, leaves $|b_i|^2$ invariant and therefore also the group S

$$\left\{\sigma_{0}, \check{\Sigma}, \check{T}, \check{P}\right\} \equiv \check{\Omega}^{\alpha_{S}} = \frac{1}{2} \left(\pm |b_{1}|^{2} \pm |b_{2}|^{2} \pm |b_{3}|^{2} + |b_{4}|^{2}\right)$$

Omelaenko's constraint
$$\boxed{\prod_{k} \alpha_{k} = \prod_{k'} \beta_{k'}}$$
 has to be fulfilled.

*)

*) Important hint: [A.S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981).]

$$b_{2}(\theta) = -\mathcal{C}a_{2\ell_{\max}} \frac{\exp(i\frac{\theta}{2})}{(1+t^{2})^{\ell_{\max}}} \left[(t-\beta_{1})(t-\beta_{2})\dots(t-\beta_{2\ell_{\max}}) \right]$$
$$b_{4}(\theta) = \mathcal{C}a_{2\ell_{\max}} \frac{\exp(i\frac{\theta}{2})}{(1+t^{2})^{\ell_{\max}}} \left[(t-\alpha_{1})(t-\alpha_{2})\dots(t-\alpha_{2\ell_{\max}}) \right]$$

*) Complex conjugation of $\{\alpha_k, \beta_k\}$ leaves $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$ invariant.

- *) Omelaenko's constraint $\prod_k \alpha_k = \prod_{k'} \beta_{k'}$.
- \rightarrow 2 kinds of symmetries/ambiguities:

double ambiguity

-
$$\alpha_k o \alpha_k^*$$
, $\beta_k o \beta_k^*$ for all k

- One has always $\prod_k \alpha_k = \prod_{k'} \beta_{k'}$ $\rightarrow \prod_k \alpha_k^* = \prod_{k'} \beta_{k'}^*$
- $\rightarrow~$ Mathematically exact symmetry
 - Is resolved by F, G, as well as any \mathcal{BR} and \mathcal{TR} observable.

accidential ambiguities

- Conjugation of subset of $\{\alpha_k, \beta_k\}$ $\rightarrow \{\tilde{\alpha}_k, \tilde{\beta}_k\}$
- Very (very) likely $\prod_k ilde{lpha}_k \simeq \prod_{k'} ilde{eta}_{k'}$
- \rightarrow Manifest as approximate symmetry
 - Is resolved by in principle any observable.

Which ℓ_{max} to choose? \rightarrow "LFit-method"

*) Utilize the parametrization of the angular distributions of polarization observables $\check{\Omega}^{\alpha}$ as expansions into $P_{\ell}^{m}(\cos \theta)$ for fixed energy:

$$\check{\Omega}^{\alpha}(W,\theta) = \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} (a_{L})_{k}^{\alpha}(W) P_{k}^{\beta_{\alpha}}(\cos\theta)$$

Which ℓ_{max} to choose? \rightarrow "LFit-method"

*) Utilize the parametrization of the angular distributions of polarization observables $\check{\Delta}^{\alpha}$ as expansions into $P_{\ell}^{m}(\cos \theta)$ for fixed energy:

$$\check{\Omega}^{\alpha}\left(W,\theta\right) = \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} \left(a_{L}\right)_{k}^{\alpha}\left(W\right) \mathcal{P}_{k}^{\beta_{\alpha}}\left(\cos\theta\right)$$

- → Fit angular distributions with some low initial ℓ_{max} ($\ell_{max} = 0$ most commonly) and see if χ^2/ndf is satifactory. If <u>not</u>:
- ightarrow Raise truncation order by 1 and do new fit until $\left(\chi^2/\mathrm{ndf}\right)pprox$ 1.
- \rightarrow Hint for dominant partial wave by the order ℓ_{max} at which this procedure terminates.

Which ℓ_{max} to choose? \rightarrow "LFit-method"

*) Utilize the parametrization of the angular distributions of polarization observables $\check{\Delta}^{\alpha}$ as expansions into $P_{\ell}^{m}(\cos \theta)$ for fixed energy:

$$\check{\Omega}^{\alpha}\left(W,\theta\right) = \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} \left(a_{L}\right)_{k}^{\alpha}\left(W\right) \mathcal{P}_{k}^{\beta_{\alpha}}\left(\cos\theta\right)$$

- \rightarrow Fit angular distributions with some low initial ℓ_{max} ($\ell_{max} = 0$ most commonly) and see if χ^2/ndf is satifactory. If <u>not</u>:
- ightarrow Raise truncation order by 1 and do new fit until $\left(\chi^2/\mathrm{ndf}\right) pprox 1$.
- \rightarrow Hint for dominant partial wave by the order ℓ_{max} at which this procedure terminates.
- *) <u>Nice</u>: Procedure is simple, model-independent and furthermore reliably reflects the capability of the data to give infomation on higher partial wave contributions.

LFits to $\{\sigma_0, \Sigma, T, P, E, G, H\}$

To be published in [Y. W., F. Afzal, A. Thiel and R. Beck, (2016)]

Y. Wunderlich

Complete Experiments

LFits to $\{\sigma_0, \Sigma, T, P, E, G, H\}$

To be published in [Y. W., F. Afzal, A. Thiel and R. Beck, (2016)]

Overall, $\ell_{\max} = 2$ should be OK in all energy bins $E_{\gamma}^{\text{LAB}} \in [650, 950] \text{ MeV}$ except maybe the last 2 bins.

The best solution for S-, P- and D-waves

Y. Wunderlich

Complete Experiments

The best solution for S-, P- and D-waves

Y. Wunderlich

S-, P- and D-waves in the interval $\left(\chi^2_{ m best}+0.5 ight)$

Y. Wunderlich

Complete Experiments

S-, P- and D-waves in the interval $\left(\chi^2_{ m best}+0.5 ight)$

S-, P- and D-waves in the interval $\left(\chi^2_{ m best}+1.0 ight)$

Y. Wunderlich

S-, P- and D-waves in the interval $\left(\chi^2_{ m best}+1.0 ight)$

Y. Wunderlich

S-, P- and D-waves in the interval $\left(\chi^2_{ m best}+4.0 ight)$

S-, P- and D-waves in the interval $\left(\chi^2_{ m best}+4.0 ight)$

There exists a unique, well-separated (in χ^2) solution for $\ell_{\rm max} = 2$,

however:

(i) χ^2/ndf is too large for all energy bins except the first 2-4.

 Solution does not make sense compared to models (more precisely, to BnGa 2014-02).

Partial wave interferences in Legendre coefficients

$$(\boldsymbol{a}_{L})_{k}^{\alpha} = \begin{bmatrix} \mathcal{M}_{\ell \leq \ell_{\max}}^{*} & \mathcal{M}_{\ell > \ell_{\max}}^{*} \end{bmatrix} \begin{bmatrix} (\mathcal{C}_{L})_{k}^{\alpha} & (\tilde{\mathcal{C}}_{L})_{k}^{\alpha} \\ \hline & \begin{bmatrix} (\tilde{\mathcal{C}}_{L})_{k}^{\alpha} \end{bmatrix}^{\dagger} & (\hat{\mathcal{C}}_{L})_{k}^{\alpha} \end{bmatrix} \begin{bmatrix} \mathcal{M}_{\ell \leq \ell_{\max}} \\ \hline \mathcal{M}_{\ell > \ell_{\max}} \end{bmatrix}$$

*) In the $(a_L)_k^{\alpha}$, partial waves with $\ell_{\max} \geq 3$ may interfere with those having $\ell_{\max} \leq 3$ but the LFits may only hint at this, or <u>not</u> show this at all!

Partial wave interferences in Legendre coefficients

$$(\boldsymbol{a}_{L})_{k}^{\alpha} = \begin{bmatrix} \mathcal{M}_{\ell \leq \ell_{\max}}^{*} & \mathcal{M}_{\ell > \ell_{\max}}^{*} \end{bmatrix} \begin{bmatrix} (\mathcal{C}_{L})_{k}^{\alpha} & (\tilde{\mathcal{C}}_{L})_{k}^{\alpha} \\ \hline & \begin{bmatrix} (\tilde{\mathcal{C}}_{L})_{k}^{\alpha} \end{bmatrix}^{\dagger} & (\hat{\mathcal{C}}_{L})_{k}^{\alpha} \end{bmatrix} \begin{bmatrix} \mathcal{M}_{\ell \leq \ell_{\max}} \\ \hline \mathcal{M}_{\ell > \ell_{\max}} \end{bmatrix}$$

- *) In the $(a_L)_k^{\alpha}$, partial waves with $\ell_{\max} \ge 3$ may interfere with those having $\ell_{\max} \le 3$ but the LFits may only hint at this, or <u>not</u> show this at all!
- *) In case the multipole fit has all partial waves \mathcal{M}_{ℓ} with $\ell \geq 3$ set equal to zero, it has no chance to take into account the interferences and modify the results for S-, P-, and D-waves accordingly.

Partial wave interferences in Legendre coefficients

$$(\boldsymbol{a}_{L})_{k}^{\alpha} = \begin{bmatrix} \mathcal{M}_{\ell \leq \ell_{\max}}^{*} & \mathcal{M}_{\ell > \ell_{\max}}^{*} \end{bmatrix} \begin{bmatrix} (\mathcal{C}_{L})_{k}^{\alpha} & (\tilde{\mathcal{C}}_{L})_{k}^{\alpha} \\ \hline \begin{bmatrix} (\tilde{\mathcal{C}}_{L})_{k}^{\alpha} \end{bmatrix}^{\dagger} & (\hat{\mathcal{C}}_{L})_{k}^{\alpha} \end{bmatrix} \begin{bmatrix} \mathcal{M}_{\ell \leq \ell_{\max}} \\ \hline \mathcal{M}_{\ell > \ell_{\max}} \end{bmatrix}$$

- *) In the $(a_L)_k^{\alpha}$, partial waves with $\ell_{\max} \ge 3$ may interfere with those having $\ell_{\max} \le 3$ but the LFits may only hint at this, or <u>not</u> show this at all!
- *) In case the multipole fit has all partial waves \mathcal{M}_{ℓ} with $\ell \geq 3$ set equal to zero, it has no chance to take into account the interferences and modify the results for S-, P-, and D-waves accordingly.
- \rightarrow One has to at least take into account *F*-waves into the fitting in some way!
- $\rightarrow\,$ Fit a truncation at $\ell_{\rm max}=$ 3 and let the F-waves run freely in the fit.

$$\chi^2_{
m best}$$
 vs. E_γ for the $\ell_{
m max}=$ 3-fit

The best solution for S-, P-, D- and F-waves

Complete Experiments

The best solution for S-, P-, D- and F-waves

Y. Wunderlich

The best solution for S-, P-, D- and F-waves

S-, P-, D- and F-waves in the interval $\left(\chi^2_{ m best}+0.05 ight)$

Complete Experiments

S-, P-, D- and F-waves in the interval $\left(\chi^2_{ m best}+0.05 ight)$

S-, P-, D- and F-waves in the interval $\left(\chi^2_{ m best}+0.05 ight)$

Y. Wunderlich

S-, P-, D- and F-waves in the interval $\left(\chi^2_{ m best}+0.1 ight)$

Complete Experiments

S-, P-, D- and F-waves in the interval $\left(\chi^2_{ m best}+0.1 ight)$

Y. Wunderlich

S-, P-, D- and F-waves in the interval $\left(\chi^2_{ m best}+0.1 ight)$

Y. Wunderlich

S-, P-, D- and F-waves in the interval $\left(\chi^2_{ m best}+0.2 ight)$

Complete Experiments

S-, P-, D- and F-waves in the interval $\left(\chi^2_{ m best}+$ 0.2ight)

S-, P-, D- and F-waves in the interval $\left(\chi^2_{ m best}+$ 0.2ight)

Y. Wunderlich

There exists a global minimum, which is however not well separated from the other local minima of χ^{2} !

Problems with the $\ell_{\rm max}=3$ multipole fit

There exists a global minimum, which is however not well separated from the other local minima of $\chi^2!$

Reasons:

(i) Equation set defined by $(a_L^{\text{Fit}})_k^{\alpha}$ is not "compatible" (\equiv exactly solvable).

Problems with the $\ell_{\rm max}=3$ multipole fit

There exists a global minimum, which is however not well separated from the other local minima of $\chi^2!$

Reasons:

(i) Equation set defined by $(a_L^{\rm Fit})_k^{\alpha}$ is not "compatible" (\equiv exactly solvable).

(ii) There exist

Bootstrap results for the S-, P- and D-waves - Whole plot interval

Complete Experiments

Bootstrap results for the S-, P- and D-waves - Whole plot interval

