Plan for 3 lectures

- Introduction. The need for new physics. Portals to new Physics.
- Strong CP problem and axion solutions. Searches for axions and axion-like particles.
- Weakly interacting massive particles. WIMP interaction with Standard Model particles. Some snapshots of WIMP phenomenology.
- Dark mediators. Direct searches of dark mediators at low and medium energies.

Plan for 3 lectures

- Introduction. The need for new physics. Portals to new Physics.
- Strong CP problem and axion solutions. Searches for axions and axion-like particles.
- Weakly interacting massive particles. WIMP interaction with Standard Model particles. Some snapshots of WIMP phenomenology.
- Dark mediators. Direct searches of dark mediators at low and medium energies.

Plan for 3 lectures Maxim Pospeler, Vef Victoria Perimeter Inst.

- Introduction. The need for new physics. Portals to new Physics.
- <u>Strong CP problem and axion solutions</u>. Searches for axions and axion-like particles.
- Weakly interacting massive particles. WIMP interaction with Standard Model particles. Some snapshots of WIMP phenomenology.
- Dark mediators. Direct searches of dark mediators at low and medium energies.

Ť –

Evidence for New Physics

- Standard Model based on SU(3)*SU(2)*U(1) interactions is a wellestablished paradigm
- Evidence for "New Physics" interactions and particles and fields beyond the SM field content – comes from the neutrino physics and cosmology
- These are enormous subjects to cover in 3 lectures but a lot of reference literature exists.

Early cosmology is relatively simple

Dark energy, dark matter

Dark energy, dark matter, dark forces...? Last feu years

Historic examples: $(\overline{A}, \overline{S})$ 1920s + stoong force neutrons

Dark energy, dark matter, dark forces...? Maxwell EM theory 860s 1898 ~ radioctivity 1932-35 ~ neutrony, strong force ~1972-y - weak neutral corrents -2012 - déscover of fundamental Vubana park force? ? 2050

$n_x \sim n_y$ Possible types of dark matter

 $N_{\star} \ll N_{F}$ Possible types of dark matter

Super-WIMPs (super-weakly interacting massive particles)

 $n_{\alpha} \gg n_{\beta}$ Possible types of dark matter Sub-eV particles Super-cold DM (axions, any other light bosonic field). mf < 0.5 kell & oscillation

Energy and intensity frontiers = c=1) mxr X X $\bigvee (\lor)$ MS ier 10

Portals to New Physics Jeff $= \sum_{h}^{3} \frac{O_{sh}O_{sh}^{d_{s}}}{\sqrt{h}}$ $(H^{+}H)(JS^{2} + A \cdot S)$ look for w Fu lowest dimension operators LI $(LH)^{n}$ $F_{Y,y}$

Portals to New Physics $(HH)(A\cdot S + 15^2)$ Higgs p. kinetic mixing p. Bus Fin neutrino portal (LH)Nvector portal (7 V ~ 4) A, (7 1/54) dua fa axion portal. (FYn F) (Tyn X) 12 · · · · - - - - ·

Evidence for neutrino portal

a hot SM gauge invariant operator VV (LH)(LH) A effective perator A senergy scale $\frac{v^2}{2\Lambda}$ $\mathcal{T} = 246$ $G_F = \frac{1}{2v^2}$ Gel $M_{\rm y} \simeq$

Evidence for neutrino portal

Natural completion $\frac{1}{1}$ (LHHL)

 $\mathcal{L} = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} - \frac{m_N}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}}$ +Y(LH)NSimplest model for V-masses $\frac{Y^{2}}{M_{N}}(LH)^{2}$

Motivation for axion portal

Fryst Zna (dim=5) Fa

L Strong Oppoblen axion solution

QCD (and more generically SM) has a non-trivial vacuum Structure due to strong dynamics and instantons. Responsible for $M_{1} \gg M_{97}$ Some condition leads to observa-bility of θ -term. $L_{QCD} = L_{QCD} + \frac{\theta g_s^2}{32\pi^2} G_{\mu\nu} G_{\mu\nu}$ * 66 is totally non-perturbative * A -> O+27 3 absolute symmetry, 16

Pacp - quasimomentum for the vacuum configurations with fixed

winding number 1 A=0

 $|\theta\rangle = Ze^{in\theta}/n$

We are forced to introduce

0, because of In> - In±1> transitions, called instantons

 $= n_{+} - n_{-} \in \mathbb{Z}$

In the full SM $\overline{\Theta} = \Theta + arg det M_{u}M_{g}$

De breaks CP. Example : <u>Martit</u> decays <u>France</u> - <u>Z</u>

More importantly, induces EDMs

 $H_{int} = d \vec{s} \cdot \vec{E}$

 $|d_n| \leq 3 \times 10^{-26} cm \cdot e$

 $d_{h} \simeq \overline{\Theta} \frac{M_{g}}{4} \qquad \left(\begin{array}{c} Can be make \\ precese \end{array} \right) \\ \left(\overline{GeV} \right)^{2} \qquad \left(\overline{\Theta} \right) < 10^{-10} \qquad 1$

Solutions to Strong CP Why & is so small when it could be O(1)? 1. By chance, 2. dn -o, ; mu=0? nu=0; seems to be not viable, refuteder by lattice 3. Engineer $\overline{\Theta} = 0$ parity conserves af high energies, $\overline{\Theta} = 0$ models? A. Axion Salution to strong CP 5. May be we do not understand strong inter.

Axions solve strong CP problem

Axions. Mass ~ coupling

$M_a \sim \frac{\sqrt{3/2}}{\sqrt{\alpha c p}} \frac{m^{1/2}}{m_q^2}$	
(more precisely $m_a = \frac{f_{\pi}}{f_a} \frac{M_u m d}{(M_u + m d)^2}$	Mrc
Substituting in numbers, we	get
Ma~6 meV × 10°GeV/fa	
ta sma disfavored (excluded) by	- ^ ~ ŋ
Very light, very weakly couple	2 22

Axions. Need for UV completion

Axion-like particles