

- WIMPs as dark matter
- WIMPs with a new mediating force
- Dark photon as a mediator of a dark force
- Chasing anomalies with light new particles: galactic positrons, muon g-2, charge radius problem, etc
- Strategies to search for dark photons, with light dark matter and without. A few results.

1. What is inside this green box? I.e. what forces mediate WIMP-SM interaction?

2. Do sizable annihilation cross section always imply sizable scattering rate and collider DM production?

Summary of main features of WIMPs

- Regulates its abundance via self-annihilation with $\sigma v \sim 10^{-36} \text{ cm}^2$
- The mass of WIMPs is in a several GeV several TeV window (Lee-Weinberg) *if* the interaction is mediated by weak-scale forces.
- Direct detection experiments surpass sensitivity of 10⁻⁴⁵ cm² without seeing a signal – worrying sign for many models, including models with Z boson mediators. Probes the tree-level Higgs exchange
- Sensitivity of direct detection will be ultimately limited by elastic recoil of solar and atmospheric neutrinos
- Low mass WIMPs do not carry much energy, and are less constrained

What changes if we add a mediator?

Coupling to SM 15 no longer dictated by size of annilation of

What changes if we add a mediator?

We can

lower the may scale

of DM Lee - Weinberg: $(OV \rightarrow G_F M_{OM} \xrightarrow{2} M_{DM}) \xrightarrow{2} 6 GeV$

Now, of Mediator is gmaller

than Mw, much lighter Dark matter 5 allowed

WINP

"Simplified model" for dark sector

(Okun', Holdom,...)

$$\mathcal{L} = \mathcal{L}_{\psi,A} + \mathcal{L}_{\chi,A'} - \frac{\epsilon}{2} F_{\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_{A'}^2 (A'_{\mu})^2.$$
$$\mathcal{L}_{\psi,A} = -\frac{1}{4} F_{\mu\nu}^2 + \bar{\psi} [\gamma_{\mu} (i\partial_{\mu} - eA_{\mu}) - m_{\psi}] \psi$$
$$\mathcal{L}_{\chi,A'} = -\frac{1}{4} (F'_{\mu\nu})^2 + \bar{\chi} [\gamma_{\mu} (i\partial_{\mu} - g'A'_{\mu}) - m_{\chi}] \chi,$$

- "Effective" charge of the "dark sector" particle χ is Q = e × ε (if momentum scale q > m_V). At q < m_V one can say that particle χ has a non-vanishing EM charge radius, $r_{\chi}^2 \simeq 6\epsilon m_{V}^{-2}$.
- Dark photon can "communicate" interaction between SM and dark matter. *It represents a simple example of BSM physics*.

A reasonable top down model?

my m \Rightarrow Charged under both groups × log/Mur N)

Ultimately discoverable Size of mixing*coupling is set by annihilation. Cannot be too small. *Potentially well-hidden* Mixing angle can be 10⁻¹⁰ or so. It is not fixed by DM annihilation

You think gravitino DM is depressing, but so can be WIMPs 6

Consequences of light mediator

Coulomb (aka Sommerfelt) enha-ncement. Z DN A' EAKet Z A' L' L' A' Ma' CMp For heavy nonrelativistic DM $(V \cdot O_{ann})(V \ll C) \simeq \frac{2\pi U}{V} \times (O_{ann} \cdot V)_{V-C}$ Notice that at freeze-out $V \sim 0.3 c$; and inside the galaxy $V \sim 10^{-3} C$. (Wyslary can be) 10

Consequences of light mediator

- Galactic positron excess can be modelled via the annihilation of DM into light mediators.
- Need the enhancement of cross section at low galactic velocities
- Increasingly under pressure from the absence of the excesss in γ ¹¹

Astrophysical motivations for very MeV-scale DM: 511 keV line

FIG. 4 511 keV line map derived from 5 years of INTE-GRAL/SPI data (from Weidenspointner *et al.*, 2008a).

FIG. 7 Map of Galactic 26 Al γ -ray emission after 9-year observations with COMPTEL/CGRO (from Plüschke *et al.*, 2001).

There is a lot more positrons coming from the Galactic Center and the bulge that expected. The emission seems to be diffuse.

- 1. Positrons transported into GC by B-fields?
- 2. Positrons are created by episodic violent events near central BH?
- 3. Positrons being produced by DM? Either annihilation or decay? ¹²

Search for dark photons, Snowmass study, 2013

Dark photon models with mass under 1 GeV, and mixing angles ~ 10^{-3} represent a "window of opportunity" for the high-intensity experiments, not least because of the tantalizing positive ~ $(\alpha/\pi)\varepsilon^2$ correction to the muon g - 2.

Theoretical status of muon g-2, SM

The history of theoretical calculations goes very far in the past. Back to Schwinger's result, $a_{\mu}^{1-\text{loop QED}} = \alpha / (2 \pi)$ Currently, the QED, Strong and Weak contributions are under control $a_{\mu}^{\text{SM theory}} = 116591828 \pm 49 \times 10^{-11}$

 $a_u^{\text{experiment}} = 116592089(63) \times 10^{-11}$

 $a_u^{\text{Deficit}} = (26.1 \pm 8) \times 10^{-10}$

Even larger than EW contribution $\overset{\sim}{\sim}$ $a_{\prime\prime}^{\rm EW} = (154 \pm 2) \cdot 10^{-11}$

Latest results: A1, Babar, NA48

Signature: "bump" at invariant mass of e^+e^- pairs = $m_{A'}$

Latest results by NA48 exclude the remainder of parameter space relevant for g-2 discrepancy.

Only more contrived options for muon g-2 explanation remain, e.g. $L_{\mu} - L_{\tau}$, or dark photons *decaying to light dark matter*.

Muon pair-production by neutrinos

VOLUME 66, NUMBER 24 PHYSICAL REVIEW LETTERS

17 JUNE 1991

Neutrino Tridents and W-Z Interference

S. R. Mishra,^(a) S. A. Rabinowitz, C. Arroyo, K. T. Bachmann,^(b) R. E. Blair,^(c) C. Foudas,^(d) B. J. King,

FIG. 1. Feynman diagram showing the neutrino trident production in v_{μ} -A scattering via the W and the Z channels.

Trident production was seeing with O(20) events, and is fully consistent with the SM destructive W-Z interference.

Additional contribution from Z' of L_{μ} - L_{τ}

Experimental results

$$\sigma_{\rm CHARM-II} / \sigma_{\rm SM} = 1.58 \pm 0.57 ,$$

 $\sigma_{\rm CCFR} / \sigma_{\rm SM} = 0.82 \pm 0.28 ,$
 $\sigma_{\rm NuTeV} / \sigma_{\rm SM} = 0.67 \pm 0.27 .$

Hypothetical Z' (any Z' coupled to L_{μ}) contributes constructively to cross section.

In the heavy Z' limit the effect simply renormalizes SM answer:

$$\frac{\sigma}{\sigma_{\rm SM}} \simeq \frac{1 + \left(1 + 4s_W^2 + 2v^2/v_\phi^2\right)^2}{1 + \left(1 + 4s_W^2\right)^2}$$

~8-fold enhancement of cross section

Full result on M_{Z'} - g' parameter space

Muon pair production process excludes solutions to muon g-2 discrepancy via gauged muon number in the whole range of

 $M_{Z'} > 400 \text{ MeV}$

In the "contact" regime of heavy Z'>5 GeV, the best resolution to g-2 overpredicts muon trident cross section by a factor of ~ 8 .

Can it be improved in the future at LBNE (O(50) events /yr)???

Altmannshofer, Gori, MP, Yavin, PRL, 2014

Also, watch out for the future missing momentum searches, e.g. NA64

CMB and BBN constraints

- Thermal production of "very dark photons" at $T \sim 0.4 \text{ m}_V$
- If couplings are very small, decays happen much later,

$$\tau_V \simeq \frac{3}{\alpha_{\rm eff} m_V} = 0.6 \,\,{\rm mln}\,\,{\rm yr} \times \frac{10\,{
m MeV}}{m_V} \times \frac{10^{-35}}{\alpha_{\rm eff}}$$

- Disrupt BBN outcome or CMB angular anisotropies
- Energy release per baryon can be significant,

 $E_{\rm p.b.} \sim \frac{m_V \Gamma_{\rm prod} H_{T=m_V}^{-1}}{n_{b,T=m_V}} \sim \frac{0.1 \alpha_{\rm eff} M_{\rm Pl}}{\eta_b} \sim \alpha_{\rm eff} \times 10^{36} \,\mathrm{eV}$

Strong constraints on mixing angle as amall as 10^{-17} .

Probing dark photon over range of masses

• Misaligned photon dark matter, sub-eV range, from Chaudhuri et al, 2014.

On-going and future projects

Fixed Target/beam dump experiments sensitive to

- Dark Photons: HPS, DarkLight, APEX, Mainz, SHiP...
- Light dark matter production + scattering: MiniBoNE, BDX, SHiP...
- Right-handed neutrinos: SHiP
- Missing energy via DM production: NA62 (K→πνν mode), positron beam dumps, NA64...
- Extra Z' in neutrino scattering: DUNE near detector (?)

Light DM – direct production/detection

If WIMP dark matter is coupled to light mediators, the WIMP mass scale can be much lighter than nominal Lee-Weinberg bound,

$$\mathcal{L} \supset |D_{\mu}\chi|^{2} - m_{\chi}^{2}|\chi|^{2} - \frac{1}{4}(V_{\mu\nu})^{2} + \frac{1}{2}m_{V}^{2}(V_{\mu})^{2} - \frac{\kappa}{2}V_{\mu\nu}F^{\mu\nu} + \dots$$

$$\uparrow$$
DM
mediation

Light WIMPs due to light mediators direct production/detection

Light dark matter is not ruled out if one adds a light mediator.

WIMP paradigm:
$$\sigma_{\text{annih}}(v/c) \sim 1 \text{ pbn} \implies \Omega_{\text{DM}} \simeq 0.25,$$

Electroweak mediators lead to the so-called Lee-Weinberg window,

$$\sigma(v/c) \propto \begin{cases} G_F^2 m_{\chi}^2 & \text{for } m_{\chi} \ll m_W, \\ 1/m_{\chi}^2 & \text{for } m_{\chi} \gg m_W. \end{cases} \implies \text{few GeV} < m_{\chi} < \text{few TeV} \end{cases}$$

If instead the annihilation occurs via a force carrier with light mass, DM can be as light as ~ MeV (and not ruled out by the CMB if it is a scalar).

$$\chi$$

 χ^*
 e^+
 e^+
 e^-

Fixed target probes - Neutrino Beams

We can use the neutrino (near) detector as a dark matter detector, looking for recoil, but now from a relativistic beam. E.g.

T2K 30 GeV protons (IIII ~5x10²¹ POT) 280m to on- and offaxis detectors

MINOS 120 GeV protons 10²¹ POT 1km to (~27ton) segmented detector

MiniBooNE

8.9 GeV protons 10²¹ POT 540m to (~650ton) mineral oil detector

Comparison of Neutrino and light DM

Neutrinos:

Production:

Strong scale $\sigma \sim 100$ mbn

Detection:

Weak scale $\sigma \sim G_F^2 E_{cm}^2$

Light WIMPs:

Production:

 $\sigma \sim \sigma_{\rm strong} \times \varepsilon^2$

Detection:

Larger than weak scale!

Signals ~ $\sigma_{\text{production}} \times \sigma_{\text{detection}}$ can be of comparable strength The reason for "stronger-than-weak" force for light dark matter comes from the Lee-Weinberg argument. (The weak-scale force will be *insufficient* in depleting WIMP DM abundance to observable levels if m_{DM} < few GeV. Therefore, stronger-than-weak force and therefore relatively light mediator is needed for sub-GeV WIMP dark matter).

Compilation of current constraints on dark photons decaying to light DM

The sensitivity of electron beam dump experiments to light DM is investigated in Izaguirre et al, 2013; Batell, Essig, Surujon, 2014.

MiniBooNE search for light DM

MiniBoone has completed a long run in the beam dump mode, as suggested in [arXiv:1211.2258]

By-passing Be target is crucial for reducing the neutrino background (R. van de Water et al. ...). Currently, suppression of v flux ~50.

Timing is used (10 MeV dark matter propagates slower than neutrinos) to further reduce backgrounds. First results – this year (2016) 27

Future big project: SHiP project at CERN

More anomalies driving new experiments?

- 5 hen developments at Fermilab good spot fo Search for light LSND etc hint on light sterile neutrino
- Proton charge radius problem?
- Recently reported anomalous signal in ${}^{8}Be(18.15)$ decay.
- BBN abundance of ⁷Li is off by a factor of 3 from observations
- A hint on DM self-interaction mediated by light particle exchange?

More discrepancies discovered using muons !

require $\sim 10^4 \, G_F$ effects...

Muon-specific vector forces $\frac{1}{0}$ $\frac{1}{0$

$$\mathcal{L}_{\text{int}} = -V_{\nu} \left[\kappa J_{\nu}^{\text{em}} - \bar{\psi}_{\mu} (g_V \gamma_{\nu} + g_A \gamma_{\nu} \gamma_5) \psi_{\mu} \right]$$

$$= -V_{\nu} \left[e \kappa \bar{\psi}_p \gamma_{\nu} \psi_p - e \kappa \bar{\psi}_e \gamma_{\nu} \psi_e \right]$$

$$- \bar{\psi}_{\mu} ((e \kappa + g_V) \gamma_{\nu} + g_A \gamma_{\nu} \gamma_5) \psi_{\mu} + \dots \right],$$

The problem with this is that it is not SM gauge invariant – sensitivity at high energy ~ $(\Lambda_{UV}/m_V)^2$. Decay of W is one issue, but there will be lots of trouble with EWP observables, off-shell W-exchange etc. (~ O(1 GeV) mass shifts)

Putting it in the SM representation is the only model solution.

$$\mathcal{L} = -\frac{1}{4}V_{\alpha\beta}^2 + |D_\alpha\phi|^2 + \bar{\mu}_R i D_\mu \mu_R - \frac{\kappa}{2}V_{\alpha\beta}F^{\alpha\beta} - \mathcal{L}_m$$

Implication: a new parity NC-like parity-violating force for muons, that is *stronger than weak*.

Other possibilities??

• How about the scalar force – call it S – that provides e-p repulsion and fixes r_p discrepancies at least between normal H and μ H (Tucker-Smith, Yavin proposal)?

$$\mathcal{L}_{\phi} = \frac{1}{2} (\partial_{\mu}\phi)^2 - \frac{1}{2} m_{\phi}^2 \phi^2 + (g_p \bar{p}p + g_e \bar{e}e + g_{\mu} \bar{\mu}\mu)\phi$$

- Couplings will be very small, and the mass will be small, O(200 keV- 1MeV), $y_e y_p / e^2 \sim -10^{-8}$.
- This turns out to be somewhat of a blind spot in terms of astro and cosmo constraints. *Issues with UV completion, n scattering*
- Izaguirre, Krnjaic, MP: use small *underground accelerators* coupled with large scale detectors such as *Borexino, Super-K* etc... Up to ~ 20 MeV kinematic reach is available due to nuclear binding. Use ¹⁹F+p → ¹⁶O(*) + ⁴He reaction

MLMR HY-

DM with a hint on self-interaction?

- Comparison of observations and simulations seem to point to problems with dwarf galaxy substructures (also known as "too-big-to-fail" problem).
- It may or may not be a real problem (it is an astrophycist-dependent problem). $(b^{-24}cm^2/Gell)$
- Self-scattering due to a dark force, at 1 cm²/g level, seems to help, as it flattens out central spikes of DM (which is a reported problem).

- it' on

Example of parameter space that creates a core and solves the problem (from Tulin, Yu, Zurek) for $\alpha_d = 0.1$

"Discoverable" mass range for the mediators.

Dark matter bound states at B-factories

• If $\alpha_d > 0.2$, the sub-5 GeV Dark matter *can increase the sensitivity to dark force* via production of "dark Upsilon" that decays producing multiple charged particles

3 pairs of charged particles appear "for free" once Upsilon_dark is produced. This is limited by previous searches of "dark Higgsstrahlung" by BaBar and Belle. An,Echenard, MP, Zhang, PRL, to appear

Conclusions

- Many motivations for dark sectors, but which one describes the observed dark matter is not clear
- Progress in WIMP detection is enormous.
- Light force between Dark matter and SM expands phenomenological possibilities
- Light weakly coupled particles (e.g. mediators of DM interaction) can be responsible for a number of different phenomena and anomalies (starting from muon g-2). Direct searches of such light particles haven't turn up a positive detection yet, but the progress in recent years in sensitivity has been substantial.