Theoretical Description of the X(3872) and Y(4260) Decays

D.A.S. Molnar, I. Danilkin and M. Vanderhaeghen

SFB School, Boppard October, 2016

Motivation

Exotic Mesons

X(3872)

Breit-Wigner Method

Y(4260)

- Breit-Wigner Method
- Mirror-Partner
- $\pi\pi$ Rescattering

Perspectives

• Steps in Progress

Conclusions

Preliminary Conclusions

Motivation		

Motivation		
•0		
Exotic Mesons		

- Discovery 2003
 - Belle at KEK Japan
 - e^+e^- collisions
- Seen by
 - CDF, D0(Fermilab USA), LHCb, CMS (Cerne-Switzerland), Babar (SLAC - USA), BESIII (IHEP - China)
- 1^{st} exotic in $c\bar{c}$ spectrum

Y(4260)

- Discovery 2005
 - Babar at SLAC USA
 - e⁺e⁻ annihilation through initial state radiation

Seen by

- Belle (KEK Japan), Cleo (CESR - USA), BESIII (IHEP - China)
- Decay into other exotic mesons!

Exotic Mesons

Motivation ●0		
Exotic Mesons		

Exotic Mesons

Motivation ●O		
Exotic Mesons		

Exotic Mesons

Motivation		
•0		
Exotic Mesons		

- Discovery 2003
 - Belle at KEK Japan
 - e^+e^- collisions
- Seen by
 - CDF, D0(Fermilab USA), LHCb, CMS (Cerne-Switzerland), Babar (SLAC - USA), BESIII (IHEP - China)
- 1^{st} exotic in $c\bar{c}$ spectrum

Y(4260)

- Discovery 2005
 - Babar at SLAC USA
 - e⁺e⁻ annihilation through initial state radiation

Seen by

- Belle (KEK Japan), Cleo (CESR - USA), BESIII (IHEP - China)
- Decay into other exotic mesons!

Exotic Mesons

Motivation ●0		
Exotic Mesons		

Exotic Mesons

Motivation		
•••		
Exotic Mesons		

Exotic Mesons

Motivation		
•0		
Exotic Mesons		

- Discovery 2003
 - Belle at KEK Japan
 - e^+e^- collisions
- Seen by
 - CDF, D0(Fermilab USA), LHCb, CMS (Cerne-Switzerland), Babar (SLAC - USA), BESIII (IHEP - China)
- 1^{st} exotic in $c\bar{c}$ spectrum

Y(4260)

- Discovery 2005
 - Babar at SLAC USA
 - e^+e^- annihilation through initial state radiation

Seen by

- Belle (KEK Japan), Cleo (CESR - USA), BESIII (IHEP - China)
- Decay into other exotic mesons!

Exotic Mesons

Exotic Mesons

Exotic Mesons

Motivation		
00		
Exotic Mesons		

S. L. Olsen Front. Phys. (2015)

Motivation		
00		
Exotic Mesons		

S. L. Olsen Front. Phys. (2015)

Motivation		
Exotic Mesons		

Alternative explanations:

tetraquark, molecular state, hybrids of quarkonium and gluons, quarkonium-glueballs mixtures ...

S. L. Olsen Front. Phys. (2015)

Motivation		
00		
Exotic Mesons		

Alternative explanations:

tetraquark, molecular state, hybrids of quarkonium and gluons, quarkonium-glueballs mixtures ...

Charged Exotic Mesons

- Confirmed in 2013 by Belle and BESIII
- $c\bar{c} + q_i\bar{q}_j$ $(i \neq j)$

S. L. Olsen Front. Phys. (2015)

Motivation		
00		
Exotic Mesons		

Alternative explanations:

tetraquark, molecular state, hybrids of quarkonium and gluons, quarkonium-glueballs mixtures ...

Charged Exotic Mesons

- Confirmed in 2013 by Belle and BESIII
- $c\bar{c} + q_i\bar{q}_i \ (i \neq j)$

No Unique Structure

Pure Molecular or tetraquark explanations cannot explain the exotic states

Motivation	X(3872)	Y(4260)	

	X(3872) ●		
Breit-Wigner Method			

	X(3872) ●		
Breit-Wigner Method			

🕼 Belle-2011

	X(3872) ●		
Breit-Wigner Method			

$$V_{\rho\pi\pi})^{\mu} \underbrace{\frac{\left(-g_{\mu\nu}+q_{\mu}q_{\nu}/m_{\rho}^{2}\right)}{q^{2}-m_{\rho}^{2}+im_{\rho}\Gamma_{\rho}}} (V_{X\psi\rho})^{\alpha\beta\nu} \epsilon_{\alpha}(p_{X})\epsilon_{\beta}(p_{\psi})$$

	X(3872)		
Breit-Wigner Method			

Belle-2011

$$\mathcal{V}_{\rho\pi\pi})^{\mu} \underbrace{\frac{\left(-g_{\mu\nu}+q_{\mu}q_{\nu}/m_{\rho}^{2}\right)}{q^{2}-m_{\rho}^{2}+im_{\rho}\Gamma_{\rho}}} (V_{X\psi\rho})^{\alpha\beta\nu} \epsilon_{\alpha}(p_{X})\epsilon_{\beta}(p_{\psi})$$

Breit-Wigner Propagator

Vertex $V_{x\psi\rho}$

 $V_{x\psi\rho} \rightarrow 3$ couplings: 1 longitudinal (helicity = 0) 2 transversal (helicity = ±1)

Vertex $V_{\rho\pi\pi}$

 $C_{
ho\pi\pi}$ can be obtained directly from the experimental howidth: $\Gamma_{
ho\pi\pi} = 147.8(9) \text{ MeV}$ $\implies C_{
ho\pi\pi} = 5.98(2)$

Dimensionless Couplings!

	X(3872)		
Breit-Wigner Method			

Belle-2011

$$\mathcal{V}_{\rho\pi\pi})^{\mu} \underbrace{\frac{\left(-g_{\mu\nu}+q_{\mu}q_{\nu}/m_{\rho}^{2}\right)}{q^{2}-m_{\rho}^{2}+im_{\rho}\Gamma_{\rho}}} (V_{X\psi\rho})^{\alpha\beta\nu} \epsilon_{\alpha}(p_{X})\epsilon_{\beta}(p_{\psi})$$

Breit-Wigner Propagator

Vertex $V_{x\psi\rho}$

 $V_{x\psi\rho} \rightarrow 3$ couplings: 1 longitudinal (helicity = 0) 2 transversal (helicity = ±1)

Vertex $V_{\rho\pi\pi}$

 $C_{\rho\pi\pi}$ can be obtained directly from the experimental ρ width: $\Gamma_{\rho\pi\pi} = 147.8(9) \text{ MeV}$ $\implies C_{\rho\pi\pi} = 5.98(2)$

Dimensionless Couplings!

	X(3872) ●		
Breit-Wigner Method			

$$V_{\rho\pi\pi})^{\mu} \underbrace{\frac{\left(-g_{\mu\nu}+q_{\mu}q_{\nu}/m_{\rho}^{2}\right)}{q^{2}-m_{\rho}^{2}+im_{\rho}\Gamma_{\rho}}} (V_{X\psi\rho})^{\alpha\beta\nu} \epsilon_{\alpha}(p_{X})\epsilon_{\beta}(p_{\psi})$$

Fit Parameters $\chi^2_{red} \simeq 0.73$ Norm $\simeq 104.08$ $\frac{\textit{Ca}_{x\psi\rho}^{(1)}}{\textit{C}_{x\psi\rho}^{(0)}} \sim 2 \cdot 10^{-7}$ $\sim 8 \cdot 10^{-7}$

■ Belle-2011

Motivation	X(3872)	Y(4260)	

		Y(4260) ⊙●⊙○○○○		
Breit-Wigner Method				
	$I \neq \psi$	_)/ψ	<i>π</i> ⁻	· <i>π</i> *

Motivation 00	X(3872) o	Y(4260) ⊙●○○○○		
Breit-Wigner Method				
Y(4260) /b л	ψ Υ(4260) *	α, α, , , , , , , , , , , , , , , , , ,	Υ(4260) Υ(4260) Υ(4260) <i>Υ</i> (4260) <i>Υ</i> (4260) <i>Υ</i> (4260) <i>Υ</i> (4260)	
$\left(\frac{1}{3}\sum_{spin} \mathcal{M} ^2\right)$	$ =rac{1}{3}ig \mathcal{M}_{f_0}+\mathcal{M}_{\sigma_0}$	$+ M_{Z_{c}^{+}} + M_{Z_{c}^{-}} ^{2}$	$\begin{bmatrix} \underbrace{\epsilon_{\alpha}(p_{Y})\epsilon_{\alpha'}^{*}(p_{Y})}_{-g^{\alpha\alpha'}} \end{bmatrix} \begin{bmatrix} \epsilon_{\beta}(p_{\psi})\epsilon_{\beta'}^{*}(p_{\psi}) \end{bmatrix} \\ \underbrace{-g^{\alpha\alpha'} + \frac{p_{Y}^{\alpha}p_{Y}^{\alpha'}}{m_{Y}^{2}}}_{-g^{\beta\beta'}} \underbrace{-g^{\beta\beta'} + \frac{p_{\psi}^{\beta}p_{\psi}^{\beta'}}{m_{\psi}^{2}}}_{-g^{\beta\beta'}} \end{bmatrix}$	
	$dM_{\psi\pi}^2 dN$	$\frac{\Lambda_{\pi\pi}^2}{\Lambda_{\pi\pi}^2} = \frac{1}{32 (2\pi m_Y)^3}$	$\left(\frac{1}{3}\sum_{spin} \mathcal{M} ^{-}\right)$	
Knov	vn Coupling	s	Couplings to fit	
$\Gamma_{f_0} = 50(15)$ $\Gamma_{\sigma_0} = 552(10)$ $\Gamma_z = \underbrace{4.9(2.2)}_{\text{MeV}}$	$\implies C_{f_0\pi\pi} = \\ \implies C_{\sigma_0\pi\pi} = \\ \implies C_{Z_{c}\psi\pi} = \\$	1.32(13) = 7.29(7) = 0.41(9)	$egin{array}{lll} C_{Y\psi f_0}^{\mathcal{T}} & C_{Y\psi f_0}^{\mathcal{L}} \ C_{Y\psi \sigma_0}^{\mathcal{T}} & C_{Y\psi \sigma_0}^{\mathcal{L}} \ C_{Y\psi \sigma_0} & C_{Y\psi \sigma_0} \ \end{array}$	

	Y(4260) ○○○●○○	
Mirror-Partner		

3.6

*M*_{J/ψ π⁻} (GeV)

3.8

4.0

20 0

3.4

	Y(4260) ○○○●○○	
Mirror-Partner		

*M*_{J/ψ π⁻} (GeV)

$$M_{\psi\pi^{\pm}}
ightarrow M_{z_c^{\pm}}$$

$$\implies$$
 3.40 < $M_{\psi\pi^{\mp}}$ < 3.55

Mirror Partner (Z_c^+, Z_c^-)

The bump in this region is due to the kinematic reflection of the mirror partner!

		Y(4260) ○○○○●○		
$\pi\pi$ Rescattering				
	6) was a Math	ad	

		Y(4260) ○○○○●○		
$\pi\pi$ Rescattering				
	C)	ad	

Analyticity: Dispersion Relation

$$\mathcal{M}=rac{1}{\pi}\int\limits_{4m_{\pi}^{2}}^{\infty}ds'\;rac{\textit{Im}\;(\mathcal{M})}{s'-s}$$

		Y(4260) ○○○○●○	
$\pi\pi$ Rescattering			
	0		

Analyticity: Dispersion Relation				
$\mathcal{M}=rac{1}{\pi}\int\limits_{4m_{\pi}^{2}}^{\infty}ds'\;rac{\mathit{Im}\left(\mathcal{M} ight)}{s'-s}$				
Cutskovsky (Cutting) Rule:				

$$rac{1}{p^2-m^2+i\epsilon}
ightarrow (-2\pi i)\,\delta(p^2-m^2)$$

Imaginary Part \rightarrow Propagators On-Shell

	Y(4260) ○○○○●○	
$\pi\pi$ Rescattering		

Analyticity: Dispersion Relation

$$\mathcal{M}=rac{1}{\pi}\int\limits_{4m_{\pi}^{2}}^{\infty}ds'\;rac{lm\left(\mathcal{M}
ight)}{s'-s}$$

Cutskovsky (Cutting) Rule:

$$\frac{1}{p^2 - m^2 + i\epsilon} \to (-2\pi i)\,\delta(p^2 - m^2)$$

Imaginary Part \rightarrow Propagators On-Shell

Unitarity: p. w. Amplitude

 $Im\mathcal{M}_j(s) =
ho_j(s)\mathcal{M}_j(s)t^{*\,I}_{\pi\pi\,j}\, heta(s>4\pi^2)$

	Y(4260) ○○○○●○	
$\pi\pi$ Rescattering		

Analyticity: Dispersion Relation

$$\mathcal{M}=rac{1}{\pi}\int\limits_{4m_{\pi}^{2}}^{\infty}ds'\;rac{\mathit{Im}\left(\mathcal{M}
ight)}{s'-s}$$

Unitarity: p. w. Amplitude

$$Im\mathcal{M}_j(s) =
ho_j(s)\mathcal{M}_j(s)t^{*\,l}_{\pi\pi\,j}\, heta(s>4\pi^2)$$

$$\implies$$
 S-wave and Isospin = 0

$$t^* = rac{e^{i\delta(s)}\sin\delta(s)}{
ho(s)}$$
 $\mathcal{M}(s) = |\mathcal{M}(s)|e^{i\delta(s)}$

Watson Final State Theorem

$$Arg[\mathcal{M}(s)] = \delta(s)$$

	Y(4260) ○○○○●○	
$\pi\pi$ Rescattering		

Analyticity: Dispersion Relation

$$\mathcal{M}=rac{1}{\pi}\int\limits_{4m_{\pi}^{2}}^{\infty}ds'\;rac{\mathit{Im}\left(\mathcal{M}
ight)}{s'-s}$$

Unitarity: p. w. Amplitude

$$Im\mathcal{M}_j(s) =
ho_j(s)\mathcal{M}_j(s)t^{*\,l}_{\pi\pi\,j}\, heta(s>4\pi^2)$$

$$\implies$$
 S-wave and Isospin = 0

$$t^* = rac{e^{i\delta(s)}\sin\delta(s)}{
ho(s)}$$
 $\mathcal{M}(s) = |\mathcal{M}(s)|e^{i\delta(s)}$

Watson Final State Theorem

$$Arg[\mathcal{M}(s)] = \delta(s)$$

	Y(4260) ○○○○●○	
$\pi\pi$ Rescattering		

Omnes Function

$$\Omega(s) = exp\left[rac{s}{\pi}\int\limits_{4m^2}^{\infty}rac{ds'}{s'}rac{\delta(s')}{s'-s}
ight]$$

One subtraction and normalization

 $\Omega(0) = 1$

Analyticity: Dispersion Relation

$$\mathcal{M}=rac{1}{\pi}\int\limits_{4m_{\pi}^{2}}^{\infty}ds'\;rac{\mathit{Im}\left(\mathcal{M}
ight)}{s'-s}$$

Unitarity: p. w. Amplitude

$$Im\mathcal{M}_j(s) = \rho_j(s)\mathcal{M}_j(s)t^{*\,l}_{\pi\pi\,j}\,\theta(s>4\pi^2)$$

$$\implies$$
 S-wave and Isospin = 0

$$t^* = rac{e^{i\delta(s)}\sin\delta(s)}{
ho(s)}$$

$$\mathcal{M}(s) = |\mathcal{M}(s)|e^{i\delta(s)}$$

Watson Final State Theorem $Arg[\mathcal{M}(s)] = \delta(s)$

	Perspectives	

		Perspectives	
		•	
Steps in Progress			

- Analytic structure of the process with *t* and *u* channel diagrams
- As important as the others diagrams
- Inclusion of neutral Z_c^0
- Development of the formalism in progress

		Perspectives	
Steps in Progress			·

- Analytic structure of the process with *t* and *u* channel diagrams
- As important as the others diagrams
- Inclusion of neutral Z_c^0
- Development of the formalism in progress

		Perspectives	
Steps in Progress			·

- Analytic structure of the process with *t* and *u* channel diagrams
- As important as the others diagrams
- Inclusion of neutral Z_c^0
- Development of the formalism in progress

		Perspectives	
Steps in Progress			·

- Analytic structure of the process with *t* and *u* channel diagrams
- As important as the others diagrams
- Inclusion of neutral Z_c^0
- Development of the formalism in progress

		Perspectives	
Steps in Progress			·

- Analytic structure of the process with *t* and *u* channel diagrams
- As important as the others diagrams
- Inclusion of neutral Z_c^0
- Development of the formalism in progress

		Conclusions

		Conclusions •
Preliminary Conclusions		

- Simple Breit-Wigner method explain the dynamics of the decay:
- Meaning that $X \to \rho^0 + J/\psi$, then $\rho^0 \to \pi^- + \pi^+$
- C_{xψρ} longitudinal dominates the transverse one, and can be determined as soon as the absolute mass spectra are known.

- Breit-Wigner Method:
 - $J/\psi\pi^{\pm}$ invariant mass distribution can be (well) explained!
 - First step: approximate estimate for f_0 and σ_0
- $\pi\pi$ rescattering (via Omnes method):
 - Number of fitting couplings is reduced (only 3)
 - Implemented mechanism I $ightarrow \pi\pi$ rescattering in the S-channel

		Conclusions •
Preliminary Conclusions		

- Simple Breit-Wigner method explain the dynamics of the decay:
- Meaning that $X o
 ho^0 + J/\psi$, then $ho^0 o \pi^- + \pi^+$
- C_{xψρ} longitudinal dominates the transverse one, and can be determined as soon as the absolute mass spectra are known.

- Breit-Wigner Method:
 - $J/\psi\pi^{\pm}$ invariant mass distribution can be (well) explained!
 - First step: approximate estimate for f_0 and σ_0
- $\pi\pi$ rescattering (via Omnes method):
 - Number of fitting couplings is reduced (only 3)
 - Implemented mechanism I $ightarrow \pi\pi$ rescattering in the S-channel

		Conclusions •
Preliminary Conclusions		

- Simple Breit-Wigner method explain the dynamics of the decay:
- Meaning that $X \to \rho^0 + J/\psi,$ then $\rho^0 \to \pi^- + \pi^+$
- C_{xψρ} longitudinal dominates the transverse one, and can be determined as soon as the absolute mass spectra are known.

- Breit-Wigner Method:
 - $J/\psi\pi^{\pm}$ invariant mass distribution can be (well) explained!
 - First step: approximate estimate for f_0 and σ_0
- $\pi\pi$ rescattering (via Omnes method):
 - Number of fitting couplings is reduced (only 3)
 - Implemented mechanism $\mathrm{I} \to \pi\pi$ rescattering in the S-channel

		Conclusions •
Preliminary Conclusions		

- Simple Breit-Wigner method explain the dynamics of the decay:
- Meaning that $X o
 ho^0 + J/\psi$, then $ho^0 o \pi^- + \pi^+$
- C_{xψρ} longitudinal dominates the transverse one, and can be determined as soon as the absolute mass spectra are known.

Y(4260)

Breit-Wigner Method:

- $J/\psi\pi^{\pm}$ invariant mass distribution can be (well) explained!
- First step: approximate estimate for f_0 and σ_0
- $\pi\pi$ rescattering (via Omnes method):
 - Number of fitting couplings is reduced (only 3)
 - ${\scriptstyle \bullet }$ Implemented mechanism ${\rm I} \rightarrow \pi \pi$ rescattering in the S-channel

		Conclusions •
Preliminary Conclusions		

- Simple Breit-Wigner method explain the dynamics of the decay:
- Meaning that $X \to \rho^0 + J/\psi$, then $\rho^0 \to \pi^- + \pi^+$
- C_{xψρ} longitudinal dominates the transverse one, and can be determined as soon as the absolute mass spectra are known.

- Breit-Wigner Method:
 - $J/\psi\pi^{\pm}$ invariant mass distribution can be (well) explained!
 - First step: approximate estimate for f_0 and σ_0
- $\pi\pi$ rescattering (via Omnes method):
 - Number of fitting couplings is reduced (only 3)
 - ullet Implemented mechanism ${
 m I} o \pi\pi$ rescattering in the S-channel

		Conclusions •
Preliminary Conclusions		

- Simple Breit-Wigner method explain the dynamics of the decay:
- Meaning that $X o
 ho^0 + J/\psi$, then $ho^0 o \pi^- + \pi^+$
- C_{xψρ} longitudinal dominates the transverse one, and can be determined as soon as the absolute mass spectra are known.

- Breit-Wigner Method:
 - $J/\psi\pi^{\pm}$ invariant mass distribution can be (well) explained!
 - ${\scriptstyle \bullet}\,$ First step: approximate estimate for ${\it f}_{\rm 0}$ and ${\it \sigma}_{\rm 0}$
- $\pi\pi$ rescattering (via Omnes method):
 - Number of fitting couplings is reduced (only 3)
 - Implemented mechanism I $ightarrow \pi\pi$ rescattering in the S-channel

		Conclusions •
Preliminary Conclusions		

- Simple Breit-Wigner method explain the dynamics of the decay:
- Meaning that $X o
 ho^0 + J/\psi$, then $ho^0 o \pi^- + \pi^+$
- C_{xψρ} longitudinal dominates the transverse one, and can be determined as soon as the absolute mass spectra are known.

- Breit-Wigner Method:
 - $J/\psi\pi^{\pm}$ invariant mass distribution can be (well) explained!
 - ${\scriptstyle \bullet }$ First step: approximate estimate for ${\it f}_{\rm 0}$ and ${\it \sigma}_{\rm 0}$
- $\pi\pi$ rescattering (via Omnes method):
 - Number of fitting couplings is reduced (only 3)
 - Implemented mechanism $\mathrm{I} \rightarrow \pi\pi$ rescattering in the S-channel

		Conclusions •
Preliminary Conclusions		

- Simple Breit-Wigner method explain the dynamics of the decay:
- Meaning that $X o
 ho^0 + J/\psi$, then $ho^0 o \pi^- + \pi^+$
- C_{xψρ} longitudinal dominates the transverse one, and can be determined as soon as the absolute mass spectra are known.

- Breit-Wigner Method:
 - $J/\psi\pi^{\pm}$ invariant mass distribution can be (well) explained!
 - ${\scriptstyle \bullet }$ First step: approximate estimate for ${\it f}_{\rm 0}$ and ${\it \sigma}_{\rm 0}$
- $\pi\pi$ rescattering (via Omnes method):
 - Number of fitting couplings is reduced (only 3)
 - Implemented mechanism ${
 m I} o \pi\pi$ rescattering in the S-channel

		Conclusions •
Preliminary Conclusions		

- Simple Breit-Wigner method explain the dynamics of the decay:
- Meaning that $X \to \rho^0 + J/\psi$, then $\rho^0 \to \pi^- + \pi^+$
- C_{xψρ} longitudinal dominates the transverse one, and can be determined as soon as the absolute mass spectra are known.

- Breit-Wigner Method:
 - $J/\psi\pi^{\pm}$ invariant mass distribution can be (well) explained!
 - ${\scriptstyle \bullet }$ First step: approximate estimate for ${\it f}_{\rm 0}$ and ${\it \sigma}_{\rm 0}$
- $\pi\pi$ rescattering (via Omnes method):
 - Number of fitting couplings is reduced (only 3)
 - ${\, \bullet \,}$ Implemented mechanism $I \to \pi \pi$ rescattering in the S-channel

Thank you for listening!

