MITP workshop "High precision fundamental constants...", March 2014

Determination of the top-quark mass using jet rates at the LHC

Peter Uwer (HU Berlin)

In cooperation with Simone Alioli, Patricia Fernandez, Juan Fuster, Adrian Irles, Sven Moch, Marcel Vos

GK1504

Deutsche Forschungsgemeinschaft DFG

Outline

- 1. Introduction
- Determining the top-quark mass from jet rates
- 3. Conclusion

We don't see free quarks

 \rightarrow top-quark mass itself is not an observable, mass is *just* a parameter of the underlying theory

Precise value depends on the definition / renormalization scheme (i.e. pole mass, MS mass)

 Determine / fit parameter from comparison of theoretical predictions and measurements

To fix the renormalization scheme at least a NLO calculation is required, at least in theory...

Checklist:

 \Box Observable should show good sensitivity to m

 $\frac{\Delta O}{O} \leftrightarrow \frac{\Delta m_t}{m_t}$

Observable must be theoretically calculable

Theory uncertainties should be small

small perturbative and non-perturbative corrections

Method should employ well defined mass scheme

Use tī+1-jet events

- \rightarrow Large event rates (~30 % of inclusive tt events)
- \rightarrow NLO corrections available
- \rightarrow NLO+shower available

[Dittmaier, PU, Weinzierl ´07,´08, Melnikov, Schulze '10, Melnikov, Scharf, Schulze ´12] [Alioli, Moch, PU ´11, Kardos, Papadopoulos, Trocsanyi '11]

Additional top-quark mass sensitivity compared to inclusive tt due to gluon radiation from top-quarks

Similar to b-quark mass measurement at LEP using 3-jet rates [Bilenky, Fuster, Rodrigo, Santarmaria '95]

tt + 1-Jet production in NLO QCD

$t\bar{t}$ + 1-Jet production in NLO QCD

	$\sigma_{t\bar{t}jet}[pb]$ [Dittmai Weinzie		er, PU, rl ´07,´08]
p _{T,jet,cut} [GeV]	LO	NLO	
20	$710.8(8)^{+358}_{-221}$	$692(3) -40 \\ -62$	-3%
50	$326.6(4)^{+168}_{-103}$	$376.2(6)^{+17}_{-48}$	+15%
100	$146.7(2)^{+77}_{-47}$	$175.0(2)^{+10}_{-24}$	+20%
200	$46.67(6)^{+26}_{-15}$	$52.81(8)^{+0.8}_{-6.7}$	+13%

xy.z (integ. err.) shift towards $\mu = m_t/2$ shift towards $\mu = 2m_t$

Inclusive tt + 1-Jet production has similar mass sensitivity as total cross section, i.e. $\frac{\Delta\sigma}{\sigma} \approx 5 \frac{\Delta m_t}{m_t}$

Top-quark mass from jet rates

[S. Alioli, P.Fernandez, J.Fuster, A. Irles, S. Moch, PU, M. Vos '13]

To enhance mass sensitivity study:

$$\mathcal{R}(m_{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1\text{Jet}}} \frac{d\sigma_{t\bar{t}+1\text{Jet}}}{d\rho_s}(m_{\text{pole}})$$

with $\rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}+1\text{Jet}}}}, \quad m_0 = O(m)$
i.e. $m_0 = 170 \text{ GeV}$

 ρ_s similar to $\rho = \frac{4m_t^2}{s}$ used in incl. $t\bar{t}$ production

many uncertainties cancel in ratio

Mass dependence – mass sensitivity

Mass sensitivity

Higher order corrections

[S. Alioli, P.Fernandez, J.Fuster, A. Irles, S. Moch, PU, M. Vos '13]

PDF and scale uncertainties

Scale and PDF uncertainties – impact on m_t

[S. Alioli, P.Fernandez, J.Fuster, A. Irles, S. Moch, PU, M. Vos 13]

Comparison of different approximations

Impact of color reconnection

Color reconnection – impact on m_t

Very conservative estimate, in practice expect smaller effect

Estimate of uncertainties

[S. Alioli, P.Fernandez, J.Fuster, A. Irles, S. Moch, PU, M. Vos '13] Dominant uncertainties:

PDF uncertainty: ~0.2 GeV
Scale uncertainty: ~0.6 GeV
Color reconnect.: ~0.4 GeV
JES (+/- 3%): ~0.8 GeV

Mass independent unfolding possible

\rightarrow Promising alternative

ATLAS analysis is underway

Checklist:

\checkmark Observable should show good sensitivity to m

 $\frac{\Delta O}{O} \leftrightarrow \frac{\Delta m_t}{m_t}$

Observable must be theoretically calculable

Theory uncertainties should be small

small perturbative and non-perturbative corrections

Method should employ well defined mass scheme

Conclusion

- Method very stable with respect to perturbative
 Corrections (small NLO corrections, small scale uncertainties, different approximations agree well)
- No large uncertainties due to color reconnections
- Many uncertainties cancel due to normalization
- Different renormalization scheme in principle possible
- High sensitivity to top-quark mass

\rightarrow Systematic accuracy of 1GeV or even below seems possible