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 1.  Introduction 
2.  Interaction of charged particles with matter 
3.  Ionization detectors  
4.  Position and momentum measurement / track reconstruction 
5.  Photon detection 
6.  Calorimetry 
7.  Detector systems 
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1 Introduction 



Struktur und Entwicklung des 
Universums 
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How to observe this? 

Accelerators Microscopes Optical and radio telescopes Binoculars 

Resolution: 

θ 
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C.T.R. Wilson (1910): Charges act as condensation nuclei in supersaturated 
water vapor (later: alcohol vapor  diffusion cloud chamber) 

Alphas, Philipp 1926 

Positron discovery, Carl Andersen 1933 V-particles, Rochester and Wilson, 1940ies  

Cloud Chamber 
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Nuclear Emulsion 
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C. Powell, Discovery of muon and pion, 
1947 

Kaon Decay into 3 pions, 1949 

Cosmic Ray Composition 

M. Blau (1930s): Charges initiate a chemical reaction that blackens the 
emulsion (film made of Ag-halide, e.g. AgBr) 



Bubble Chamber 
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D. Glaser (1952): Charges create bubbles in superheated liquid, e.g. propane 
or Hydrogen (Alvarez) 

Discovery of the 𝛀−  in 
1964 

Neutral Currents 1973 

Charmed Baryon, 1975 



The Giants 
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Very Large Structures 
• Engineering, Services, Cooling 
• Electronics 

ALICE 

ATLAS 

LHCb 

But in the end:  
resolution limits are still defined by the 
fundamental detector physics processes … 
 



Resolution 
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dE/dx particle ID resolution is 
defined by the fundamental 
properties of EM interactions of 
charged particles with matter, 
‘Bethe Bloch’ curve + ‘Landau’ 
distribution  

Time of Flight Resolution with 
Resistive Plate Chambers 
(ALICE) is defined by the 
electron avalanche fluctuations 
together with the drift-velocity. 

[W. Riegler, priv. comm.] 



Alpha Mass Spectrometer 
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A Typical Detector Setup 

Beam 

γ 
e± 

µ 
π±,p 

n Target 

Magnet 

Tracking 
chamber 

Electromagn. 
calorimeter 

Hadron 
calorimeter 

Muon 
chamber 

Different components, measuring different aspects of reaction products: 
track, charge, energy, momentum, particle type, ... 

Detectors B. Ketzer 14 



Detection of Radiation 

Goal: Measurement of 4-momentum and position in space of particles 

Methods: 
• Position-sensitive detectors  direction and position of momentum vector 
• Bending in magnetic field  magnitude of p 
• Absorption in calorimeter  energy 
• Cherenkov radiation, time of flight  velocity β 
• Transition radiation  γ 
• Energy loss  β, γ  
• Characteristic decay of a particle, detection of secondaries  m 

Detection by interaction with detector material: 
• electromagnetic interaction with ∆E<<E 
• interaction with ∆E~E (calorimtery) 

[Claus Grupen, Particle Detectors,  Cambridge, 1996] 
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Interactions of Charged Particles 

B. Ketzer 

Processes for a charged particle passing through matter: 

1. Inelastic collisions with atomic electrons 
  energy loss 
  excitation (soft collision) or ionization (hard collision) of hit atom 
  deflection: small 
2. Elastic collisions with nuclei 
  deflection 
  energy loss: negligible, since normally ma<<mb 

  no excitation of hit atom 
3. Emission of Bremsstrahlung  important for e± 

4. Emission of Cherenkov radiation / transition radiation in inhom. materials 
5. Nuclear interactions 

Moderately relativistic heavy charged particles: µ, π, p, α, … (ma>me) 
 energy loss almost entirely through process 1.: σ~10-17-10-16 cm2 
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Z2 electrons, q=-e0 

Electromagnetic Interaction of 
Particles with Matter 
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Interaction with the 
atomic electrons. The 
incoming particle 
loses energy and the 
atoms are excited or  
ionized.  
 
 
 

Interaction with the 
atomic nucleus. The 
particle is deflected 
(scattered)  causing 
multiple scattering of 
the particle in the 
material. During this 
scattering a 
Bremsstrahlung 
photon can be emitted. 

In case the particle’s velocity is larger 
than the velocity of light in the medium, 
the resulting EM shockwave manifests 
itself as Cherenkov Radiation. When the 
particle crosses the boundary between 
two media, there is a probability of the 
order of 1% to produce an X ray photon, 
called Transition radiation.  
 
 
 

M, q=Z1 e0 

[W. Riegler, priv. comm.] 



Warm Up 
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1. What is the general relation between energy and momentum? 

2. What approximations can be used?  

3. What are 𝛽 and 𝛾? How are they calculated from 𝐸,𝑝,𝑚? 

4. How large are the fluctuations in radioactive decay? 

5. What is a cross section?  

6. What are typical values of cross sections? 

7. How is it related to luminosity? 

8. How do charged particles interact with matter? 



2 Electromagnetic Interactions of 
Charged Particles with Matter 

2.1 Ionizing collisions 
2.2 Calculation of mean energy loss 

2.3 Fluctuations of energy loss 
 



2.1 Collisions 
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Interactions of a fast charged particle with speed 𝛽 = 𝑣/𝑐 and momentum 
𝑝 = 𝑀𝑀𝛽𝛽 with matter  

 Occurrence of random individual collisions 
 In each collision the particle loses a random amount of energy 𝐸 

Characterization by mean free path 𝜆 and collision cross section 𝜎: 

𝜆 =
1
𝑛𝑒𝜎

=
1
𝑛𝑝

 

Number of encounters in length 𝐿 

𝑃 𝑘; 𝜇 =
𝜇𝑘

𝑘!
 𝑒−𝜇 𝜇 =

𝐿
𝜆

= 𝐿 𝑛𝑝 

𝑛𝑒 number density of electrons 
𝑛𝑝 number of (primary) collisions per unit length  

described by Poisson distribution 



Collisions 
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Probability distribution 𝑓 𝑙 d𝑙 of free flight paths 𝑙 between collisions: 

𝑓 𝑙 d𝑙 = 𝑃 0;
𝑙
𝜆

∙ 𝑃 1;
d𝑙
𝜆

= 𝑒−
𝑙
𝜆 ∙

d𝑙
𝜆

 single exponential 

Probability of having zero encounters along track length 𝐿: 

𝑃 0;
𝐿
𝜆

= 𝑒−𝐿/𝜆 

[V.K. Ermilova et al., Sov. 
Phys.-JETP 29, 861 (1969)] 
[K. Söchting, Phys. Rev. A, 
20, 1359 (1979)] 

 inefficiency of a perfect detector, 
which is capable of detecting even 
single electrons 
 method to measure λ, np 

Number of ionizing collisions 
per cm track length, 
measured at given value of 𝛾 



2.2 Mean energy loss 
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( )

2 4 2
e max

2 2 2

2d 4 1 ln
d 2

z e n mc TE
x mc I

β γπ δβ
βπε

2 2
2

2
0

 
− = − − 24  

with 
ze charge of incoming particle 
ne electron number density of material 
m electron mass 
β=v/c velocity of incoming particle 
γ relativistic factor 
Tmax maximum kinetic energy imparted to electron in single collision 
I mean excitation energy 
δ density effect correction 

e A
Zn N
A

ρ=

“Bethe equation” 



Mean Energy Loss 

( )

2 4 2
e max

2 2 2

2d 4 1 ln
d 2

z e n mc TE
x mc I

β γπ δβ
βπε

2 2
2

2
0

 
− = − − 24  

• independent of mass of incident particle 
• depends only on velocity of inc. particle 
  and on I  main parameter 
• low energies  
• minimum at βγ ≈ 3 : “MIP” 
• high energies                       : relativistic rise 
• mass stopping power: 
    almost independent of material 
• density effect: polarization of atoms along track 
    partly compensates relativistic rise 

d 1
d

E
x β 2

− ∝

d lnd
E

x β γ2 2− ∝

( ) ( )2d
d

E Zz f Ix A βρ
− ∝ ⋅ ,
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Calculation of Energy Loss 

Quantum picture: energy loss caused by a number of discrete collisions per 
unit length, each with energy transfer 𝐸           

𝑛𝑒  electron density 

𝐸   energy transfer in single collision 

f (E) dE  probability of energy loss per unit path length  
              between E and E+dE 

and with  

d𝜎/d𝐸  collision cross section  
            differential in transferred energy 

Mean free path: 

Spectrum of energy transfer probability of energy loss in 
𝐸,𝐸 + d𝐸  per collision  

 need a model for collision cross section! [H. Bichsel, NIM A 562, 154 (2006)] 

𝑛𝑝  number of primary collisions per unit 
path length 
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Rutherford - Mott Model 
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Simplest ansatz: hard collisions 
• Coulomb scattering of projectile with charge 𝑧𝑧 off free electrons 
• only valid for energy transfers ≫ typical atomic binding energies 𝐼 
• in rest frame of projectile: electron scattering off heavy particle at rest  

 Mott cross section: 

for static potential (no recoil) 



Rutherford - Mott 
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p

′p q
2θ

2θ

With                       ,                       ,   

follows the cross section  
differential in transferred energy   

Exercise: show this… 



Rutherford - Mott 
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Evaluation of integral 

Validity range of Mott CCS: 

I: mean excitation energy 

Therefore we arrive at 

Yields Bethe equation, except 
• Factor 2 
• 𝜖 instead of 𝐼 

Contribution from 
hard scattering! 



Bethe – Fano Model 
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Bethe, 1930: 
• drop assumption of free electrons 
• derive expression for cross section double-differential in energy loss 

𝐸 and momentum transfer 𝒒 for inelastic scattering on free atoms  
• use first Born approximation  

[H. Bethe, Ann. Phys. 5, 325 (1930)] 

Fano, 1963: 
• extend method for solids 
• no calculations exist for gases 

[U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963)] 

with 



Bethe – Fano Model 

Detectors B. Ketzer 31 

[H. Bichsel, NIM A 562, 154 (2006)] 



Bethe – Fano Model 
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[H. Bichsel, NIM A 562, 154 (2006)] 



Total Energy Loss 

Total energy loss: 

independent of ε 

Bethe-Bloch formula 

e A
Zn N
A

ρ= ⋅ ⋅Hard: Mott Soft 

with 
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Total Energy Loss 
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In principle, mean excitation energy 𝐼 can be calculated from atomic theory: 

 models needed for all but lightest atoms 
 often used in practice: 𝐼 as phenomenological constant 

Goal: Simplify cross section expression based on measured photo-
absorption cross sections 

 Photoabsorption Ionization Model    
         … also called Fermi virtual photon (FVP) model 



Classical Calculation of Energy 
Loss 

Idea: Calculate               of a moving charged particle (other than e±) 
          in a polarizable medium 

 classical calculation: medium treated as continuum with ε = ε1 + iε2 

 later: quantum mechanical interpretation 

              ⟺ longitudinal component of electric field               generated  
                   by the moving particle in the medium at its own position   

long
d
d
E eE
x

=

d dE x

( ), tE r
t=r v

d dE x

[L. Landau, E.M. Lifshitz, Electrodynamics of continuous media, 1960] 

[W.W.M Allison, J.H. Cobb, Ann. Rev. Nucl. Part. Sci. 30, 253 (1980)] 

[W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers, Springer 2008] 
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Classical Calculation of Energy 
Loss 

Work in Coulomb gauge, solution by Fourier transform 

( )
( )

( ) ( ) ( )3
2

1, d d , ,
2

i tt k i i e ωω ω ω ϕ ω
π

⋅ − = − ∫ k rE r A k k k 

( ) ( ), , ,t tϕA r rwith Fourier transforms of  

( ) ( )

( ) ( ) ( )

2
0

2

2 2 2 2
0

,
2

,
2

e
k

e k
c k c

ϕ ω δ ω
πε ε

ωω δ ω
πε εω

= − ⋅

−
= − ⋅

− +

k k v

k vA k k v





Solve Maxwell equations for isotropic, homogeneous medium with 

( ) ( ) ( ) ( )3, , , ,t e t t tρ δ ρ= − = ⋅r r v j r v r
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Classical Calculation of Energy 
Loss 

( )d ,
d
E e t t
x v

= ⋅
vE v

2 2
2

2 2 2 2 2 2 2
0 0

d 2 1 1d d Im Im
d 4

c

E e k k
x k c k c kcω

β

ω ωω ω β
πε β π εω ε

∞ ∞       = − − −      − +     
∫ ∫

• Integration over direction of k assuming isotropic medium 
• Time dependence drops out, because field in the medium is  
  travelling with the particle 
• Use                            to combine positive and negative ω  
• Lower limit for integration over k corresponds to minimum momentum 
  transfer for a given energy transfer ℏ𝜔 
• Energy loss determined by                 atomic structure of medium 

( ) ( )*ε ω ε ω− =

 Mean energy loss per unit path length: 

( ),ε ωk
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B. Ketzer 

Permettivity of Argon 


regionoptical

                     
region abs.

             
regionray -X

                     

Cherenkov-Rad. (β>1/n) dE/dx dE/dx (Tail) 
Transition Radiation 

[W.W.M. Allison, P.R.S. Wright, 
in: Experimental Techniques in  
High Energy Physics, ed. T. Ferbel, 
Addison-Wesley (1987)] 
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PAI Model 

Photo-absorption ionization model: 

Model of                based on measured photo-absorption cross section  ( )γσ ω( ),ε ωk

Plane light-wave travelling along x in medium (real photons): 

1 2,k i
c
ω ε ε ε ε= = + 0 , 2 ImxI I e

c
α ωα ε−⇒ = =

Relation to photo-absorption cross section for free (real) photons: 

Nn
Zγ γα σ σ= = ( )2

2
1

Z Z
Nc Ncγ

εω ωσ ε ω
ε

≈⇒ =
n = density of atoms 
N = density of electrons 
Z = atomic charge 

1 1ε ≈

Cross section             , and therefore            is known,  
e.g. from measurements with synchrotron radiation 

( )γσ ω ( )2ε ω

Real part             from Kramers-Kronig relation: ( )1ε ω ( ) ( )2
1 2 2

0

21 P d
x x

x
x

ε
ε ω

π ω

∞

− =
−∫

[W.W.M Allison, J.H. Cobb, Ann. Rev. Nucl. Part. Sci. 30, 253 (1980)] 

Cauchy principal value 
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PAI Model 

Total photo-absorption cross section 

Example: Argon 

[G.V. Marr, J.B. West, At. Data and Nucl. Data Tables 18, 497 (1976)] 

Real part of ε, calculated from 
σγ using Kramers-Kronig relation  

[F. Lapique et al., Nucl. Instr. Meth. 175, 297 (1978)] 
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PAI Model 

Charged particle traversing medium (dielectric) 
 interaction via virtual photon exchange 

,ω k 

θ 
Virtual photons: kinematic constraints in (E,q) or (ω,k) plane: 

Collision with free electron at rest: 

Minimum momentum transfer: 

Free photons in vacuum: 

Collision with bound electron  
(B.E. = E1, momentum 𝑝1~ 2𝑚𝐸1 ): 

 smeared band around qfe 

E1 = 30 eV 

β = 0.9 
qfe 

qmin qfγ 

𝑷,𝒗,𝑀 

𝑷𝑷,𝒗𝒗,𝑀 

𝒒 
(e

V/
𝒄)
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PAI Model 

Experiment: ε = ε1 + iε2 known only for free photons, i.e. on qfγ line 

PAI model: extend into the kinematic domain of virtual photons 
• Below free-electron line qfe (resonance region): dipole approximation 
                                  independent of k, as for free photons                  
• On free-electron line qfe : 

( ) ( ),kε ω ε ω=

( ) ( )( )2
2 1, 2 , 1k C k mε ω δ ω ε= − =

Normalization C chosen such that total coupling strength satisfies 

( ) ( ) ( )
2

2
00

, d 1 , , ,
2

Nef k k f k
m

πω ω ε ω ω
ε ω

∞

= =∫ Bethe sum rule 
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PAI Model 
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[H. Bichsel, NIM A 562, 154 (2006)] 

Optical dipole oscillator strength 



PAI Model 

( ) ( )

( ) ( )

12 2 22 4 2
1 22 2

0 0

2 2
2 1

2
0

d d ln 1
d 4

2ln d

E e Nc
x c Z

Nc mc Nc
Z Z

γ

ω

γ γ

ω σ ω β ε β ε
πε β π

εβσ ω σ ω ω ω β
ω ω ε

∞ −  = − − +   
  

′ ′ + + +  − Θ        

∫

∫

Integration over k: 

𝑁             electron density 

( )2 2
1 2arg 1 iε β ε βΘ = − +

𝐸 = ℏ𝜔  energy transfer in single collision 

𝑞 = ℏ𝑘 Energy loss per unit path length obtained in 
the framework of electrodynamics of a 
continuous medium, using a model for 𝜀(𝑘,𝜔) 
inspired by a picture of photon collision and 
absorption. 
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PAI Model 

Quantum picture: energy loss caused by a number of discrete collisions per 
unit length, each with energy transfer                   (single photon exchange) E ω= 

0

d d d
d d
E EN
x E

σ ω
∞

= −∫ 

( )
0

d d
d
E E f E E
x

∞

= −∫ f (E) dE  probability of energy transfer per unit path  
              between E and E+dE 

and with  ( ) d df E N Eσ=

𝑁             electron density 

𝐸 = ℏ𝜔  energy transfer in single collision 

𝑞 = ℏ𝑘 
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PAI Model 

Therefore: differential cross section per electron 

Energy loss by ionization 

Rutherford scattering (for E >> EK) 
 δ electrons 

• Optical region: σγ = 0 
    Cherenkov radiation 
• Transition radiation for thin radiators 

with      ε1, ε2 :  real and imaginary part of dielectric constant (for real photons) 

                                                  angle in pointer representation of complex number  

            σγ : atomic cross section of medium for absorption of photon with energy E 

( )2 2
1 2arg 1 iε β ε βΘ = − +

N : electron density in the medium 
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Energy Loss by Ionization 

Described by first three terms of  
d
dE
σ

( ) K 2 2

2 2
R

2

2 2 2
00

1 d ,
4

2d
d

E E E
e

e
r mE ec

E E
E r

E Z mc
γ πσα

β πβ
σ

π ε
  = 
 

′
′ → =∫



• Large energy transfers 𝐸 ≫ 𝐸𝐾   only third term survives (𝜎𝛾 𝐸  small)  

Rutherford cross section: elastic scattering on free electron 
 extremely long tail of energy loss distribution due to δ electrons 
 ill-defined average energy loss! (log. divergence) 
 better: most probable value 
 in practice: upper limit for E depending on detector: restricted energy loss  

Bethe sum rule 
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Energy Loss by Ionization 

( )

2

12
2 22 4 2

1 2

d ln
d

1

a b
E
σ β

β
β ε β ε

 
 

= + 
  − +    

• Remaining two terms: 

− small β : factor         dominates 

 

−  β →1 : logarithmic term dominates 

2

1
β 2

2

1

2

1ln for 1 1

1ln for 1 1
1

γ γ ε
ε

γ ε
ε

 −
−



 −
 −

→







Plateau due to density of medium! 

1 21 , Nε ε− ∝ e- density 

1 21 , 0 for 0Nε ε⇒ = = →
d
dE
σ

⇒ continues to rise for 𝑁 → 0! 

relativistic rise 

plateau 

𝑎, 𝑏 = 𝑓(𝐸,𝜎𝛾) 
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•                            jumps from 0 to π at 

Cherenkov Radiation 

Term ( )2 2
1 2

2 1
22 , arg 11 i

N c
εα β

β π ε
ε β ε β

 
 − Θ
 

Θ − +


=


• Only remaining term for photon energies below excitation energy of  
     atom (optical region), where  2 10 , 0 ,γσ ε ε ε= = =

( )2
1arg 1 ε βΘ = − 2

0
1

1β
ε

= Cherenkov threshold 

2 1 ,cv n
n

εεβ > ⇔ > =

 Emission of radiation if 

Emission angle: 
1cos
n

θ
β

=

destructive constructive 
interference Detectors B. Ketzer 51 



Cherenkov Radiation 

• Photon flux per interval of photon energy per unit path length (above thr.) 

2

2 C
2

C
1,

dd 11 sin
d d

c
d

os
N

N
E x c c

γσ α α θ
ε βω

θ
εβ

 
= = − = 

 
=

  

2
2d 1sin cos

d d 2
N

L
c

γ α θ δ θ
ω π β ε

 
= ⋅ − ⋅ Ω  

• Photon flux per interval of photon energy emitted in dΩ : 

2
2d 1dcos d sin with cos

d d
N

L
c

γ αθ ϕ θ θ
ω β ε

⇔ = ⋅ =
Ω∫
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Transition Radiation 

Thin radiator (L small)  
 diffraction, i.e. broadening of Cherenkov emission 
 interference of Cherenkov emission at both boundary surfaces 

Photon flux of X-ray transition radiation for small angles  θ0  and β ~1:  
22
p2 2 2

0 02 2

2

2 2 2 2 2 2
p 0 0

d 14sin
d d 4

1 1
1 1

N L
c

γ ωα ωθ θ
ω π ω ω γ

γ ω ω θ γ θ

  
= ⋅ + +   Ω    

 
⋅ − 

+ + +  

Neglect interference term, integrate over dΩ: 

p
p fo

d 2 ln r
d
Nγ γωα
ω πω ω

ω γω
 

≈  
 

  Total energy flux p3
α γ ω

1
22

p
0

nZe
m

ω
ε

 
=  

 

 Maximum at 0
1~θ γ

[W.W.M.Allison, P.R.S. Wright, in: Experimental Techniques in High-Energy Nuclear and Particle Physics, T. Ferbel ed.,  1999] 
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Collision Cross Section 

Detectors B. Ketzer 54 

[H. Bichsel, NIM A 562, 154 (2006)] 

Si, 𝛽𝛽 = 4 

, 𝛽𝛽 = 3.6 

Models: 
• Rutherford – Mott 

 
 
• Bethe – Fano 

 
 

• PAI (FVP)  



Collision Cross Section 
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[H. Bichsel, NIM A 562, 154 (2006)] 

Si, 𝛽𝛽 = 4 

, 𝛽𝛽 = 3.6 

Models: 
• PAI (FVP)  



Mean Energy Loss 
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[F. Böhmer, PhD thesis, TUM] 



2.3 Fluctuations of Energy Loss 

Consider single particle: statistical 
fluctuations of 

• number of collisions 
• energy transfer in each 
collision 
 range straggling (if stopped 
in medium) 
 energy straggling (if 
traversing medium) 

B. Ketzer 57 

[H. Bichsel, NIM A 562, 154 (2006)] 
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Fluctuations of Energy Loss 

Important quantity in order to understand response of detector: 

probability density function for energy loss ∆ in material of 
thickness x, 
determined by 
• collision cross section d𝜎/d𝐸  
• nex 

Calculation of energy loss distribution: two approaches 
• Convolution method 
• Laplace transform method 

[Allison, Cobb, Ann. Rev. Nucl. Part. Sc., 253 (1980)] 
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[H. Bichsel, NIM A 562, 154 (2006)] 

Straggling functions 

𝑓(∆; 𝑥) 
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2.3.1 Convolution Method 
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In each collision, the probability to transfer an energy 𝐸 is given by 

Energy loss Δ for exactly 𝑁𝑐 collisions  𝑁𝑐-fold convolution of 𝐹(𝐸)  

with and 



Convolution Method 
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Number of collisions 𝑁𝑐  in layer of thickness 𝑥  

 Linked to CCS through mean free path   

Mean value 

Standard deviation 

Relative width 



Convolution Method 
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 Pdf for total ionization energy loss ∆ in material slice of thickness 𝑥 
    = sum of all 𝐹�𝑁𝑐(∆), weighted by their Poissonian probability for  
       exactly 𝑁𝑐 collisions  

Straggling functions 

• Poissonian contribution dominant for very small number of 
collisions (very thin absorbers) 

• Peak structure vanishing for larger 𝑁𝑐 



Convolution Method 

Solution for thickness 𝑥: 
• Iterative application of convolution integral (numerical) 
  [Bichsel et al., Phys. Rev. A 11, 1286 (1975)] 

• Monte-Carlo method [Cobb et al., Nucl. Instr. Meth.  133, 315 (1976)] 

• calculate  mean number of collisions 𝑚𝑐 from integrated cross section 
• for each trial (particle penetration) choose actual number of collisions 
   from Poisson distribution with mean 𝑚𝑐 
• total energy loss = sum of energy losses in single collisions, taken 
  from normalized dσ/dE distribution 𝐹(𝐸) 
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Straggling Functions 
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[H. Bichsel, NIM A 562, 154 (2006)] 

Bethe-Bloch mean energy loss: ∆ = 400 eV 



Straggling Functions 
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[H. Bichsel, NIM A 562, 154 (2006)] 



2.3.2 Laplace Transform Method 
[L. Landau, J. Phys. USSR 8, 201 (1944)] 

Change of energy-loss distribution 𝑓(Δ; 𝑥) as a result of the particle 
passing through a thin elemental layer δx: 

• 1st term: probability that the energy loss in x was (∆−E ), and a collision 
                with energy transfer E occurred in δx, which makes the total  
                energy loss equal to ∆ (particle scattered into ∆) 
• 2nd term: probability that the energy loss in x was already equal to ∆ 
                before entering δx, where a further collision increased the  
                energy loss beyond ∆ (particle scattered out of ∆) 
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Laplace Transform Method 

Put in form of a transport equation: 

upper integration limit 𝐸 → ∞            
for 1st term ok, since  

( ), 0 for 0f x ∆ = ∆ <

Solution: Laplace transform of both sides 

               + solve for 𝑓(̅𝑠; 𝑥) 

   + inverse Laplace transform 

Exact solution, but numerical integration necessary in most cases! 

B. Ketzer 

0 < 𝑐 ≪ 1 
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∆ 
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2.3.3 Straggling Functions 

Remarks to both methods: 

• result determined by d𝜎/d𝐸  

• given the same cross section d𝜎/d𝐸, both methods are equivalent 
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Straggling Functions 

Different approximations, depending on thickness of absorber 

Characteristic parameter:                       , 

𝜉 = scaling parameter  
(1st term of Bethe-Bloch eq.) 

Thin absorbers: κ ≤ 10 
• possibility of large energy transfer in single collisions: δ-electrons 
• long tail on high-energy side, strongly asymmetric shape 

∆m 

∆
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Landau Distribution 

Very thin absorbers: κ→0 (i.e. Tmax→∞) 
• single energy transfers sufficiently large to consider e- as free 

 Rutherford 

• particle velocity remains constant 

Landau distribution [Landau 1944] 

B. Ketzer 

dσ
 (E

’)/
dE

’/
 σ
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Landau Distribution 

Very thin absorbers: κ→0 (i.e. Tmax→∞) 
• single energy transfers sufficiently large to consider e- as free 

 Rutherford 

• particle velocity remains constant 

Analytical approximation: Moyal distribution [Moyal, Phil. Mag. 46, 263 (1955)]: 

1 ( )
2

M
m( ,,

e
f x e

λλ
λ

π ξ

−− +1
∆)

∆ − ∆
==

2

Landau distribution [Landau, J. Phys. USSR 8, 201 (1944)] 

L ( ,f x φ λ
ξ
1

∆) = ( )
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𝜆 = universal parameter, see next page for relation 
to Δ𝑚 and 𝜉 

Note: 𝜆 different from 
parameter in Landau distr. 
above 
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Landau Distribution 

Properties of φ(λ): 
• asymmetric: tail up to 𝑇𝑚𝑚𝑚 → ∞ 

• Maximum at λ=-0.223 
• FWHM=4.02•λ 
• numerical evaluation 

Universal Landau distribution: 

Landau distribution in ROOT: 
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Comparison Landau - Moyal 

Landau: 
p1=1. 
p2=500. 
p3=100. 

Moyal: 
• coarse shape correct 
• tail too low! 

B. Ketzer 

But: tails are important for detector resolution! 
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Landau Distribution 
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Landau distribution: 
• Uses Rutherford cross section 
• Does not reproduce straggling functions based on more realistic 

models for CCS for very small 𝑁𝑐 
• Narrower width also for higher 𝑁𝑐   related to mean free path 𝜆 

− Rutherford CCS underestimates 𝜆  (overestimates 𝑁𝑐) 
− Poisson contribution to straggling function leads to broadening 



Symon-Vavilov Distribution 

Thin absorbers: 0.01 < κ < 10 
• use correct expression for Tmax 

• use Mott cross section instead of Rutherford 
• reduces to Landau distribution for very small κ 
• less asymmetric shape for larger κ 

[S.M. Seltzer, M.J. Berger,  
Nucl. Sc. Ser. Rep. No. 39 (1964)] 
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Realistic Straggling Functions 

[H. Bichsel, Rev. Mod. Phys. 60, 663 (1988)] 

Iterative Solution of convolution integral 

[Blunck, Leisegang, Z. Phys, 128, 500 (1950)] 

PAI Model vs Landau 
• Histogram: data 
• Landau + corrections 
             
            
•  PAI model 

Ar/CH4 (93/7) Ar/CH4 (93/7) 

[Maccabee, Papworth, Phys. Lett. A 30, 241 (1969)] 

[Allison, Cobb, Ann. Rev. Nucl. Part. Sci. 30, 253 (1980)] 
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Energy Loss Distributions 

Follows directly from Laplace transform or from Central Limit Theorem: 

The sum of N random variables, which all follow the same statistical 
distribution, is of Gaussian shape for large N, provided the individual  
processes are statistically independent 
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Medium-thick absorbers: 
• number of collisions large 
• total energy loss Δ ≪ 𝐸0 of incident particle 

 velocity 𝑣 ≈ const. 
 single collisions statistically independent,  
    i.e. probability distribution the same, with a well-defined expectation   
    value and variance 
 f (∆;x) approaches Gaussian form with mean       and ∆ 2

maxTσ ξ= ⋅
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Energy Loss Distributions 

B. Ketzer 

Even in thick detectors, the distribution never becomes Gaussian! 
• due to the condition Δ ≪ 𝐸0, i.e. insignificant energy loss of the particle 
• average energy loss per collision and its variance are very large (even 
infinite for Rutherford cross section: 𝑑𝜎/𝑑𝑑 ∝ 1/𝐸2) 
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Medium-thick absorbers: 
• number of collisions large 
• total energy loss Δ ≪ 𝐸0 of incident particle 

 velocity 𝑣 ≈ const. 
 single collisions statistically independent,  
    i.e. probability distribution the same, with a well-defined expectation   
    value and variance 
 f (∆;x) approaches Gaussian form with mean       and ∆ 2

maxTσ ξ= ⋅
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2.5 Measurement of Energy Loss 

B. Ketzer 

Restricted energy loss: 

( )cut

2 4 2
e cut cut

2 2 2
max

2d 4 1 ln 1
d 2 2T T

z e n mc T TE
x mc I T

β γπ β δ
βπε

2 2 2

2
< 0

  
− = − + −   24    

approaches normal Bethe-Bloch equation for  𝑇cut → 𝑇max  

Transforms into average total number of e- ion pairs nT along path length x: 

T
d
d
Ex n W
x

=

But: actual energy loss fluctuates with a long tail (Landau distribution) 
mean value of energy loss is a bad estimator 
 use truncated mean of N pulse height measurements along the track: 
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Measurement of Energy Loss 
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Measurement of Energy Loss 
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Measurement of Energy Loss 

B. Ketzer 

Resolution (empirical):  

N = number of samples 
Δ𝑥 = sample length (cm) 
p = gas pressure (atm) 
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Example: ALICE TPC 
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