Measurement of the proton scalar polarizabilities at MAMI

Edoardo Mornacchi

Johannes Gutenberg - Universität Mainz

SFB1044 school 2016 Boppard 06.10.2016

1 / 21

Scalar polarizabilities

Main goal

Measurement of the scalar polarizabilities α_{E1} and β_{M1} of the proton,using a linearly polarized photon beam

- Fundamental properties of the nucleon
- Closely related to nucleon internal structure
- Important for nuclear physics, atomic physics, astrophysics, spin polarizabilities measurements, etc.

- Electric dipole moment: $\vec{p} = \alpha_{E1}\vec{E}$
- α_{E1}: electric polarizability

 Describes the response of a proton to an applied electric field: "stretchability" of the proton

Magnetic scalar polarizability - β_{M1}

- Magnetic dipole moment: $\vec{m} = \beta_{M1} \vec{H}$
- β_{M1}: magnetic polarizability

 Describes the response of a proton to an applied magnetic field: "alignability" of the proton • Internal structure can be accessed via Compton scattering

$\gamma(k)$ + P(p) $\rightarrow \gamma(k')$ + P(p')

Edoardo Mornacchi (Uni-Mainz)

Scalar polarizabilities

Born term

Under the assumption of NO proton internal structure, the effective Hamiltonian can be written in terms of mass, electric charge and anomalous magnetic moment

$$H_{
m eff}^{(0)}=rac{ec{\pi}^2}{2m}+e\phi$$
 (where $ec{\pi}=ec{
ho}-eec{A}$)

• First order: anomalous magnetic moment

$$H_{\rm eff}^{(1)} = -\frac{e(1+k)}{2m}\vec{\sigma}\cdot\vec{H} - \frac{e(1+2k)}{8m^2}\vec{\sigma}\cdot\left[\vec{E}\times\vec{\pi} - \vec{\pi}\times\vec{E}\right]$$

Edoardo Mornacchi (Uni-Mainz)

Scalar polarizabilities

Effective Hamiltonian at the second order includes scalar polarizabilities, which are related to the proton internal structure

• Second order: scalar polarizabilities α_{E1} and β_{M1}

$$H_{\rm eff}^{(2)} = -4\pi \left[\frac{1}{2} \alpha_{E1} \vec{E}^2 + \frac{1}{2} \beta_{M1} \vec{H}^2 \right]$$

 α_{E1} and β_{M1} quantify the response of the proton to a static applied electric or magnetic field

 \bullet Third order: spin polarizabilities $\gamma_{E1E1},~\gamma_{M1M1},~\gamma_{M1E2}$ and γ_{E1M2}

$$H_{\text{eff}}^{(3)} = -4\pi \Big[\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \vec{E}) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \vec{H}) \\ -\gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \Big]$$

Existing data

- Highest statistics published data:
 V. Olmos de Leon et al. Eur. Phys. J. A 10, 207-2015 (2001)
- 200 hours of Compton scattering
- $E_{beam} = 180 \text{ MeV}$
- $E_{\gamma} = 55 165$ MeV, $\theta_{\gamma} = 59^{\circ} 155^{\circ}$
- 1/3 acceptance of CB system

Scalar polarizabilities

Existing data

- Highest statistics published data:
 V. Olmos de Leon et al. Eur. Phys. J. A 10, 207-2015 (2001)
- 200 hours of Compton scattering
- $E_{beam} = 180 \text{ MeV}$
- $E_{\gamma}=55-165$ MeV, $\theta_{\gamma}=59^{\circ}-155^{\circ}$
- 1/3 acceptance of CB system

	with Baldin	without Baldin
α_{E1}	12.1 ± 1.08	11.9 ± 1.39
β_{E1}	1.6 ± 0.89	1.2 ± 0.76

Existing data

PDG (2012) values:

 $\begin{array}{l} \alpha_{\text{E1}} = (12.0 \pm 0.6) \; 10^{-4} \; \text{fm}^3 \\ \beta_{\text{M1}} = (1.9 \pm 0.5) \; 10^{-4} \; \text{fm}^3 \end{array}$

New PDG (2013) values:

 $\begin{array}{l} \alpha_{\text{E1}} = (11.2\pm0.4) \; 10^{-4} \; \text{fm}^3 \\ \beta_{\text{M1}} = (2.5\pm0.4) \; 10^{-4} \; \text{fm}^3 \end{array}$

Significant change between reviews without new experimental data \Rightarrow New high quality data needed!

At low energy (and in certain phase-space regions) Σ_3 is mainly dependent on β_{M1} Krupina and Pascalutsa, PRL 110, 262001 (2013)

Edoardo Mornacchi (Uni-Mainz)

Scalar polarizabilities

Boppard 06.10.2016

• Linearly polarized beam & unpolarized target

• Circularly polarized beam & transversely polarized target

• Circularly polarized beam & longitudinally polarized target

Beam asymmetry Σ_3 and measurement of β_{M1}

At low energy, β_{M1} can be extracted from the beam asymmetry Σ_3 using a linearly polarized photon beam and an unpolarized proton target:

$$\frac{d\sigma}{d\Omega}(\theta,\phi) = \frac{d\sigma}{d\Omega}(\theta) \left[1 + \mathsf{p}_{\gamma} \Sigma_{3} \cos(2\phi)\right] \text{ where } \mathbf{\Sigma}_{3} = \frac{\mathsf{d}\sigma_{\perp} - \mathsf{d}\sigma_{\parallel}}{\mathsf{d}\sigma_{\perp} + \mathsf{d}\sigma_{\parallel}}$$

Krupina and Pascalutsa, PRL 110, 262001 (2013)

Edoardo Mornacchi (Uni-Mainz)

Scalar polarizabilities

Boppard 06.10.2016

Experimental setup

Scalar polarizabilities

Boppard 06.10.2016

ELE NOR

Experimental setup

Crystal Ball

- 672 Nal(TI) crystals
- Particle Identification Detector (**PID**): 24 scintillator paddles
- 2 Multiwire Proportional Chambers (MWPCs)

TAPS

- 366 BaF₂ and 72 PbWO₄ crystals
- 384 veto paddles

 \Rightarrow The beam asymmetry Σ_3 is an alternative way to extract $\beta_{M1}:$

$$\Sigma_3 = rac{d\sigma_\perp - d\sigma_\parallel}{d\sigma_\perp + d\sigma_\parallel}$$

 \Rightarrow We selected Compton scattering $ec{\gamma} p o \gamma(p)$ events:

•
$$E_{\gamma_{beam}} = 79 - 139 \text{ MeV}$$

•
$$\theta_{\gamma_{out}} = 30^\circ - 155^\circ$$

- ullet Events with 1 γ in the final state
- Random background subtraction
- Subtraction of empty target contribution
- Missing mass cut
- \Rightarrow More than 200,000 Compton scattering events

Example of missing mass distribution

Good agreement between PARA, PERP and Monte carlo simulation \Rightarrow Low background dataset

Edoardo Mornacchi (Uni-Mainz)

Scalar polarizabilities

Boppard 06.10.2016

Unpolarized cross-section

New DATA

- V. Olmos de Leon et al., EPJ A 10 (2001)
- Born contribution
- N. Krupina and V. Pascalutsa, PRL 110, 262001 (2013)
- B. Pasquini, D. Drechsel, and M. Vanderhaeghen, Phys. Rev. C 76 (2007)
- Agreement with Olmos et al.
- Compatible (or better) statistics in the new data
- Significant deviation from Born contribution
- Extension of the angular coverage in the forward direction

Example of ϕ distribution

 ϕ distribution for PARA and **PERP** data

 $cos(2\phi)$ modulation clearly seen

$$\begin{aligned} & \frac{d\sigma}{d\Omega}(\theta, \varphi) = \\ & \frac{d\sigma}{d\Omega}(\theta) \left[1 + \mathsf{p}_{\gamma} \Sigma_3 cos(2\varphi) \right] \end{aligned}$$

Σ_3 results

N. Krupina and V. Pascalutsa, PRL 110, 262001 (2013)

- B. Pasquini, D. Drechsel, and M. Vanderhaeghen, Phys. Rev. C 76 (2007)
- J. McGovern, D. Phillips, H. Grie
 ßhammer, EPJA 49, 12 (2013)

Fit on our $\boldsymbol{\Sigma}_3$ results using Baldin sum rule constrain gives

BChPT framework:	HBChPT framework:
$\beta_{\text{M1}} = (2.8^{+2.3}_{-2.1}) \; 10^{-4} \; \text{fm}^3$	$\beta_{\text{M1}} = (3.7^{+2.5}_{-2.3}) \; 10^{-4} \; \text{fm}^3$

New experiment @ MAMI

- Proposed experiment: 600 hours of Compton scattering on proton:
- \rightarrow Measurement of the beam asymmetry Σ_3 and unpolarized cross-section
- \rightarrow 10 cm LH_2 target and a polarized photon beam with $E_{e^-}=883~\text{MeV}$
- Improvement in statistics:

	Diamond (both sets)		Copper radiator		
Experiment	Full target	Empty target	Full target	Empty target	
Pilot	116 h	110 h	42 h	39 h	
Proposed	500 h	70 h	30 h	-	

 \bullet Tagger upgrade \rightarrow improvement in rate ${\sim}5$ times

 \Rightarrow Decrease of the statistical error \sim 3.5 times

- Improvement in systematics:
- \rightarrow Stable linear polarization with the new setup
- \rightarrow Improvement in tagger performance
- \rightarrow Continuous tagging efficiency monitor with pair spectrometer

 \Rightarrow Smaller systematic errors

Scalar polarizabilities

Achieved and expected precision

DChDT (the frame D. Mantal		Error from ChPT fit (10^{-4} fm^3)						
BCNPT fits from P. Marte		With Baldin		Without Baldin				
Experiment	Compton ev.		Σ3	$\frac{d\sigma}{d\omega}$	$\Sigma_3, \frac{d\sigma}{d\omega}$	Σ3	$\frac{d\sigma}{d\omega}$	$\Sigma_3, \frac{d\sigma}{d\omega}$
Pilot	pprox 200000	$\Delta \alpha_{E1}$	2.5	1.3	1.1	3.8	1.4	1.3
		$\Delta \beta_{E1}$				2.5	1.7	1.4
Proposed	pprox 4000000	$\Delta \alpha_{E1}$	0.7	0.4	0.3	1.1	0.4	0.4
		$\Delta \beta_{E1}$				0.7	0.5	0.4

 \Rightarrow Highest statistic data set: Olmos et al. (\sim 50% of the existing data):

	with Baldin	without Baldin
α_{E1}	12.1 ± 1.08	11.9 ± 1.39
β_{E1}	1.6 ± 0.89	1.2 ± 0.76

 \Rightarrow Word data errors (without double counting):

α_{E1} 0.76 β_{E1} 0.69

⇒ Precision improved compared to the existing data based on a single measurement!

Edoardo Mornacchi (Uni-Mainz)

Scalar polarizabilities

Summary and outlook

- Successful pilot experiment!
- ightarrow Low background data set in the range 79 139 MeV
- \rightarrow First measurement of the beam asymmetry Σ_3 below pion threshold
- \rightarrow Alternative extraction of β_{M1} using ChPT and HBChPT frameworks
- \rightarrow Preliminary measurement of the unpolarized cross-section in agreement with theoretical calculations and existing data

• Proposed experiment:

- \rightarrow New measurement of the proton scalar polarizabilities with an unprecedently high precision
- \rightarrow Simultaneous measurement of the unpolarized cross-section and beam asymmetry
- \rightarrow Increased of the statistics and reduced of the systematic effects

Summary and outlook

- Successful pilot experiment!
- ightarrow Low background data set in the range 79 139 MeV
- \rightarrow First measurement of the beam asymmetry Σ_3 below pion threshold
- \rightarrow Alternative extraction of β_{M1} using ChPT and HBChPT frameworks
- \rightarrow Preliminary measurement of the unpolarized cross-section in agreement with theoretical calculations and existing data

• Proposed experiment:

- \rightarrow New measurement of the proton scalar polarizabilities with an unprecedently high precision
- \rightarrow Simultaneous measurement of the unpolarized cross-section and beam asymmetry
- \rightarrow Increased of the statistics and reduced of the systematic effects

THANK YOU FOR YOUR ATTENTION!

Edoardo Mornacchi (Uni-Mainz)

三日 のへの

イロン 不聞と 不同と 不同と

 \Rightarrow The best way to extract β is the beam asymmetry Σ_3 :

$$\Sigma_{3} = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{P_{\parallel} d\sigma_{\perp} + P_{\perp} d\sigma_{\parallel}}$$

 \Rightarrow We selected Compton scattering $ec{\gamma} p o \gamma(p)$ events:

- $E_{\gamma_{beam}} = 79 139 \text{ MeV}$
- $\theta_{\gamma_{out}} = 30^\circ 155^\circ$
- ullet Events with 1 γ in the final state
- Random background subtraction
- Subtraction of empty target contribution
- Missing mass cut
- \Rightarrow More than 200,000 Compton scattering events

Measurement of α and β

$$\Sigma_3 = \Sigma_3^{(B)} - \frac{4M\omega^2 \cos\theta \sin^2\theta}{\alpha_{em}(1+\cos^2\theta)^2} \beta_{M1} + O(\omega^4), \quad (6)$$

where $\Sigma_3^{(B)}$ is the pure Born contribution, while

$$\omega = \frac{s - M^2 + \frac{1}{2}t}{\sqrt{4M^2 - t}}, \quad \theta = \arccos\left(1 + \frac{t}{2\omega^2}\right) \quad (7)$$

are the photon energy and scattering angle in the Breit (brick-wall) reference frame. In fact, to this order in the LEX the formula is valid for ω and θ being the energy and angle in the lab or center-of-mass frame.

Proton scalar polarizabilities

- Electric dipole moment: $\vec{p} = \alpha_{E1}\vec{E}$
- α_{E1}: electric polarizability
- Describes the response of a proton to an applied electric field: "stretchability" of the proton

- Magnetic dipole moment: $\vec{m}=\beta_{M1}\vec{H}$
- β_{M1}: magnetic polarizability
- Describes the response of a proton to an applied magnetic field: "alignability" of the proton

Edoardo Mornacchi (Uni-Mainz)