

Modern Particle Detectors

Bernhard Ketzer Helmholtz-Institut für Strahlen- und Kernphysik

SFB 1044 School 2016 Boppard

- Overview: old and new detectors
- Detection principles
- Interaction of charged particles with matter
 - Inelastic collisions with atomic electrons ⇒ ionization energy loss
 - Emission of Cherenkov radiation
 - Emission of Transition radiation
 - ⇒ unified treatment in **PAI model**
 - Emission of Bremsstrahlung
- Mean energy loss: Bethe formula and friends
- Energy loss distributions (straggling functions): Landau et al.

universität**bonr**

Plan of the Lecture

- 1. Introduction
- 2. Interaction of charged particles with matter
- 3. Ionization detectors
- 4. Position measurement and tracking
- 5. Photon detection
- 6. Calorimetry
- 7. Detector systems

3 Ionization Detectors

3.1 Detection of Ionization3.2 Charge Transport3.3 Gas Amplification3.4 Signal Formation

Principle: collection of electrons and ions (holes) produced in detector medium by ionizing radiation

Detector material:

- gas ⇒ fast collection of e⁻ and ions, e.g. Ne, Ar
- liquid ⇒ higher density, e.g. liquid Ar
- solid ⇒ higher density, self-supporting, e.g. semiconductor

Setup:

- vessel with two electrodes and thin entrance window
- filled with active medium
 ⇒ creation of electron-ion (hole) pairs
- electric field between anode and cathode
 - separation of e⁻ and ions (holes), drift and diffusion
 - signal induction
 - collection at anode/cathode

Field-free gas: quick thermalization of charge carriers in collisions

➡ Maxwell distribution of velocities (thermal equilibrium):

$$F(c)dc = 4\pi n \left(\frac{m}{2\pi kT}\right)^{3/2} c e^{-mc^2/(2kT)} dc \qquad \overline{c} = \sqrt{\frac{8kT}{\pi m}}$$
$$\overline{E}_{kin} \equiv \varepsilon = \frac{m}{2}\overline{c^2} = \frac{3}{2}kT \qquad \text{Definition of temperature}$$

Point-like charge cloud at t=0 \Rightarrow Distribution at time t?

J = flux densityAnsatz: $\mathbf{J} = -D \nabla n$ ∇n = gradient of particle density D = diffusion coefficient $\frac{\partial n}{\partial t} = D \,\Delta n$ ⇒ diffusion equation t_2 **Solution:** Gaussian law $\langle \langle z^2 \rangle \equiv \sigma_z = \sqrt{2Dt}$ $\frac{\mathrm{d}N}{N} = \frac{n\mathrm{d}z}{N} = \frac{1}{\sqrt{4\pi Dt}} e^{-z^2/4Dt} \mathrm{d}z$ $\sqrt{\langle r^2 \rangle} \equiv \sigma_r = \sqrt{6Dt}$ t_3 B. Ketzer Detectors

6

Drift of Charge Carriers

Microscopically:

External electric field ⇒ acceleration

Collisions ⇒ slowing down

Macroscopically: drift motion with drift velocity u

Ansatz: Langevin equation

 $m \frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = e\boldsymbol{E} + e(\boldsymbol{u} \times \boldsymbol{B}) - K\boldsymbol{u}$

Solution for $t \gg \tau$: steady state for which $\frac{\mathrm{d}u}{\mathrm{d}t} = 0$

Ku =frictional force $\tau = \frac{m}{K} =$ characteristic time

 $\omega = \frac{eB}{m}$ = cyclotron frequency

 \Rightarrow Drift velocity *u* dominated by dimensionless parameter $\omega \tau$

 $\boldsymbol{u} = \frac{e}{m} \tau \left| \boldsymbol{E} \right| \frac{1}{1 + \omega^2 \tau^2} \left[\hat{\boldsymbol{E}} + \omega \tau \left(\hat{\boldsymbol{E}} \times \hat{\boldsymbol{B}} \right) + \omega^2 \tau^2 \left(\hat{\boldsymbol{E}} \cdot \hat{\boldsymbol{B}} \right) \hat{\boldsymbol{B}} \right]$

B. Ketzer

universität**bonn**

B. Ketzeß

- rapid acceleration in electric field
- small energy loss in elastic collisions with atoms
- e⁻ momentum randomized in collisions
- energy gain in electric field is mainly in random motion >> thermal energy
- $\Rightarrow \text{ drift velocity} \qquad u^2 = \frac{eE}{mn\sigma} \sqrt{\frac{\Lambda}{2}} \ll c^2 = \frac{eE}{mn\sigma} \sqrt{\frac{2}{\Lambda}} \qquad \text{average velocity}$

 $\Lambda = \Lambda(\varepsilon)$ average fractional energy loss per collision $\sigma = \sigma(\varepsilon)$ collision cross section 10-1 10-14 σ (cm²) Ramsauer minimum (Ar, CH₄, Kr, Xe) 10^{-2} 10-15 CH4 CH, 10-3 AΓ 10-16 10-4 Ar 10-17 10-5 0.001 0.01 0.1 10 0.01 10 0.001 0.1 (b) [Blum,Rolandi, Springer, 1993] ε (eV) (a) ε (eV) Detector

Drift Velocity of Electrons

universität**bonn**

Ne/CO₂ Mixtures

B. Ketzer

Increase electric field in gaseous detector up to several kV/cm ⇒electrons gain sufficient energy between collisions to ionize gas molecules ⇒avalanche generation

Probability of ionization per unit path length: 1. Townsend coefficient

$$\alpha = \frac{1}{\lambda_{\text{ion}}} = n\sigma_{\text{ion}}$$

 λ_{ion} = mean free path for sec. ionizing collision σ_{ion} = cross section for ionizing collision *n* = density of gas molecules

Homogeneous electric field:

$$\mathrm{d}N = N\alpha\,\mathrm{d}x \Longrightarrow N = N_0 e^{\alpha x}$$

Gain:

$$G = \frac{N}{N_0} = e^{\alpha x}$$

[S.C. Brown, Basic Data of Plasma Physics, MIT Press (1959)]

Proportional counter: average number of electrons \propto initial electrons N_i Random nature of multiplication process \Rightarrow fluctuations

Assumption: each initiating electron develops its own small avalanche, independent of presence of other electrons nearby

 $N = n_1 + n_2 + n_3 + \dots + n_k$

Probability distribution of number *N* of total electrons

= sum over probability distributions P(n) of number of electrons nin individual small avalanches (mean \overline{n} , variance σ^2)

If number k of initiating electrons large \Rightarrow central limit theorem

$$F(N) = \frac{1}{S\sqrt{2\pi}} \exp[(N - \overline{N})^2/2S^2]$$
 with $\overline{N} = k\overline{n}$ and $S^2 = k\sigma^2$

- Exact shape of P(n) not needed if k large
- Often: detection of single electrons important, e.g. drift chambers, PMT
 ⇒ P(n) particularly interesting

Avalanche distribution in weak fields: Yule-Furry law

$$P(n,s) = \frac{1}{\bar{n}(s)} e^{-\frac{n}{\bar{n}(s)}}$$
 and $\sigma(s) = \bar{n}(s)$ (s = drift coordinate)

- i.e. a purely exponential distribution with small signals being most probable!
- R.m.s. width is equal to the mean

Avalanche distribution in strong fields:

- Different distributions in literature: Legler et al., ...
- Often used as good approximation: Polya distribution

Assume statistically independent sources of fluctuations:

- k ionization electrons, $\langle k \rangle = N_i$, $\sigma_i = \sqrt{F \cdot N_i}$ (F Fano factor)
- each ionization electron creates an avalanche of size n_j ,

$$\langle n \rangle = \frac{1}{N_i} \sum_{j=1}^{N_i} n_j$$
, $\sigma_{\bar{n}}^2 = \frac{1}{N_i} \sigma_n^2$

⇒ signal amplitude

$$S = \sum_{j=1}^{N_i} n_j = N_i \cdot \bar{n}$$

signal fluctuations

$$\left(\frac{\sigma_S}{S}\right)^2 = \left(\frac{\sigma_i}{N_i}\right)^2 + \left(\frac{\sigma_{\overline{n}}}{\overline{n}}\right)^2 = \left(\frac{\sigma_i}{N_i}\right)^2 + \frac{1}{N_i} \left(\frac{\sigma_n}{\overline{n}}\right)^2$$

Consider charge *q* above a grounded electrode

- electric field is perpendicular to conductor at the surface
- changes take place only on surface
- surface charge density σ and electric field *E* on the surface are related by Gauss' law

In order to find the charge induced on an electrode, we have to

a) solve the Poisson equation with boundary condition $\phi = 0$ on the conductor surface

$$\Delta \varphi = -\frac{\rho}{\varepsilon_0}, \quad \mathbf{E} = -\nabla \varphi$$

- b) calculate the electric field *E* on the surface of the conductor
- c) integrate $\varepsilon_0 E$ over the surface of the electrode

Signal Formation

For this particularly simple setup with one electrode ⇒ use mirror charge

Movement of charge q (no external field needed!)

⇒ change of induced surface charge on electrode

Movement of charge q (no external field needed!)

- ⇒ change of induced surface charge on electrode
- \Rightarrow current on segmented electrodes

21

How to calculate the induced signal?

- solve Poisson equation with moving charge
- use mirror charges to get rid of electrodes
- use Ramo-Shockley theorem

[H. Spieler, Semiconductor detector systems, Oxford, 2005]

[W. Shockley, J. Appl. Phys. 9, 635 (1938), S. Ramo, Proc. IRE 27, 584 (1939)]

Calculation of signals induced on grounded electrodes:

• Gauss' Law: point charge inside closed surface

$$\oint \mathbf{E} \cdot \mathbf{n} da = \frac{1}{\varepsilon_0} \int_V \rho(\mathbf{x}) d^3 x$$

universität**bonn**

5

$$\int_{V} (\phi \Delta \psi - \psi \Delta \phi) d^{3}x = \oint_{S} \left(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right) da$$

with $\frac{\partial \phi}{\partial n} \equiv \nabla \phi \cdot \mathbf{n} \left[= -\mathbf{E} \cdot \mathbf{n} \right]$

universität**bonn**

Consider detector volume delimited by grounded electrodes:

Real situation: charge q at position x₀, all electrodes grounded, i.e.
 U_i = 0, i = 1,2, ... ⇒ solution φ(x)

Consider detector volume delimited by grounded electrodes:

- Real situation: charge q at position x₀, all electrodes grounded, i.e.
 U_i = 0, i = 1,2, ... ⇒ solution φ(x)
- Auxiliary situations: charge q removed, all electrodes grounded except electrode i, i.e.

 $U_j = 0, j \neq i \Rightarrow$ solutions $\phi_i(x)$ with $\phi_i(x) = U_i$ at surface of electrode *i*

Space between electrodes and charge q free of charges

$$\Rightarrow \Delta \phi(\mathbf{x}) = 0$$
$$\Delta \phi_i(\mathbf{x}) = 0$$

universität**bon**

Apply Green's 2^{nd} theorem to volume *V* delimited by S(V):

universität**bonn**

$$\int_{V} (\phi \Delta \phi_{i} - \phi_{i} \Delta \phi) d^{3}x = \oint_{S(V)} \left(\phi \frac{\partial \phi_{i}}{\partial n} - \phi_{i} \frac{\partial \phi}{\partial n} \right) da \qquad \text{for every a}$$
$$= 0$$

Solve surface integral by splitting it up into 3 parts

$$\Rightarrow Q_i = -q \frac{\phi_i(\mathbf{x}_0)}{U_i}$$

induced charge on electrode i by charge q at position x_0 when all electrodes are grounded

 $\phi_i(x_0) =$ potential at point x_0 when point charge q is removed, electrode i is put to potential U_i and all other electrodes are grounded

weighting potential of electrode *i*

Point charge moving along trajectory $x_0(t)$

 \Rightarrow time-dependent induced charge on electrode *i*

$$\Rightarrow$$
 current $I_i(t) = -\frac{\mathrm{d}Q_i(t)}{\mathrm{d}t}$

Sign convention: positive current points away from electrode

$$I_i(t) = -\frac{\mathrm{d}Q_i(t)}{\mathrm{d}t} = \frac{q}{U_i}\frac{\mathrm{d}}{\mathrm{d}t}\phi\left[\mathbf{x}_0(t)\right]$$

$$I_i(t) = \frac{q}{U_i} \nabla \phi_i \left[\boldsymbol{x}_0(t) \right] \cdot \frac{\mathrm{d} \boldsymbol{x}_0(t)}{\mathrm{d} t} = -\frac{q}{U_i} \boldsymbol{E}_i \left[\boldsymbol{x}_0(t) \right] \cdot \boldsymbol{v}(t) \qquad \begin{array}{l} \mathsf{Ramo-Shockley} \\ \mathsf{Theorem} \end{array}$$

The current induced on a grounded electrode by a point charge qmoving along a trajectory $x_0(t)$ is $I_i(t)$, where $E_i(x_0)$ is the electric field in the case where the charge q is removed, electrode i is set to voltage U_i , and all other electrodes are grounded.

universität**bon**

Plane Ionization Chamber

universität**bonn**

How do the real field and the weighting field look like?

Planar Strip Detector

FIG. 2.29. Weighting potential for a 300 μ m thick strip detector with strips on a pitch of 50 μ m. The central strip is at unit potential and the others at zero. Only 50 μ m of depth are shown.

[H. Spieler, Semiconductor detector systems, Oxford, 2005]

B. Ketzer

universität**bonn**

Planar Strip Detector

[H. Spieler, Semiconductor detector systems, Oxford, 2005]

(ISKP

B. Ketzer

Consequences:

 Charge induced on electrode *i* by a charge *q* moving from point 1 to 2 is

$$Q_{i} = \int_{t_{1}}^{t_{2}} I_{i}(t) dt = -\frac{q}{U_{i}} \int_{t_{1}}^{t_{2}} \boldsymbol{E}_{i}[\boldsymbol{x}(t)] \, \dot{\boldsymbol{x}}(t) dt = \frac{q}{U_{i}} \left[\phi_{i}(\boldsymbol{x}_{1}) - \phi_{i}(\boldsymbol{x}_{2})\right]$$

and is independent of the actual path

- 2. Once all charges have arrived at the electrodes, the total induced charge in a given electrode is equal to the charge that has arrived at this electrode
- 3. In case there is one electrode enclosing all others, the sum of all induced currents is zero at any time

Arguing with Energy

Gives correct result!

see e.g. [W.R. Leo, Techniques for Nuclear and Particle Physics, Springer, 1987]

 Signal is calculated using energy balance: Energy gained by charge in electric field =

change of energy stored in capacitor

- In some special cases, this argument gives the correct result, e.g. for a 2-electrode system because there the weighting field and the real field are equal.
- But the argument is very misleading:
 - An induced current signal has nothing to do with energy. In a gas detector the electrons are moving at constant speed in a constant electric field, so the energy gained by the electron in the electric field is lost into collisions with the gas, i.e. heating of the gas.
 - In absence of an electric field, the charge can be moved across the gap without using any force and currents are flowing.

- 1. Calculate particle trajectory $x_0(t)$ in the "real" electric field
- 2. Remove all impedance elements, ground the electrodes and calculate currents induced by moving charge on grounded electrodes

$$I_i(t) = \frac{q}{U_i} \nabla \phi_i \left[\boldsymbol{x}_0(t) \right] \cdot \frac{\mathrm{d} \boldsymbol{x}_0(t)}{\mathrm{d} t} = -\frac{q}{U_i} \boldsymbol{E}_i \left[\boldsymbol{x}_0(t) \right] \cdot \boldsymbol{v}(t)$$

3. Place these currents as ideal current sources on a circuit where the electrodes are simple nodes and the mutual electrode capacitances are added between the nodes. They are calculated from the weighting field by

$$c_{nm} = \frac{\varepsilon_0}{V_w} \oint_{\boldsymbol{A}_n} \boldsymbol{E}_m(\boldsymbol{x}) d\boldsymbol{A}$$

$$C_{nn} = \sum_{m} c_{nm} \qquad C_{nm} = -c_{nm} \quad n \neq m$$

4 Position Measurement

4.1 Resistive Plate Chambers
4.2 Micropattern Gaseous Detectors
4.3 Semiconductor Detectors
4.4 Track Reconstruction

Principle:

[R. Santonico et al., NIM 187, 377 (1981)]

- Parallel plate counter with strong uniform electric field: ~50 kV/cm, 2 mm gap
 ⇒very good time resolution: σ_t <1 ns
 - instant avalanche multiplication for all primary clusters
 - dominated by avalanche statistics, not primary ionization statistics
- High-ohmic electrode material (glass: $\rho = 10^{12} \ \Omega cm$, Bakelite: 10^{10} - $10^{11} \ \Omega cm$)
 - ⇒ local decrease of electric field at position of avalanche
 - \Rightarrow blind spot for time $\tau \sim \rho \varepsilon_0 \varepsilon_r$ (relaxation time, 10 ms 1 s)
- Pickup strips for position information

Resistive Plate Chamber

E₀ **Efficient clusters Electron Efficient Gap: Electron** avalanches doesn't cross the avalanches cross the threshold threshold

Number of clusters per unit length follows strictly a Poisson distribution.

universität**bonn**

Number of efficient clusters follows to a good approximation the same Poisson distribution.

The number of electrons per cluster follows approximately a $1/n^2$ distribution.

 →Number of efficient electrons follows approximately a "Landau" distribution.

Each individual electron starts an avalanche, inducing a signal which will cross a given threshold of the readout electronics \rightarrow time.

Operation:

- Streamer mode: L3, BaBar, BELLE
 - large signals (up to ~nC) ⇒ no amplifier needed
 - low rate capability: a few 100 Hz/cm²
- Proportional mode: ATLAS, CMS μ trigger
 - suppression of streamers by addition of small amounts of SF₆
 - higher rate capability: a few kHz/cm²
 - signal ~10× smaller ⇒ low-noise amplifier
 - less aging

Multi-gap RPC: ALICE TOF barrel, FOPI

- 0.2 0.3 mm gaps
- ⇒ improved efficiency
- ⇒ improved time resolution (smaller gaps)

 $\sigma_t = 50 - 100 \text{ ps}$

universität**bon**

B. Ketzer

- Operation mode: streamer
- Material: float glass
- Observation: high dark currents, deterioration of efficiency
- Increase of voltage increases dark current ⇒"RPC death spiral"
- Cause: water content > 2000 ppm due to polyethylene tubing
- $C_2H_2F_4$ + water \Rightarrow HF acid, etched glass surface
- Solution: replace polyethylene by copper tubing

BaBar RPC

Detectors

CMS (CERN LHC): barrel/endcap trigger

Multi-strip Multi-gap RPC:

- Active area: 90 × 4.6 cm²
- Gaps: 8 × 220 μm
- Strips: 16, 2-sided readout
- HV: 9.6 kV
- Gas: C₂H₂F₄ / i-C₄H₁₀ / SF₆ (80/5/15)
- Resolution: σ_{RPC} < 65 ps

B. Ketzer

Multi-strip Multi-gap RPC:

- Active area: $90 \times 4.6 \text{ cm}^2$
- Gaps: 8 × 220 μm
- Strips: 16, 2-sided readout
- HV: 9.6 kV
- Gas: C₂H₂F₄ / i-C₄H₁₀ / SF₆ (80/5/15)
- Resolution: σ_{RPC} < 65 ps

B. Ketzer

4 Position Measurement

4.1 Resistive Plate Chambers
4.2 Micropattern Gaseous Detectors
4.3 Semiconductor Detectors
4.4 Track Reconstruction

Wire Chambers

Limitations of Wire-based Detectors

- Localization accuracy: typ. 100-500 μm
- Volume / 2-track resolution: typ. 10×10×10 mm³ (signal induction on pads)
- Rate capability: limited by build-up of positive space-charge around anode

- Localization accuracy: typ. 100-500 μm
- Volume / 2-track resolution: typ. 10×10×10 mm³ (signal induction on pads)
- Rate capability: limited by build-up of positive space-charge around anode
- Ion backflow: IB = $I_{cathode} / I_{anode} \sim 30\%$ for TPC with MWPC

- Localization accuracy: typ. 100-500 μm
- Volume / 2-track resolution: typ. 10×10×10 mm³ (signal induction on pads)
- Rate capability: limited by build-up of positive space-charge around anode
- Ion backflow: IB = $I_{cathode} / I_{anode} \sim 30\%$ for TPC with MWPC
- Aging and discharge damage: polymerization of organic compounds

[O. Ullaland, LBL-21170, 107 (1986)]

⇒Reduction of cell size by a factor of 10

- Photolithography
- Etching
- Coating
- Wafer post-processing

The MPGD Zoo

Microstrip Gas Chamber [A. Oed, NIM A263, 351 (1988)]

Microgap Chamber (MGC) [F. Angelini et al., NIM A335, 69 (1993)]

Microdot Chamber

[S.F. Biagi et al., NIM A361, 72 (1995)]

Compteur à Trous (CAT) [F. Bartol et al., J. Phys. III 6, 337 (1996)]

WELL Detector (µCAT) [R. Bellazzini et al., NIM A423, 125 (1999)]

Micro Groove Counter [Bellazzini et al., NIM A424, 444 (1999)]

Micro Wire Detector

[B. Adeva et al., NIM A435, 402 (1999)]

and many more...

Micromegas

Micromesh Gaseous Structure

[I. Giomataris et al., NIM A376, 29 (1996)]

- Thin gap parallel plate structure
 Fine metal grid (Ni, Cu) separates conversion (~ 3 mm) and
 - amplification gap (50-100 µm)
- Very asymmetric field configuration: 1 kV/cm vs. 50 kV/cm

 Saturation of Townsend coefficient (mechanical tolerances)

good energy resolution

DRIFT MICRO-MESH MULTIPLICATION

Micromegas Performance

liskP

- GEM: Gas Electron Multiplier
- [F. Sauli, NIM A386, 531 (1997)]
- Thin polyimide foil, typ. 50 μm
- \bullet Cu-clad on both sides, typ. 5 μm
- Photolithography: ~ 10⁴ holes/cm²
- Granularity 10×higher than MWPC

△U=300-500 V
 ⇒ high E-field: ~50 kV/cm
 ⇒ avalanche multiplication

- GEM: Gas Electron Multiplier
- [F. Sauli, NIM A386, 531 (1997)]
- Thin polyimide foil, typ. 50 μm
- \bullet Cu-clad on both sides, typ. 5 μm
- Photolithography: ~ 10⁴ holes/cm²
- Granularity 10×higher than MWPC

Triple GEM amplification

→ higher gain at lower GEM voltages [S. Bachmann, B. Ketzer et al., NIM A479, 294 (2001)]

discharge prevention

[B. Ketzer et al., IEEE Trans. Nucl. Sci. 48, 1065 (2001)]

\rightarrow no aging up to 7 mC/mm²

[C. Altunbas, B. Ketzer et al., NIM A515, 249 (2003)]

GEM Performance

