

Modern Particle Detectors

Bernhard Ketzer Helmholtz-Institut für Strahlen- und Kernphysik

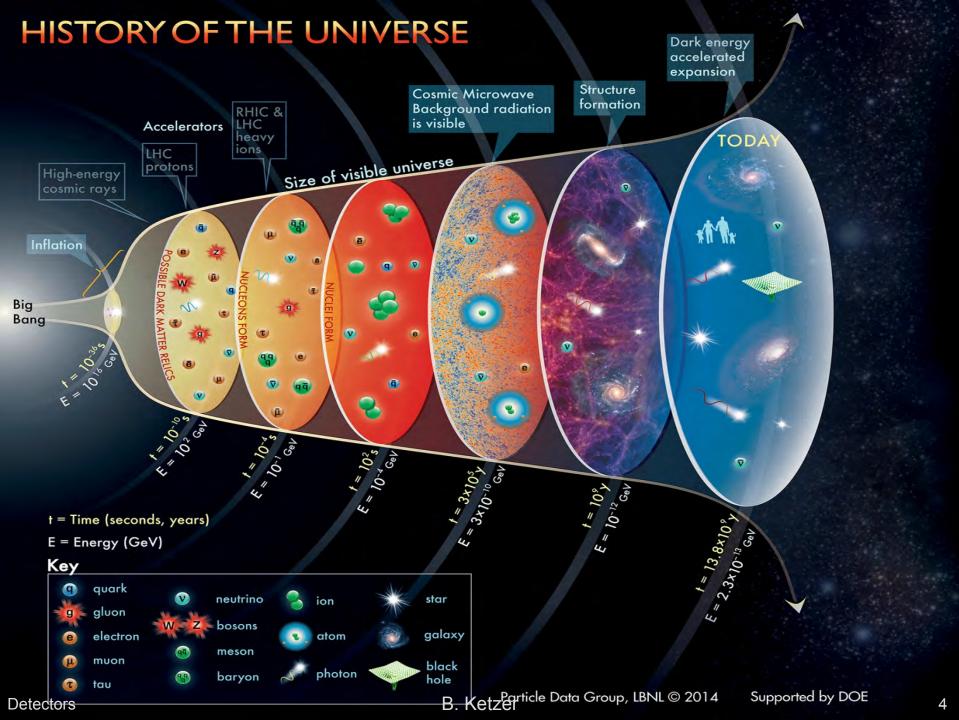
SFB 1044 School 2016 Boppard

Plan of the Lecture

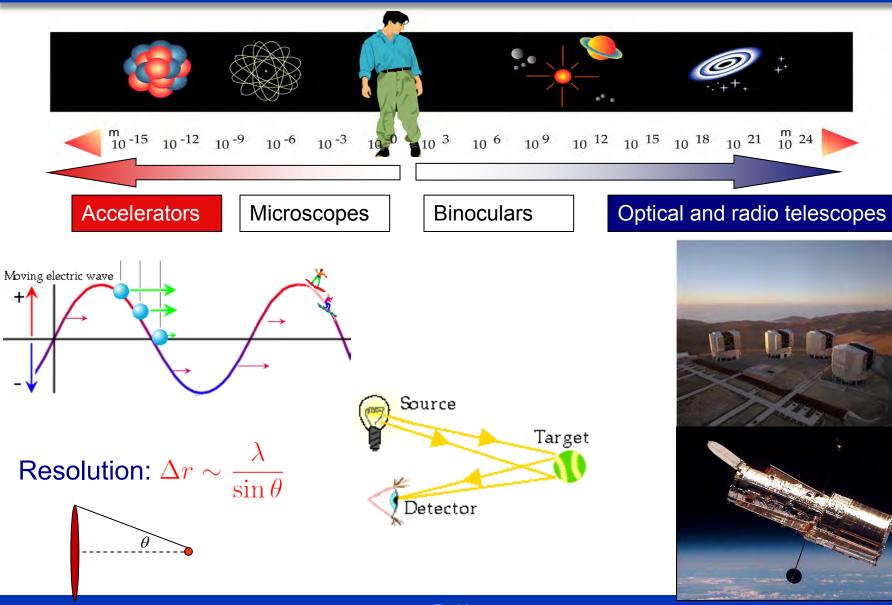
- 1. Introduction
- 2. Interaction of charged particles with matter
- 3. Ionization detectors
- 4. Position and momentum measurement / track reconstruction
- 5. Photon detection
- 6. Calorimetry
- 7. Detector systems

1 Introduction

HISKP



How to observe this?



universität**bonn**

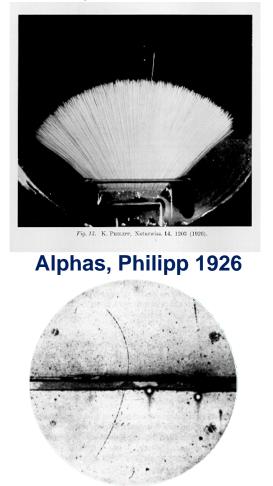
Old Particle Detectors

Bernhard Ketzer Helmholtz-Institut für Strahlen- und Kernphysik

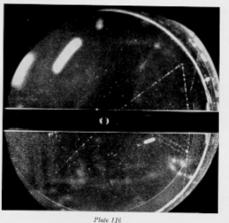
SFB 1044 School 2016 Boppard

Cloud Chamber

C.T.R. Wilson (1910): Charges act as condensation nuclei in supersaturated water vapor (later: alcohol vapor \Rightarrow diffusion cloud chamber)



Positron discovery, Carl Andersen 1933

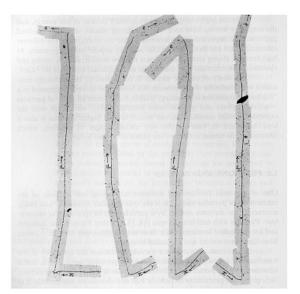


- Jane 1 16

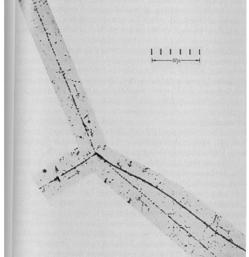
V-particles, Rochester and Wilson, 1940ies

B. Ketzer

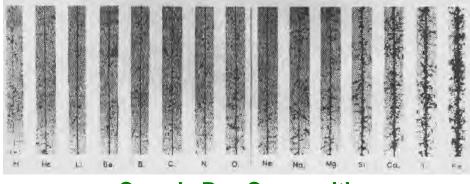
M. Blau (1930s): Charges initiate a chemical reaction that blackens the emulsion (film made of Ag-halide, e.g. AgBr)



C. Powell, Discovery of muon and pion, 1947



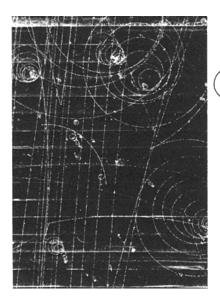
Kaon Decay into 3 pions, 1949



Cosmic Ray Composition

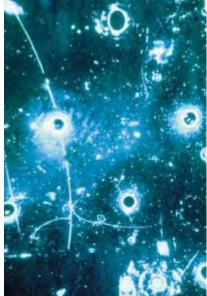
Bubble Chamber

D. Glaser (1952): Charges create bubbles in superheated liquid, e.g. propane or Hydrogen (Alvarez)



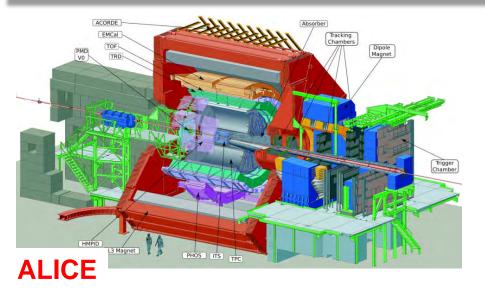
Discovery of the Ω^- in 1964

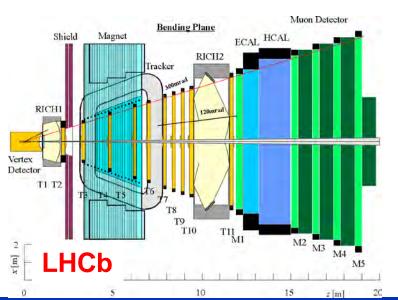
κ-

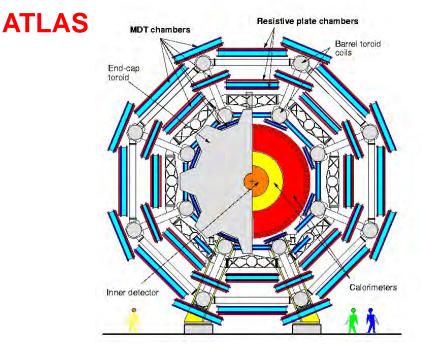


Neutral Currents 1973

The Giants







Very Large Structures

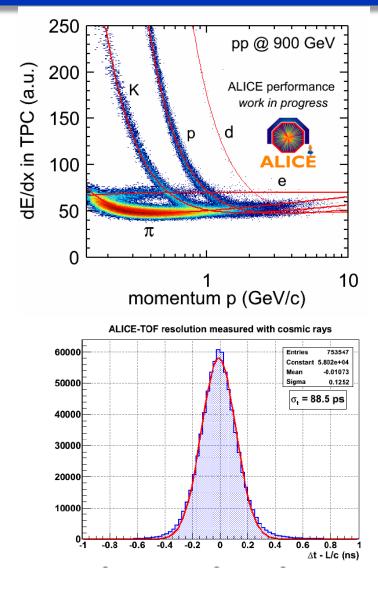
- Engineering, Services, Cooling
- Electronics

But in the end:

resolution limits are still defined by the fundamental detector physics processes ...

Detectors

Resolution



dE/dx particle ID resolution is defined by the fundamental properties of EM interactions of charged particles with matter, 'Bethe Bloch' curve + 'Landau' distribution

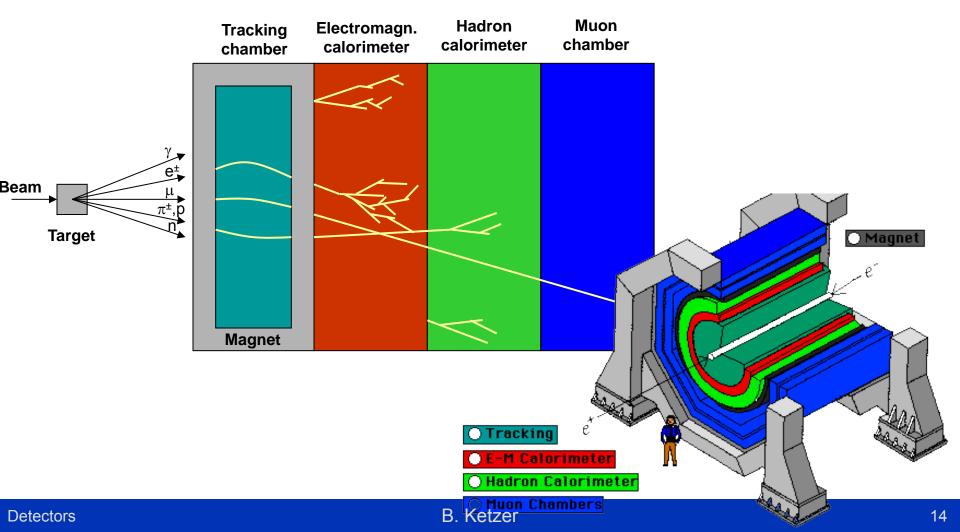
Time of Flight Resolution with Resistive Plate Chambers (ALICE) is defined by the electron avalanche fluctuations together with the drift-velocity.

[W. Riegler, priv. comm.]

Alpha Mass Spectrometer

universität**bonn**

Different **components**, measuring different **aspects** of reaction products: track, charge, energy, momentum, particle type, ...



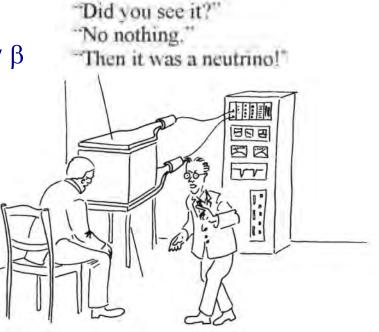
Goal: Measurement of 4-momentum and position in space of particles

Methods:

- Position-sensitive detectors ⇒ direction and position of momentum vector
- Bending in magnetic field ⇒ magnitude of p
- Absorption in calorimeter ⇒ energy
- Cherenkov radiation, time of flight \Rightarrow velocity β
- Transition radiation $\Rightarrow \gamma$
- Energy loss $\Rightarrow \beta, \gamma$
- Characteristic decay of a particle, detecti

Detection by interaction with detector

- electromagnetic interaction with $\Delta E <<\!\!<\!\!E$
- interaction with $\Delta E \sim E$ (calorimtery)



[Claus Grupen, Particle Detectors, Cambridge, 1996]

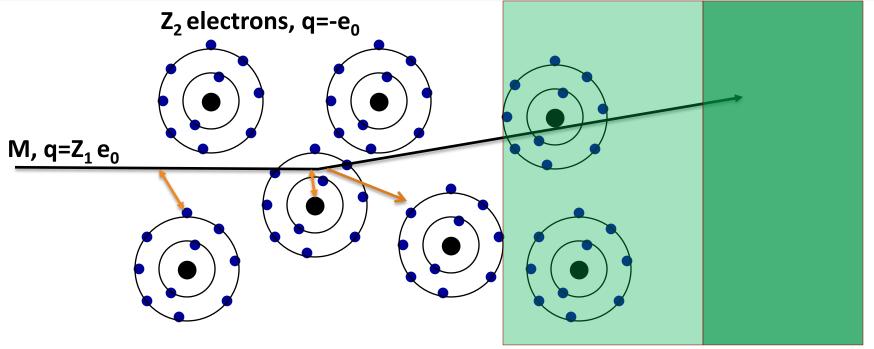
Processes for a charged particle passing through matter:

- 1. Inelastic collisions with atomic electrons
 - ⇔ energy loss
 - ⇒ excitation (soft collision) or ionization (hard collision) of hit atom
 - ⇔ deflection: small
- 2. Elastic collisions with nuclei
 - ➡ deflection
 - \Rightarrow energy loss: negligible, since normally m_a<<m_b
 - ⇒ no excitation of hit atom
- 3. Emission of Bremsstrahlung ⇒ important for e[±]
- 4. Emission of Cherenkov radiation / transition radiation in inhom. materials
- 5. Nuclear interactions

Moderately relativistic heavy charged particles: μ , π , p, α , ... (m_a>m_e)

 \Rightarrow energy loss almost entirely through process 1.: σ ~10⁻¹⁷-10⁻¹⁶ cm²

Electromagnetic Interaction of Particles with Matter universitätbonn



Interaction with the atomic electrons. The incoming particle loses energy and the atoms are <u>excited</u> or ionized. Interaction with the atomic nucleus. The particle is deflected (scattered) causing <u>multiple scattering</u> of the particle in the material. During this scattering a <u>Bremsstrahlung</u> photon can be emitted.

In case the particle's velocity is larger than the velocity of light in the medium, the resulting EM shockwave manifests itself as <u>Cherenkov Radiation</u>. When the particle crosses the boundary between two media, there is a probability of the order of 1% to produce an X ray photon, called <u>Transition radiation</u>.

[W. Riegler, priv. comm.]

- 1. What is the general relation between energy and momentum?
- 2. What approximations can be used?
- 3. What are β and γ ? How are they calculated from *E*, *p*, *m*?
- 4. How large are the fluctuations in radioactive decay?
- 5. What is a cross section?
- 6. What are typical values of cross sections?
- 7. How is it related to luminosity?
- 8. How do charged particles interact with matter?

2 Electromagnetic Interactions of Charged Particles with Matter

2.1 Ionizing collisions2.2 Calculation of mean energy loss2.3 Fluctuations of energy loss

Interactions of a fast charged particle with speed $\beta = v/c$ and momentum $p = Mc\beta\gamma$ with matter

⇒ Occurrence of random individual collisions

 \Rightarrow In each collision the particle loses a random amount of energy *E*

Characterization by mean free path λ and collision cross section σ :

$$\lambda = \frac{1}{n_e \sigma} = \frac{1}{n_p}$$

 n_e number density of electrons n_p number of (primary) collisions per unit length

Number of encounters in length *L*

described by Poisson distribution

$$P(k;\mu) = \frac{\mu^k}{k!} e^{-\mu} \qquad \mu = \frac{L}{\lambda} = L n_p$$

Probability distribution f(l)dl of free flight paths l between collisions:

$$f(l)dl = P\left(0;\frac{l}{\lambda}\right) \cdot P\left(1;\frac{dl}{\lambda}\right) = e^{-\frac{l}{\lambda}} \cdot \frac{dl}{\lambda}$$

single exponential

Probability of having zero encounters along track length *L*:

$$P\left(0;\frac{L}{\lambda}\right) = e^{-L/\lambda}$$

⇒ inefficiency of a perfect detector, which is capable of detecting even single electrons

 \Rightarrow method to measure λ , n_p

Gas	$1 cm/\lambda$	γ
H ₂	5.32 ± 0.06	4.0
	4.55 ± 0.35	3.2
	5.1 ± 0.8	3.2
Не	5.02 ± 0.06	4.0
	3.83 ± 0.11	3.4
	3.5 ± 0.2^a	3.6
Ne	12.4 ± 0.13	4.0
	11.6 ± 0.3^a	3.6
Ar	27.8 ± 0.3	4.0
	28.6 ± 0.5	3.5
	26.4 ± 1.8	3.5
Xe	44	4.0
N_2	19.3	4.9
O ₂	22.2 ± 2.3	4.3
Air	25.4	9.4
	18.5 ± 1.3	3.5

Number of ionizing collisions per cm track length, measured at given value of γ

[V.K. Ermilova et al., Sov. Phys.-JETP 29, 861 (1969)] [K. Söchting, Phys. Rev. A, 20, 1359 (1979)]

2.2 Mean energy loss

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \frac{4\pi}{\left(4\pi\varepsilon_{0}\right)^{2}} \frac{z^{2}e^{4}n_{\mathrm{e}}}{mc^{2}\beta^{2}} \left[\frac{1}{2}\ln\frac{2mc^{2}\beta^{2}\gamma^{2}T_{\mathrm{max}}}{I^{2}} - \beta^{2} - \frac{\delta}{2}\right]$$

"Bethe equation"

with

- *ze* charge of incoming particle
- $n_{\rm e}$ electron number density of material

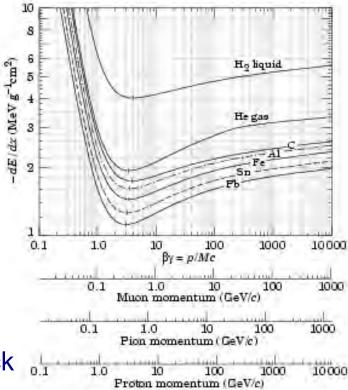
$$n_{\rm e} = \frac{Z}{A} N_{\rm A} \rho$$

- *m* electron mass
- $\beta = v/c$ velocity of incoming particle
- γ relativistic factor
- $T_{\rm max}$ maximum kinetic energy imparted to electron in single collision
- *I* mean excitation energy
- δ density effect correction

Mean Energy Loss

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \frac{4\pi}{\left(4\pi\varepsilon_{0}\right)^{2}} \frac{z^{2}e^{4}n_{\mathrm{e}}}{mc^{2}\beta^{2}} \left[\frac{1}{2}\ln\frac{2mc^{2}\beta^{2}\gamma^{2}T_{\mathrm{max}}}{I^{2}} - \beta^{2} - \frac{\delta}{2}\right]$$

- independent of mass of incident particle
- depends only on velocity of inc. particle and on *I* ⇒ main parameter
- low energies $\Rightarrow \langle \frac{-dE}{dx} \rangle \propto \frac{1}{\beta^2}$
- minimum at $\beta \gamma \approx 3$: "MIP"
- high energies $\Rightarrow \langle -dE/dx \rangle \propto \ln \beta^2 \gamma^2$: relativistic rise
- mass stopping power: $\langle -dE / \rho dx \rangle \propto z^2 (Z / A) \cdot f(\beta, I)$ \Rightarrow almost independent of material
- density effect: polarization of atoms along track
 partly compensates relativistic rise



Quantum picture: energy loss caused by a number of discrete collisions per unit length, each with energy transfer *E*

1_	$-\frac{\mathrm{d}E}{\mathrm{d}x}$	$=\int_{0}^{\infty}$	$E' f(E') \mathrm{d} E'$
`	/	00	

and with $f(E) = n_e \, \mathrm{d}\sigma(E,\beta)/\mathrm{d}E$

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = n_e \int_0^\infty E' \,\frac{\mathrm{d}\sigma}{\mathrm{d}E'} \mathrm{d}E'$$

f(E) dE probability of energy loss per unit path length between *E* and *E*+d*E*

 n_e electron density

E energy transfer in single collision

 $d\sigma/dE$ collision cross section differential in transferred energy

 n_p number of primary collisions per unit path length

Spectrum of energy transfer

Mean free path:

$$dE = \frac{f(E)d}{n_p}$$

probability of energy loss in [E, E + dE] per collision

need a model for collision cross section!

[H. Bichsel, NIM A 562, 154 (2006)]

F(E)

 $n_p = \frac{1}{\lambda} = \int_0^\infty f(E') \mathrm{d}E'$

Simplest ansatz: hard collisions

- Coulomb scattering of projectile with charge *ze* off free electrons
- only valid for energy transfers \gg typical atomic binding energies I
- in rest frame of projectile: electron scattering off heavy particle at rest

⇒ Mott cross section:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}}^{\star} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Rutherford}} \cdot \left(1 - \beta^{2} \sin^{2}\frac{\theta}{2}\right)$$
$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Rutherford}} = \left(\frac{z\alpha\hbar c}{2|\mathbf{p}||\mathbf{v}|}\right)^{2} \frac{1}{\sin^{4}\frac{\theta}{2}} \text{ for static potential (no recoil)}$$

Rutherford - Mott

q

With
$$q = p - p'$$
, $\sin \frac{\theta}{2} = \frac{|q|}{2|p|}$, $p = \gamma m v$
follows the cross section
differential in transferred energy $E = \frac{|q|^2}{2m}$
 $\left(\frac{d\sigma}{dE}\right)^*_{Mott} = \frac{2\pi}{m} \left(\frac{z\alpha\hbar}{E\beta}\right)^2 \left[1 - \frac{E}{2mc^2}(1 - \beta^2)\right]$

Exercise: show this...

Rutherford - Mott

Evaluation of integral

$$\int_{T_{\min}}^{T_{\max}} E' \left(\frac{\mathrm{d}\sigma(E',\beta)}{\mathrm{d}E'} \right)_{\mathrm{Mott}} \mathrm{d}E'$$

Validity range of Mott CCS: $T_{min} < E < T_{max}$

$$T_{\max} = \frac{2\gamma^2 \beta^2 mc^2}{1 + 2\gamma (m/M) + (m/M)^2} \simeq 2mv^2 \gamma^2$$

$$T_{\min} = \epsilon \gg I$$

```
I: mean excitation energy
```

Therefore we arrive at

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle_{\mathrm{R}} = n_e \cdot \frac{2\pi}{m} \cdot \left(\frac{z\alpha\hbar}{\beta}\right)^2 \left[\ln\frac{2mv^2\gamma^2}{\epsilon} - \beta^2\right]$$

Yields Bethe equation, except

- Factor 2
- ϵ instead of *I*

Contribution from hard scattering!

Bethe, 1930:

[H. Bethe, Ann. Phys. 5, 325 (1930)]

[U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963)]

- drop assumption of free electrons
- derive expression for cross section double-differential in energy loss
 E and momentum transfer *q* for inelastic scattering on free atoms
- use first Born approximation

$$\frac{\mathrm{d}\sigma(E,Q)}{\mathrm{d}E\mathrm{d}Q} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}E}\right)_{\mathrm{Mott}}^* \cdot \frac{E^2}{Q^2} \cdot |F(\mathbf{q})|^2 \qquad \qquad Q = \frac{q^2}{2m}$$

with
$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}E}\right)_{\mathrm{Mott}}^{\star} = \frac{2\pi}{m} \left(\frac{z\alpha\hbar}{E\beta}\right)^2 \left[1 - \beta^2 \frac{E}{T_{\mathrm{max}}}\right]$$

Fano, 1963:

- extend method for solids
- no calculations exist for gases

0.12

0.10

0.08

0.06

0.04

0.02

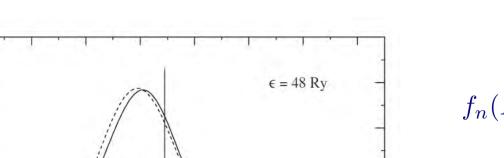
0.00

0

2

4

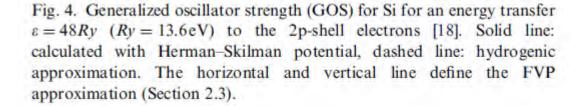
f(€,K)



10

12

$f_n(E,k) = \frac{E}{Q} \cdot |F_n(k)|^2$



8

Kao

6

14

Bethe – Fano Model

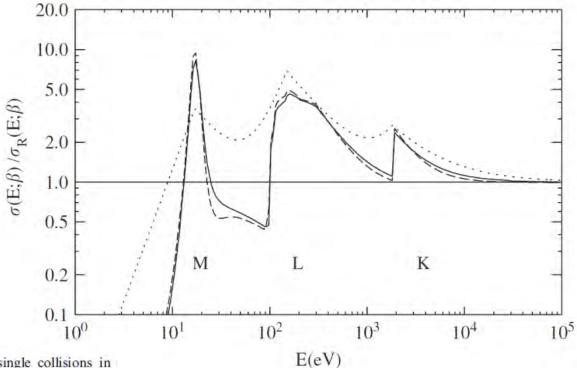


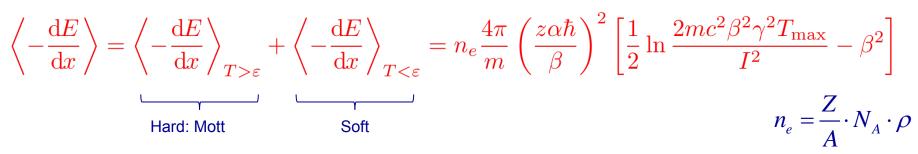
Fig. 5. Inelastic collision cross-sections $\sigma(E;\beta)$ for single collisions in silicon by particles with $\beta\gamma = 4$, calculated with different theories. In order to show the structure of the functions clearly, the ordinate is $\sigma(E;\beta)/\sigma_{\rm R}(E;\beta)$. The abscissa is the energy loss E in a single collision. The Rutherford cross-section Eq. (1) is represented by the horizontal line at 1.0. The solid line was obtained with the relativistic version of Eq. (5) of the Bethe–Fano theory [18]. The cross-section calculated with FVP (Eq. (7)) is shown by the dashed line. The dashed line is calculated with a binary encounter approximation [35,36]. The functions all extend to $E_{\rm max} \sim 16 \,{\rm MeV}$; see Eq. (1). The moments (Section 3) are $M_0 = 4 \,{\rm collisions}/{\mu m}$ and $M_1 = 386 \,{\rm eV}/{\mu m}$. The atomic shells are indicated by the letters M, L, K.

[H. Bichsel, NIM A 562, 154 (2006)]

universität**bonn**

IskP

Total energy loss: Bethe-Bloch formula



with

independent of ε

 10^0 10^1 10^2

γß

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle_{T>\varepsilon} = n_e \frac{2\pi}{m} \left(\frac{z\alpha\hbar}{\beta}\right)^2 \left[\ln\frac{T_{\mathrm{max}}}{\varepsilon} - \beta^2\right]$$

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle_{T<\varepsilon} = n_e \frac{2\pi}{m} \left(\frac{z\alpha\hbar}{\beta}\right)^2 \left[\ln\frac{2mc^2\beta^2\gamma^2\varepsilon}{I^2} - \beta^2\right]$$

$$\left(\frac{10^{-1}}{10^{-1}}\right)^{10^{-1}} + \frac{10^{-1}}{10^{-1}} +$$

 10^{4}

 10^{3}

In principle, mean excitation energy *I* can be calculated from atomic theory:

$$Z \cdot \ln(I) \propto \sum_{n} f_n \ln(\hbar \omega_n)$$

- ⇒ models needed for all but lightest atoms
- ⇒ often used in practice: I as phenomenological constant

Goal: Simplify cross section expression based on measured photoabsorption cross sections

> Photoabsorption Ionization Model ... also called Fermi virtual photon (FVP) model

Classical Calculation of Energy Loss

Idea: Calculate $\langle dE/dx \rangle$ of a moving charged particle (other than e[±]) in a polarizable medium

- \Rightarrow classical calculation: medium treated as continuum with $\varepsilon = \varepsilon_1 + i\varepsilon_2$
- ⇒ later: quantum mechanical interpretation

 $\langle dE/dx \rangle \Leftrightarrow$ longitudinal component of electric field E(r,t) generated by the moving particle in the medium at its own position r = vt

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = eE_{\mathrm{long}}$$

[L. Landau, E.M. Lifshitz, Electrodynamics of continuous media, 1960][W.W.M Allison, J.H. Cobb, Ann. Rev. Nucl. Part. Sci. 30, 253 (1980)][W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers, Springer 2008]

Solve Maxwell equations for isotropic, homogeneous medium with

$$\rho(\mathbf{r},t) = e\delta^{3}(\mathbf{r}-\mathbf{v}t), \quad \mathbf{j} = \rho(\mathbf{r},t)\cdot\mathbf{v}(\mathbf{r},t)$$

Work in Coulomb gauge, solution by Fourier transform

$$\boldsymbol{E}(\boldsymbol{r},t) = \frac{1}{(2\pi)^2} \int d^3k \, d\omega \left[i\omega \tilde{\boldsymbol{A}}(\boldsymbol{k},\omega) - i\boldsymbol{k} \tilde{\varphi}(\boldsymbol{k},\omega) \right] e^{i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)}$$

with Fourier transforms of $A(\mathbf{r},t), \varphi(\mathbf{r},t)$

$$\tilde{\varphi}(\boldsymbol{k},\omega) = \frac{e}{2\pi\varepsilon_0 \varepsilon k^2} \delta(\omega - \boldsymbol{k} \cdot \boldsymbol{v})$$

$$\tilde{A}(\boldsymbol{k},\omega) = \frac{e}{2\pi\varepsilon_0 c^2} \frac{\omega \boldsymbol{k}/k^2 - \boldsymbol{v}}{\left(-k^2 + \varepsilon \omega^2/c^2\right)} \delta(\omega - \boldsymbol{k} \cdot \boldsymbol{v})$$

Classical Calculation of Energy Loss

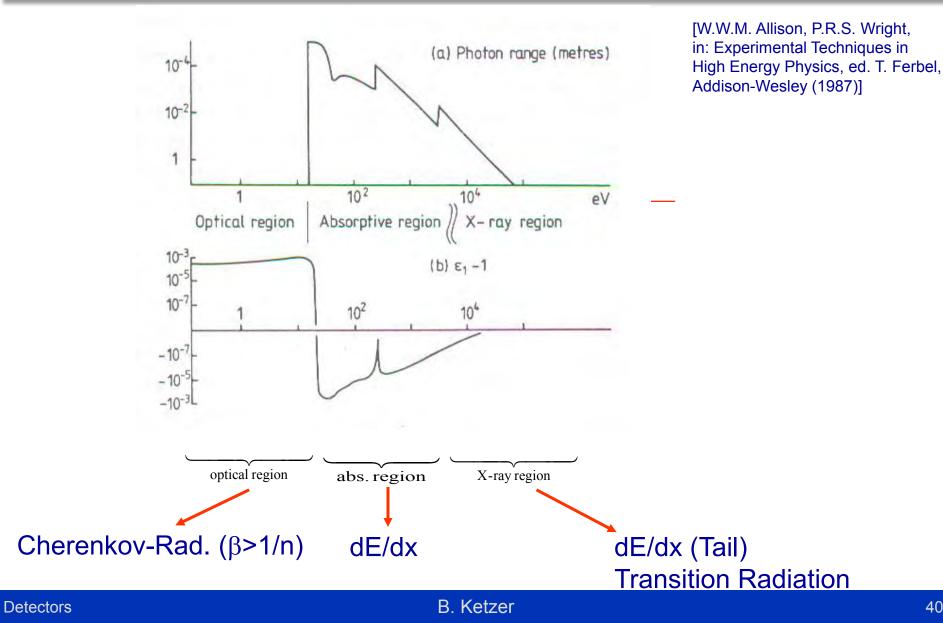
⇒ Mean energy loss per unit path length:

 $\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = e\boldsymbol{E}\left(\boldsymbol{v}t,t\right)\cdot\frac{\boldsymbol{v}}{v}$

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = -\frac{2e^2}{4\pi\varepsilon_0 \beta^2 \pi} \int_0^\infty \mathrm{d}\omega \int_{\omega/\beta c}^\infty \mathrm{d}k \left[\omega k \left(\beta^2 - \frac{\omega^2}{k^2 c^2} \right) \mathrm{Im} \left(\frac{1}{-k^2 c^2 + \varepsilon \omega^2} \right) - \frac{\omega}{kc^2} \mathrm{Im} \left(\frac{1}{\varepsilon} \right) \right]$$

- Integration over direction of k assuming isotropic medium
- Time dependence drops out, because field in the medium is travelling with the particle
- Use $\varepsilon(-\omega) = \varepsilon^*(\omega)$ to combine positive and negative ω
- Lower limit for integration over k corresponds to minimum momentum transfer for a given energy transfer $\hbar \omega$
- Energy loss determined by $\varepsilon(\mathbf{k}, \omega) \Rightarrow$ atomic structure of medium

Permettivity of Argon



40

Photo-absorption ionization model: [W.W.M Allison, J.H. Cobb, Ann. Rev. Nucl. Part. Sci. 30, 253 (1980)] Model of $\varepsilon(\mathbf{k}, \omega)$ based on measured photo-absorption cross section $\sigma_{\gamma}(\omega)$ Plane light-wave travelling along x in medium (real photons):

$$k = \frac{\omega}{c}\sqrt{\varepsilon}$$
, $\varepsilon = \varepsilon_1 + i\varepsilon_2 \implies I = I_0 e^{-\alpha x}$, $\alpha = 2\frac{\omega}{c} \operatorname{Im}\sqrt{\varepsilon}$

Relation to photo-absorption cross section for free (real) photons:

$$\alpha = \sigma_{\gamma} n = \sigma_{\gamma} \frac{N}{Z} \implies \sigma_{\gamma} = \frac{Z\omega}{Nc} \frac{\varepsilon_{2}}{\sqrt{\varepsilon_{1}}} \approx \frac{Z\omega}{Nc} \varepsilon_{2}(\omega)$$

$$|\varepsilon_{2}| \ll |\varepsilon_{1}| \qquad \varepsilon_{1} \approx 1$$

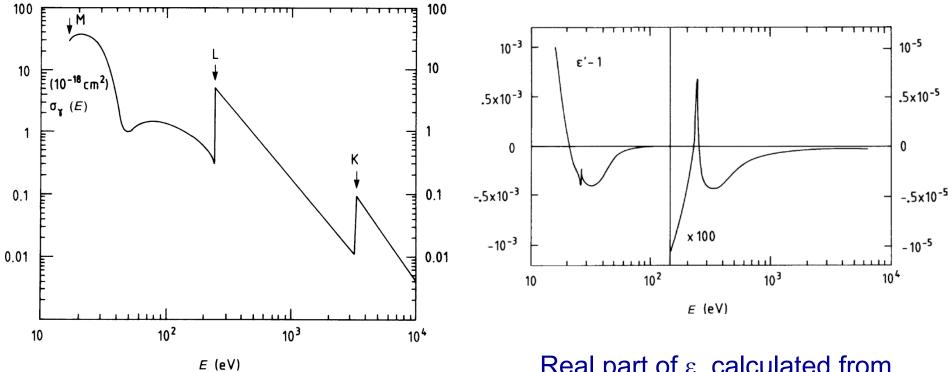
n = density of atoms N = density of electrons Z = atomic charge

Cross section $\sigma_{\gamma}(\omega)$, and therefore $\varepsilon_{2}(\omega)$ is known, e.g. from measurements with synchrotron radiation

Cauchy principal value

Real part
$$\varepsilon_1(\omega)$$
 from Kramers-Kronig relation: $\varepsilon_1(\omega) - 1 = \frac{2}{\pi} P \int_0^{\infty} \frac{x \varepsilon_2(x)}{x^2 - \omega^2} dx$

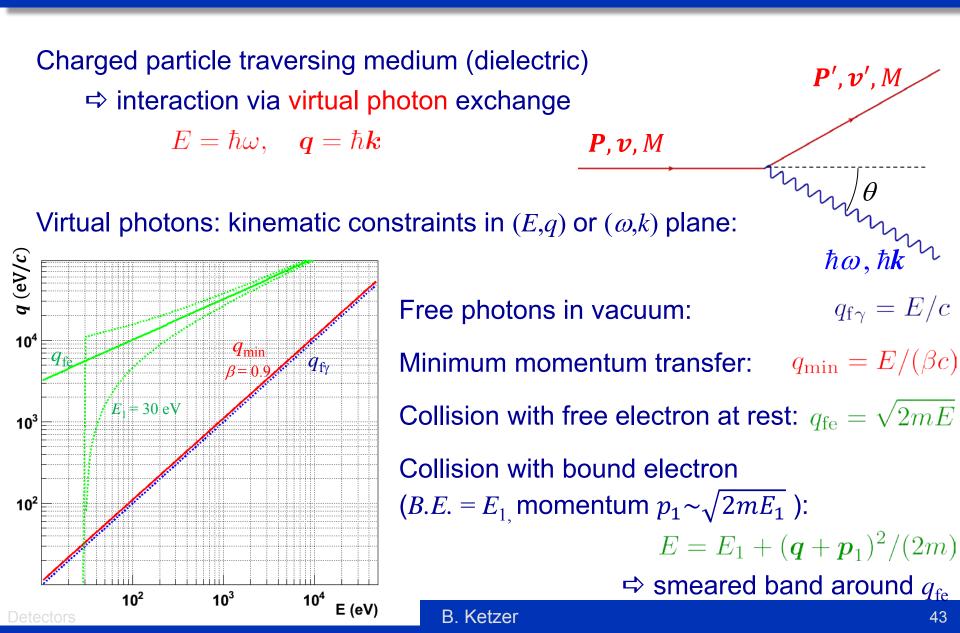
Example: Argon



Total photo-absorption cross section

[G.V. Marr, J.B. West, At. Data and Nucl. Data Tables 18, 497 (1976)]

Real part of ε , calculated from σ_{γ} using Kramers-Kronig relation [F. Lapique et al., Nucl. Instr. Meth. 175, 297 (1978)]



Experiment: $\varepsilon = \varepsilon_1 + i\varepsilon_2$ known only for free photons, i.e. on q_{fy} line

PAI model: extend into the kinematic domain of virtual photons

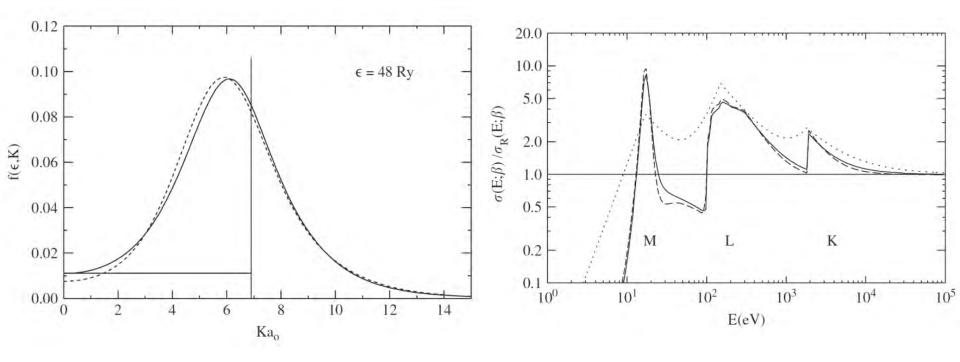
- Below free-electron line $q_{\rm fe}$ (resonance region): dipole approximation
 - $\varepsilon(k,\omega) = \varepsilon(\omega)$ independent of k, as for free photons
- On free-electron line $q_{\rm fe}$:

$$\varepsilon_2(k,\omega) = C \delta(\omega - \hbar k^2 / (2m)), \quad \varepsilon_1 = 1$$

Normalization C chosen such that total coupling strength satisfies

$$\int_{0}^{\infty} f(k,\omega) d\omega = 1, \quad \varepsilon_{2}(k,\omega) = \frac{\pi N e^{2}}{2\varepsilon_{0} m\omega} f(k,\omega) \qquad \text{Bethe sum rule}$$

PAI Model



[H. Bichsel, NIM A 562, 154 (2006)]

Optical dipole oscillator strength

$$\lim_{\boldsymbol{q}\to 0} f_n(E,k) = f_n(E)$$

$$f_n(E) = \frac{E}{Q} \left| \langle n | \sum_{i=1}^{Z} \mathbf{r}_i | 0 \rangle \right|$$

Integration over *k*:

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = -\frac{e^2}{4\pi\varepsilon_0 \beta^2 c^2 \pi} \int_0^\infty \mathrm{d}\omega \left[\frac{Nc}{Z} \sigma_\gamma \left(\omega \right) \ln \left[\left(1 - \beta^2 \varepsilon_1 \right)^2 + \beta^4 \varepsilon_2^2 \right]^{-\frac{1}{2}} + \frac{Nc}{Z} \sigma_\gamma \left(\omega \right) \ln \left(\frac{2mc^2 \beta^2}{\hbar \omega} \right) + \frac{Nc}{Z \omega} \int_0^\omega \sigma_\gamma \left(\omega' \right) \mathrm{d}\omega' + \omega \left(\beta^2 - \frac{\varepsilon_1}{|\varepsilon|^2} \right) \Theta \right]$$

Energy loss per unit path length obtained in the framework of electrodynamics of a continuous medium, using a model for $\varepsilon(k, \omega)$ inspired by a picture of photon collision and absorption.

- *N* electron density
- $E = \hbar \omega$ energy transfer in single collision
- $q = \hbar k$
- $\Theta = \arg\left(1 \varepsilon_1 \beta^2 + i \varepsilon_2 \beta^2\right)$

Quantum picture: energy loss caused by a number of discrete collisions per unit length, each with energy transfer $E = \hbar \omega$ (single photon exchange)

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = -\int_{0}^{\infty} E f(E) \mathrm{d}E$$

and with $f(E) = N d\sigma/dE$

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = -\int_{0}^{\infty} EN \frac{\mathrm{d}\sigma}{\mathrm{d}E} \hbar \,\mathrm{d}\omega$$

f(E) dE probability of energy transfer per unit path between *E* and *E*+d*E*

Nelectron density $E = \hbar \omega$ energy transfer in single collision

 $q = \hbar k$

Therefore: differential cross section per electron

$$\frac{d\sigma}{dE} = \frac{\alpha}{\beta^2 \pi} \frac{\sigma_{\gamma}(E)}{EZ} \ln\left[\left(1 - \beta^2 \varepsilon_1\right)^2 + \beta^4 \varepsilon_2^2\right]^{-1/2}$$
Energy loss by ionization
$$+ \frac{\alpha}{\beta^2 \pi} \frac{\sigma_{\gamma}(E)}{EZ} \ln\left(\frac{2mc^2\beta^2}{E}\right)$$

$$+ \frac{\alpha}{\beta^2 \pi} \frac{1}{E^2 Z} \int_0^E \sigma_{\gamma}(E') dE'$$

$$+ \frac{\alpha}{\beta^2 \pi} \frac{1}{N\hbar c} \left(\beta^2 - \frac{\varepsilon_1}{|\varepsilon|^2}\right) \Theta$$
• Optical region: $\sigma_{\gamma} = 0$

$$\Rightarrow \text{ Cherenkov radiation}$$
• Transition radiators

with $\varepsilon_1, \varepsilon_2$: real and imaginary part of dielectric constant (for real photons) $\Theta = \arg(1 - \varepsilon_1 \beta^2 + i\varepsilon_2 \beta^2)$ angle in pointer representation of complex number σ_{γ} : atomic cross section of medium for absorption of photon with energy *E N*: electron density in the medium Detectors B. Ketzer Described by first three terms of $\frac{d\sigma}{dE}$

• Large energy transfers $E \gg E_K \Rightarrow$ only third term survives ($\sigma_{\gamma}(E)$ small)

$$\frac{\alpha}{\beta^{2}\pi}\frac{1}{E^{2}}\int_{0}^{E}\frac{\sigma_{\gamma}\left(E'\right)}{Z}dE' \xrightarrow{E \gg E_{K}}_{\text{Bethe sum rule}}\left(\frac{d\sigma}{dE}\right)_{R} = \frac{2\pi r_{e}^{2}mc^{2}}{\beta^{2}E^{2}}, \quad r_{e} = \frac{e^{2}}{4\pi\varepsilon_{0}mc^{2}}$$

Rutherford cross section: elastic scattering on free electron

- \Rightarrow extremely long tail of energy loss distribution due to δ electrons
- ⇒ ill-defined average energy loss! (log. divergence)
- ⇒ better: most probable value
- \Rightarrow in practice: upper limit for *E* depending on detector: restricted energy loss

universität**bor**

Energy Loss by Ionization

 $\frac{\mathrm{d}\sigma}{\mathrm{d}E} = \frac{a}{\beta^2} \left| b + \ln \frac{\beta^2}{\left[\left(1 - \beta^2 \varepsilon_1 \right)^2 + \beta^4 \varepsilon_2^2 \right]^{\frac{1}{2}}} \right|$ • Remaining two terms: $a, b = f(E, \sigma_{v})$ - small β : factor $\frac{1}{\beta^2}$ dominates Ζ Plateau due to density of medium! ln <u>-</u> 11-ε1 $\varepsilon_1 - 1, \varepsilon_2 \propto N$ e⁻ density

$$\Rightarrow \varepsilon_1 = 1, \varepsilon_2 = 0 \quad \text{for} \quad N \to 0$$

continues to rise for $N \rightarrow 0!$

10

5

0

in -

10

10²

10³

B. Ketzer

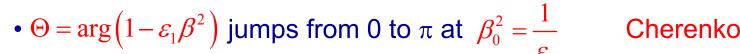
universität**bonn**

Detectors

Cherenkov Radiation

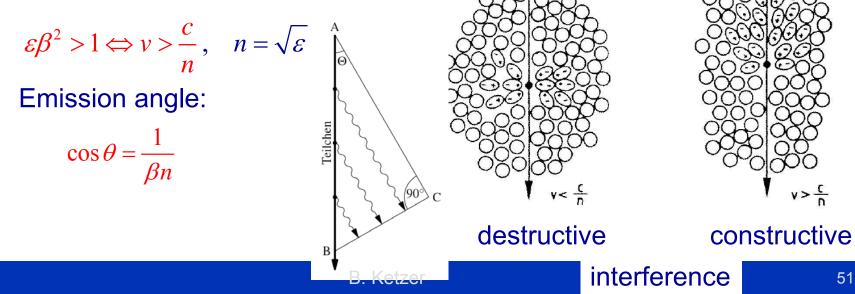
Term
$$\frac{\alpha}{\beta^2 \pi} \frac{1}{N\hbar c} \left(\beta^2 - \frac{\varepsilon_1}{|\varepsilon|^2} \right) \Theta, \quad \Theta = \arg\left(1 - \varepsilon_1 \beta^2 + i\varepsilon_2 \beta^2\right)$$

• Only remaining term for photon energies below excitation energy of atom (optical region), where $\sigma_{\gamma} = 0$, $\varepsilon_2 = 0$, $\varepsilon = \varepsilon_1$

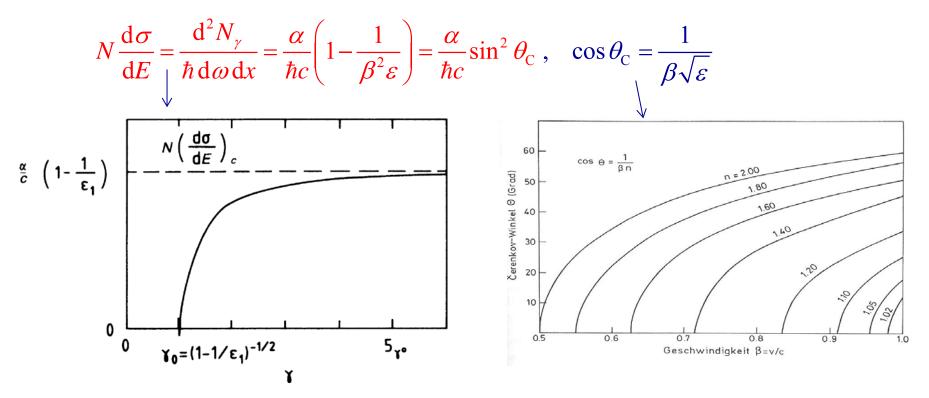


Cherenkov threshold

⇒ Emission of radiation if



• Photon flux per interval of photon energy per unit path length (above thr.)



• Photon flux per interval of photon energy emitted in $d\Omega$:

$$\frac{\mathrm{d}^2 N_{\gamma}}{\mathrm{d}\omega \,\mathrm{d}\Omega} = \frac{\alpha}{2\pi c} \sin^2 \theta \cdot \delta \left(\cos \theta - \frac{1}{\beta \sqrt{\varepsilon}} \right) \cdot L \qquad \Leftrightarrow \int \frac{\mathrm{d}^2 N_{\gamma}}{\mathrm{d}\omega \,\mathrm{d}\Omega} \mathrm{d}\cos \theta \,\mathrm{d}\varphi = \frac{\alpha}{c} \sin^2 \theta \cdot L \quad \text{with} \quad \cos \theta = \frac{1}{\beta \sqrt{\varepsilon}}$$

Thin radiator (L small)

- ⇒ diffraction, i.e. broadening of Cherenkov emission
- ⇒ interference of Cherenkov emission at both boundary surfaces

Photon flux of X-ray transition radiation for small angles θ_0 and $\beta \sim 1$:

Neglect interference term, integrate over $d\Omega$:

$$\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}\omega} \approx \frac{2\alpha}{\pi\omega} \ln\left(\frac{\gamma\omega_{\mathrm{p}}}{\omega}\right) \text{ for } \omega \ll \gamma\omega_{\mathrm{p}} \qquad \Rightarrow \text{ Total energy flux } \frac{\alpha}{3}\gamma\hbar\omega_{\mathrm{p}}$$

[W.W.M.Allison, P.R.S. Wright, in: Experimental Techniques in High-Energy Nuclear and Particle Physics, T. Ferbel ed., 1999]

Collision Cross Section

Models:

• Rutherford – Mott

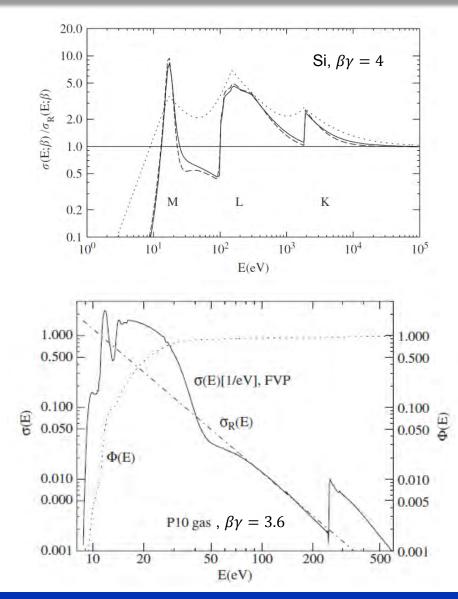
$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}E}\right)_{\mathrm{Mott}}^{\star} = \frac{2\pi}{m} \left(\frac{z\alpha\hbar}{E\beta}\right)^2 \left[1 - \frac{E}{2mc^2} \left(1 - \beta^2\right)\right]$$

• Bethe – Fano

$$\frac{\mathrm{d}\sigma(E,Q)}{\mathrm{d}E\mathrm{d}Q} = \left(\frac{\mathrm{d}\sigma(E;v)}{\mathrm{d}E}\right)_{\mathrm{Mott}}^* \cdot \frac{E}{Q} \cdot f(k,\omega)$$

• PAI (FVP)

[H. Bichsel, NIM A 562, 154 (2006)]



universität**bonn**

Collision Cross Section

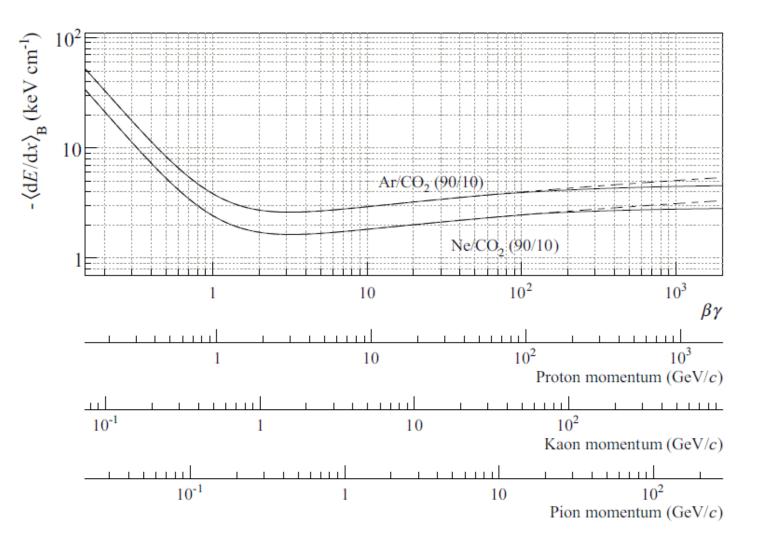
20.0 10.0 $\left\langle -\frac{\mathrm{d}E}{\mathrm{d}r}\right\rangle = n_e \int_0^\infty E' \frac{\mathrm{d}\sigma}{\mathrm{d}E'} \mathrm{d}E'$ Si, $\beta \gamma = 4$ 5.0 $\sigma(\mathbf{E};\beta)/\sigma_{\mathbf{R}}(\mathbf{E};\beta)$ 2.0 1.0 Models: 0.5 PAI (FVP) K L M 0.2 $\frac{\mathrm{d}\sigma}{\mathrm{d}E} = \frac{\alpha}{\beta^2 \pi} \frac{\sigma_{\gamma}(E)}{EZ} \ln\left[\left(1 - \beta^2 \varepsilon_1\right)^2 + \beta^4 \varepsilon_2^2\right]^{-1/2}$ 0.1 10^{2} 10^{3} 10^{1} 10^{4} 100 10^{5} E(eV) $+ \frac{\alpha}{\beta^2 \pi} \frac{\sigma_{\gamma}(E)}{EZ} \ln\left(\frac{2mc^2\beta^2}{E}\right)$ 1.000 1.000 0.500 0.500 $+ \frac{\alpha}{\beta^2 \pi} \frac{1}{E^2 Z} \int_0^E \sigma_\gamma(E') \mathrm{d}E'$ σ(E)[1/eV], FVP 0.100 0.100 E 0.050 0.050 ⁽ⁱⁱ⁾_A $\sigma_R(E)$ $+ \frac{\alpha}{\beta^2 \pi} \frac{1}{N\hbar c} \left(\beta^2 - \frac{\varepsilon_1}{|\varepsilon|^2} \right) \Theta$ Φ(E) 0.010 0.010 0.000 0.005 P10 gas, $\beta \gamma = 3.6$ 500 0.001 0.001 20 200 10 50 100 [H. Bichsel, NIM A 562, 154 (2006)]

Detectors

B. Ketzer

E(eV)

Mean Energy Loss



universität**bonn**



Fig. 3. Monte Carlo simulation of the passage of 10 particles (index j) with $\beta \gamma = 3.6$ through segments of P10 gas. The thickness of the gas layer (at 1 atm and 25 °C) is x = 1.8 mm. The direction of travel is given by the arrows. Inside the gas, the tracks are defined by the symbols showing the location of a collision. The mean free path between collisions is $\lambda = 0.3$ mm (see Fig. 7 or Table 2), thus the *average* number of collisions per track is six. At each collision point a random energy loss E_i is selected from the distribution function $\Phi(E;\beta\gamma)$. Fig. 9. Two symbols are used to represent energy losses: \circ for $E_i < 33 \text{ eV}$, + for $E_i > 33 \text{ eV}$; the mean free path between collisions with $E_i > 33 \text{ eV}$ is 2 mm. Segment statistics are shown to the right: the total number of collisions for each track is given by n_i , with a nominal mean value $\langle n \rangle = x/\lambda = 6$ and the total energy loss is $\Delta_i = \sum E_i$, with the nominal mean value $\langle A \rangle = x dE/dx = 440 \text{ eV}$, where dE/dx is the Bethe-Bloch stopping power, M_1 in Table 2. The largest energy loss E_1 on each track is also given. The mean value of the Δ_l is $325 \pm 314 \,\text{eV}$, much less than $\langle \Delta \rangle$. Note that the largest possible energy loss in a single collision is $E_{\text{max}} = 13 \,\text{MeV}$, while the probability for E > 50,000 eV is 0.002 per cm, Eq. (12) or Figs. 9 and 10.

[H. Bichsel, NIM A 562, 154 (2006)]

Important quantity in order to understand response of detector:

- $f(\Delta; x)$ probability density function for energy loss Δ in material of thickness *x*,
 - determined by
 - collision cross section $d\sigma/dE$
 - $n_e x$

Straggling functions

Calculation of energy loss distribution: two approaches

- Convolution method
- Laplace transform method

[Allison, Cobb, Ann. Rev. Nucl. Part. Sc., 253 (1980)]

[H. Bichsel, NIM A 562, 154 (2006)]

In each collision, the probability to transfer an energy *E* is given by

$$F(E) = \lambda n_e \frac{\mathrm{d}\sigma(E;\beta)}{\mathrm{d}E} = \frac{1}{\sigma} \frac{\mathrm{d}\sigma(E;\beta)}{\mathrm{d}E}$$

Energy loss Δ for exactly N_c collisions $\Rightarrow N_c$ -fold convolution of F(E)

$$\begin{split} \tilde{F}_{N_c}(\Delta) &= \int_0^{\Delta} \tilde{F}_1(E) \cdot \tilde{F}_{N_c-1}(\Delta - E) \, \mathrm{d}E \\ \text{with} \qquad \tilde{F}_0(\Delta) &= \delta(\Delta) \qquad \text{and} \qquad \tilde{F}_1(\Delta) &= \frac{1}{\sigma} \frac{\mathrm{d}\sigma(\Delta;\beta)}{\mathrm{d}E} = F(\Delta) \end{split}$$

Number of collisions N_c in layer of thickness x

$$P(N_c; m_c) = \frac{m_c^{N_c}}{N_c!} \exp\left(-m_c\right) \qquad m_c = \frac{x}{\lambda}$$

⇒ Linked to CCS through mean free path

$$\lambda = \lambda(\beta) = \frac{1}{n_e \sigma} \qquad \qquad \sigma = \int_0^\infty \frac{\mathrm{d}\sigma(E';\beta)}{\mathrm{d}E'} \mathrm{d}E'$$

Mean value $\langle P(N_c; m_c) \rangle = m_c$ Standard deviation $s_c = \sqrt{m_c}$

Relative width

$$s_c/m_c = 1/\sqrt{m_c}$$

⇒ Pdf for total ionization energy loss Δ in material slice of thickness x= sum of all $\tilde{F}_{N_c}(\Delta)$, weighted by their Poissonian probability for exactly N_c collisions

$$f(\Delta; x) = \sum_{N_c=0}^{\infty} P(N_c; m_c) \tilde{F}_{N_c}(\Delta)$$

Straggling functions

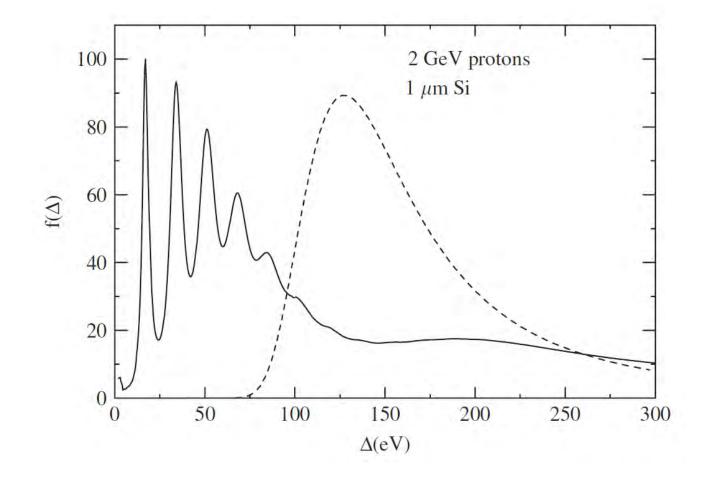
- Poissonian contribution dominant for very small number of collisions (very thin absorbers)
- Peak structure vanishing for larger N_c

Convolution Method

Solution for thickness *x*:

- Iterative application of convolution integral (numerical) [Bichsel et al., Phys. Rev. A 11, 1286 (1975)]
- Monte-Carlo method [Cobb et al., Nucl. Instr. Meth. 133, 315 (1976)]
 - calculate mean number of collisions m_c from integrated cross section
 - for each trial (particle penetration) choose actual number of collisions from Poisson distribution with mean m_c
 - total energy loss = sum of energy losses in single collisions, taken from normalized dσ/dE distribution F(E)

Straggling Functions



Bethe-Bloch mean energy loss: $\langle \Delta \rangle = 400 \text{ eV}$

[H. Bichsel, NIM A 562, 154 (2006)]

ISKP

Straggling Functions

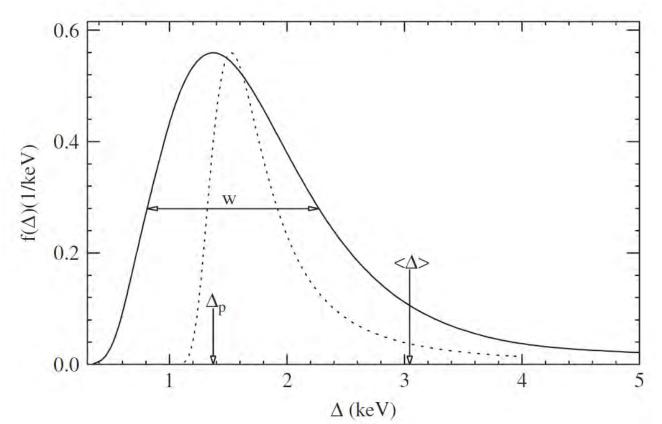


Fig. 1. The straggling function $f(\Delta)$ for particles with $\beta\gamma = 3.6$ traversing 1.2 cm of Ar gas is given by the solid line. It extends beyond $E_{\text{max}} \sim 2 \text{ mc}^2 \beta^2 \gamma^2 = 13 \text{ MeV}$. The original Landau function [2,3] is given by the dotted line. Parameters describing $f(\Delta)$ are the most probable energy loss $\Delta_p(x; \beta\gamma)$, i.e. the position of the maximum of the straggling function, at 1371 eV, and the full-width-at-half-maximum (FWHM) $w(x; \beta\gamma) = 1463 \text{ eV}$. The mean energy loss is $\langle \Delta \rangle = 3044 \text{ eV}$.

[H. Bichsel, NIM A 562, 154 (2006)]

universität**bonn**

[L. Landau, J. Phys. USSR 8, 201 (1944)]

Change of energy-loss distribution $f(\Delta; x)$ as a result of the particle passing through a thin elemental layer δx :

$$f(\Delta; x + \delta x) - f(\Delta; x) = +n_e \delta x \int_0^\Delta \frac{\mathrm{d}\sigma(E; \beta)}{\mathrm{d}E} f(\Delta - E; x) \,\mathrm{d}E$$
$$-n_e \delta x \int_0^\infty \frac{\mathrm{d}\sigma(E; \beta)}{\mathrm{d}E} f(\Delta; x) \,\mathrm{d}E$$

- 1st term: probability that the energy loss in *x* was (Δ–*E*), and a collision with energy transfer *E* occurred in δ*x*, which makes the total energy loss equal to Δ (particle scattered into Δ)
- 2nd term: probability that the energy loss in x was already equal to Δ before entering δx, where a further collision increased the energy loss beyond Δ (particle scattered out of Δ)

Put in form of a transport equation:

$$\frac{\partial f(\Delta; x)}{\partial x} = \int_0^\infty n_e \frac{\mathrm{d}\sigma(E)}{\mathrm{d}E} \left[f(\Delta - E; x) - f(\Delta; x) \right] \mathrm{d}E$$

upper integration limit $E \rightarrow \infty$ for 1st term ok, since $f(x, \Delta) = 0$ for $\Delta < 0$

S

0 —

 $\mathcal{L}\left\{f(\Delta;x)\right\} = \bar{f}(s;x)$

Solution: Laplace transform of both sides

+ solve for $\overline{f}(s; x)$

+ inverse Laplace transform

$$f(\Delta; x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \mathrm{d}s \, \exp\left[s\Delta - x \int_0^\infty n_e \frac{\mathrm{d}\sigma(E)}{\mathrm{d}E} \left(1 - e^{-sE}\right) \, \mathrm{d}E\right]$$
$$\mathbf{0} < \mathbf{c} \ll \mathbf{1}$$

Exact solution, but numerical integration necessary in most cases!

2.3.3 Straggling Functions

Remarks to both methods:

- result determined by $d\sigma/dE$
- given the same cross section $d\sigma/dE$, both methods are equivalent

universität**bonn**

Detectors

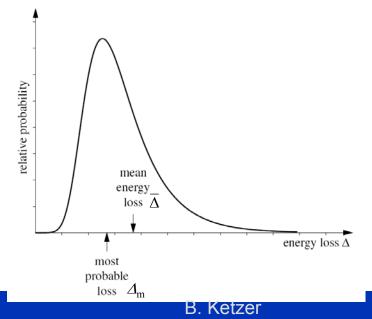
Different approximations, depending on thickness of absorber

Characteristic parameter:
$$\kappa = \frac{\xi}{T_{\max}}$$
, $\xi = \frac{2\pi}{m} \left(\frac{z\alpha\hbar}{\beta}\right)^2 n_e \cdot x$
 $\xi = \text{scaling p}$

 ξ = scaling parameter (1st term of Bethe-Bloch eq.)

Thin absorbers: $\kappa \leq 10$

- possibility of large energy transfer in single collisions: δ -electrons
- long tail on high-energy side, strongly asymmetric shape



Very thin absorbers: $\kappa \rightarrow 0$ (i.e. $T_{max} \rightarrow \infty$)

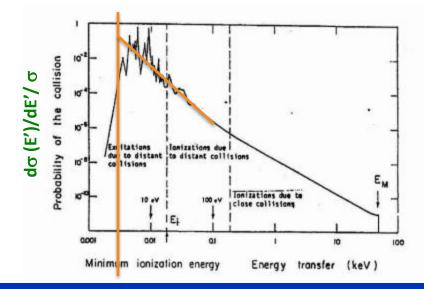
single energy transfers sufficiently large to consider e⁻ as free

➡ Rutherford

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}E}\right)_{\mathrm{R}}^{\star} = \frac{2\pi}{m} \left(\frac{z\alpha\hbar}{E\beta}\right)^{2} = \frac{\xi}{n_{e}x}\frac{1}{E^{2}}$$

particle velocity remains constant

Landau distribution [Landau 1944]



Very thin absorbers: $\kappa \rightarrow 0$ (i.e. $T_{max} \rightarrow \infty$)

single energy transfers sufficiently large to consider e⁻ as free

➡ Rutherford

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}E}\right)_{\mathrm{R}}^{\star} = \frac{2\pi}{m} \left(\frac{z\alpha\hbar}{E\beta}\right)^{2} = \frac{\xi}{n_{e}x} \frac{1}{E^{2}}$$

particle velocity remains constant

Landau distribution [Landau, J. Phys. USSR 8, 201 (1944)]

$$f_{\rm L}(x,\Delta) = \frac{1}{\xi} \phi(\lambda)$$

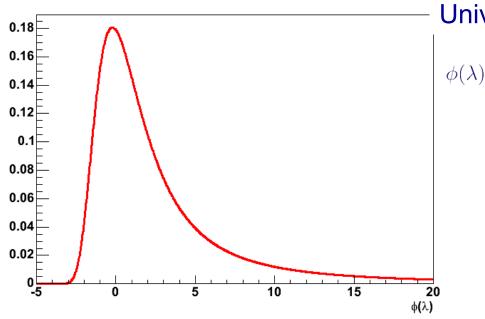
 $\lambda =$ universal parameter, see next page for relation to Δ_m and ξ

Analytical approximation: Moyal distribution [Moyal, Phil. Mag. 46, 263 (1955)]:

$$f_{\rm M}(x,\Delta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\lambda + e^{-\lambda})}, \quad \lambda = \frac{\Delta - \Delta_{\rm m}}{\xi}$$

Note: λ different from parameter in Landau distr. above

Landau Distribution



Universal Landau distribution:

$$= \frac{1}{\pi} \int_0^\infty e^{-\pi u/2} \cos\left(u \ln u + \lambda u\right) du ,$$

$$\text{mit} \quad \lambda = \frac{\Delta - \overline{\Delta}}{\xi} - (1 + \beta^2 - C) - \ln \kappa ,$$

$$\xi = \frac{2\pi}{(4\pi\varepsilon_0)^2} \cdot \frac{z^2 e^4}{mv^2} \cdot n_{\text{e}} x \approx \overline{\Delta} , \kappa = \frac{\xi}{T_{\text{max}}}$$

$$C = 0.5772 \dots \quad \text{(Euler-Konstante)} ,$$

$$\overline{\Delta} = 2\xi \left[\frac{1}{2} \ln \left(\frac{2mc^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right]$$

Landau distribution in ROOT:

Properties of $\phi(\lambda)$:

- asymmetric: tail up to $T_{max} \rightarrow \infty$
- Maximum at λ =-0.223
- FWHM=4.02•λ
- numerical evaluation

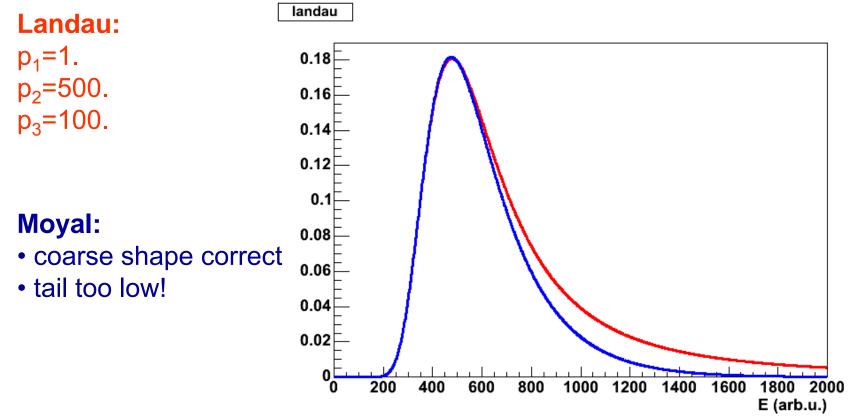
 $f(\Delta|p_1, p_2, p_3) = p_1 \times \phi\left(\frac{\Delta - p_2}{p_3}\right) ,$

mit p_1 Normierung (Integral)

$$\Delta_m = p_2 - 0.22278 \times p_3$$
 ,
FWHM = $2\sqrt{2\ln 2} \times \frac{p_3}{0.5860}$

landau

Comparison Landau - Moyal universitätbonn



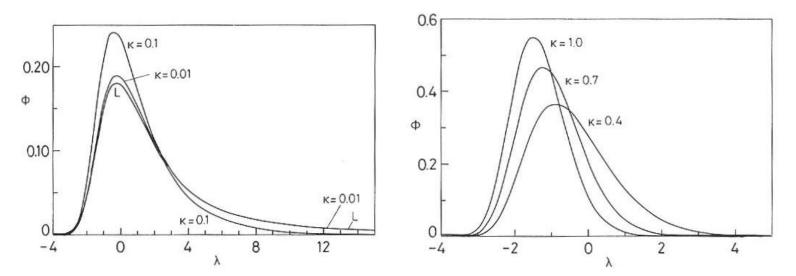
But: tails are important for detector resolution!

Landau distribution:

- Uses Rutherford cross section
- Does not reproduce straggling functions based on more realistic models for CCS for very small N_c
- Narrower width also for higher $N_c \Rightarrow$ related to mean free path λ
 - Rutherford CCS underestimates λ (overestimates N_c)
 - Poisson contribution to straggling function leads to broadening

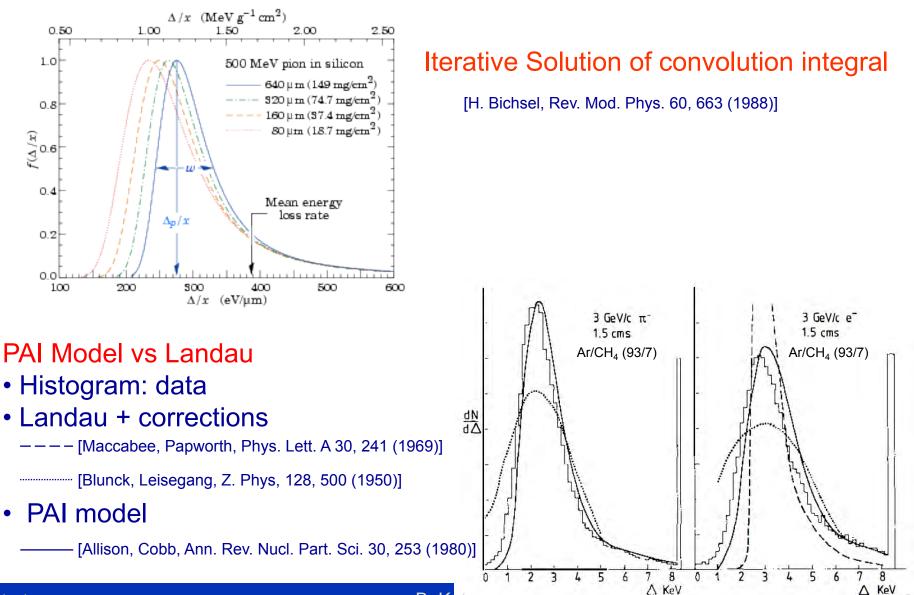
Thin absorbers: $0.01 < \kappa < 10$

- use correct expression for $T_{\rm max}$
- use Mott cross section instead of Rutherford
- \bullet reduces to Landau distribution for very small κ
- \bullet less asymmetric shape for larger κ



[[]S.M. Seltzer, M.J. Berger, Nucl. Sc. Ser. Rep. No. 39 (1964)]

Realistic Straggling Functions



Medium-thick absorbers:

- number of collisions large
- total energy loss $\Delta \ll E_0$ of incident particle
 - \Rightarrow velocity $v \approx$ const.
 - ⇒ single collisions statistically independent,
 - i.e. probability distribution the same, with a well-defined expectation value and variance
 - $\Rightarrow f(\Delta;x)$ approaches Gaussian form with mean $\overline{\Delta}$ and $\sigma^2 = \xi \cdot T_{\max}$

Follows directly from Laplace transform or from Central Limit Theorem:

The sum of N random variables, which all follow the same statistical distribution, is of Gaussian shape for large N, provided the individual processes are statistically independent

universität

Medium-thick absorbers:

- number of collisions large
- total energy loss $\Delta \ll E_0$ of incident particle
 - \Rightarrow velocity $v \approx$ const.
 - ⇒ single collisions statistically independent,
 - i.e. probability distribution the same, with a well-defined expectation value and variance
 - $\neg f(\Delta;x)$ approaches Gaussian form with mean $\overline{\Delta}$ and $\sigma^2 = \xi \cdot T_{\max}$

Even in thick detectors, the distribution never becomes Gaussian!

- due to the condition $\Delta \ll E_0$, i.e. insignificant energy loss of the particle
- average energy loss per collision and its variance are very large (even infinite for Rutherford cross section: $d\sigma/dE \propto 1/E^2$)

universität**bo**

Restricted energy loss:

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle_{T$$

approaches normal Bethe-Bloch equation for $T_{cut} \rightarrow T_{max}$

Transforms into average total number of e^{-1} ion pairs n_{T} along path length x:

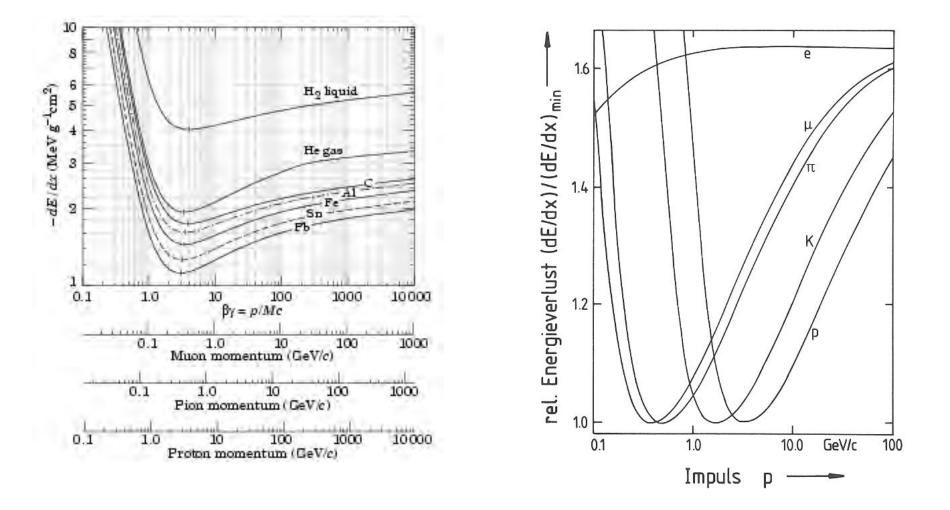
$$x\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = n_{\mathrm{T}}W$$

But: actual energy loss fluctuates with a long tail (Landau distribution) ⇒mean value of energy loss is a bad estimator

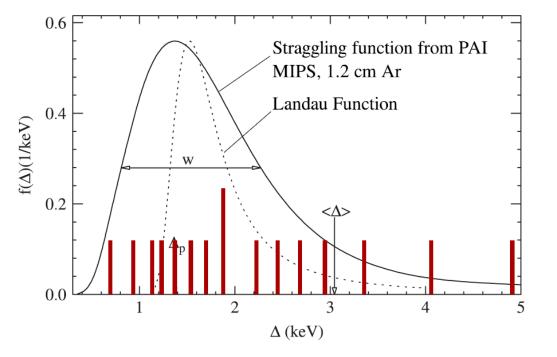
⇒ use truncated mean of N pulse height measurements along the track:

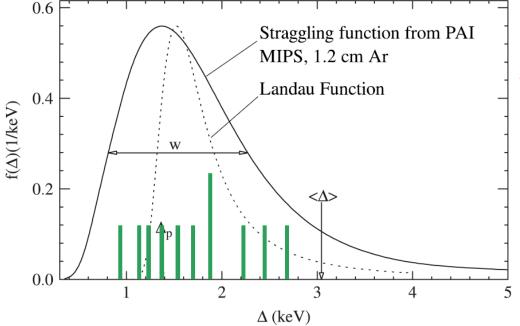
$$\langle A \rangle_t = \frac{1}{N_t} \sum_{i=1}^{N_t} A_i$$
 $A_i \leq A_{i+1} \text{ for } i = 1, \dots, N$
 $N_t = t \cdot N, \quad t \in [0,1]$

Measurement of Energy Loss universitätbonn



Measurement of Energy Loss universitätbonn

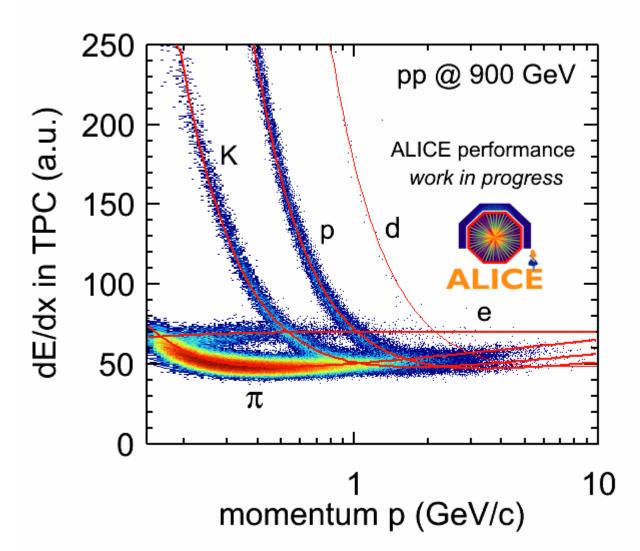




Resolution (empirical):

 $\Delta E/E = 0.96 \cdot N^{-0.46} \cdot (\Delta x \cdot p)^{-0.32}$

N = number of samples Δx = sample length (cm) p = gas pressure (atm)



B. Ketzer

universität**bonn**

- W. Blum, L. Rolandi, W. Riegler: Particle Detection with Drift Chambers. Springer, 2008.
- H. Spieler: Semiconductor Detector Systems. Oxford 2005.
- C. Leroy, P.-G. Rancoita: *Principles of Radiation Interaction in Matter and Detection.* World Scientific, Singapore 2012.
- Specialized articles in Journals,
 - e.g. Nuclear Instruments and Methods A, Ann. Rev. Nucl. Part. Sci.
- C. Grupen, B. Shwartz: *Particle Detectors.* Cambridge Univ. Press, 2008.
- K. Kleinknecht: Detektoren für Teilchenstrahlung. Teubner, Stuttgart 1992.
- G. F. Knoll: Radiation Detection and Measurement. J. Wiley, New York 1979.
- W. R. Leo: *Techniques for Nuclear and Particle Physics Experiments.* Springer, Berlin 1994.

Copyright 3 2000 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited