Variable Flavor Number Scheme (VFNS) for Final State Jets

André H. Hoang

University of Vienna

MITP High Precision WS, March 20, 2014

Motivation

• Heavy quark masses: $\mathcal{L}_{\text{classic}} = -\frac{1}{4}F^A_{\alpha\beta}F^{\alpha\beta}_A + \sum_{\text{flavors }q} \bar{q}_{\alpha}(iD - m_q)_{\alpha\beta}q_b$

Fields, couplings, masses in classic action are bare quantities that need to be renormalized to have (any) physical relevance

$$+ \underbrace{\boldsymbol{\Sigma}, \boldsymbol{\Sigma}}_{\boldsymbol{\Sigma}, \boldsymbol{\Sigma}} = \not p - m^0 + \Sigma(p, m^0)$$

Monte-Carlo Mass

- Most versatile and flexible tool
- Can be applied for any observable
- Mass scheme unclear
- BUT: short-distance mass with scale $R=\Lambda_{cut}$

Motivation

→ Cancellation of IR sensitivity in self energy and interaction between quarks.

$$\mathbf{O}_{\mathbf{p}} = C(\mu) \cdot (\psi_{\mathbf{p}}^{\dagger} \,\boldsymbol{\sigma} \, \tilde{\chi}_{-\mathbf{p}}^{*}) + \cdots \qquad t\bar{t} \, (^{3}S_{1})$$

$$\sigma_{\text{tot}} \propto \operatorname{Im} \left[\int d^{4}x \, e^{-i\hat{q}x} \left\langle 0 \, \middle| \, \mathrm{T} \, \mathbf{O}_{\mathbf{p}}^{\dagger}(0) \, \mathbf{O}_{\mathbf{p}'}(x) \middle| \, 0 \right\rangle \right]$$

$$\propto \operatorname{Im} \left[\mathrm{C}(\mu)^{2} \, \mathrm{G}(0, 0, \sqrt{s}) \right]$$

Total ttbar Cross Section (ILC)

Status of NNLL (QCD) predictions:

- All NNLL QCD effects known since 2000 except for NNLL RG-evolution of leading Swave production current Wilson coefficient c₁.
- Non-mixing NNLL corrections to anom.dim. known since 2006 (apparently only computable in vNRQCD Hoang (2006)
- Mixing usoft NNLL corrections to anom.dim. since 2011

Hoang, Stahlhofen (2007,2011) Pineda (2011)

Non-mixing: from UV-div's of 3loop vertex corrections

Total ttbar Cross Section (ILC)

Status of NNLL (QCD) predictions:

- All NNLL QCD effects known since 2000 except for NNLL RG-evolution of leading Swave production current Wilson coefficient c₁.
- Non-mixing NNLL corrections to anom.dim. known since 2006 (apparently only computable in vNRQCD Hoang (2006)
- Mixing usoft NNLL corrections to anom.dim. since 2011

Hoang, Stahlhofen (2007,2011) Pineda (2011) [pNRQCD]

Status of NNLL (QCD) predictions:

- Uncertainty in NNLL evolution due to missing soft mixing corrections small
- Evolution of c₁ stable
- Huge cancellations between mixing and non-mixing corrections
- Non-mixing corrections contain logs from NNNNLO fixed order !!

Motivation

$$B_{+}(2v_{+}\cdot k) = \frac{-1}{8\pi N_{c}m} \operatorname{Disc} \int d^{4}x \, e^{ik\cdot x} \left\langle 0 | \mathrm{T}\{\bar{h}_{v_{+}}(0)W_{n}(0)W_{n}^{\dagger}(x)h_{v_{+}}(x)\} | 0 \right\rangle$$

Motivation / Status for Top

- NNLO_{full} to be published soon
- Generalization to LHC: w.i.p.

Pathak, Pietrulewicz, Stewart, AH Mantry, Pathak,, Stewart, AH

Prelude

This talk: \rightarrow Role of massive quarks (m_q > Λ_{QCD} , for all cases)

- \rightarrow Full systematics of massive quarks in jets
- $\rightarrow\,$ Account for mass-dependent and ALL OTHER logarithms
- $\rightarrow\,$ Can we "measure" the MC mass?

Outline

- <u>Plain fixed-order vs. RG-improved</u>: R-ratio for massless quarks
- R-ratio with a massive quark \rightarrow <u>CWZ (VFN) scheme for α_s </u>
- <u>ACOT (VFN) scheme</u> for parton distribution functions (initial state jets)
- VFN scheme for final state jets:

Simplest non-trivial case:

- Massless primary
- Massive secondary
- e⁺e⁻
- Outlook and Conclusions

CWZ: Collins - Wilczek - Zee ACOT: Aivazis - Collins - Olness - Tung

* In collaboration with: P. Pietrulewicz, I. Jemos, S. Gritschacher

arXiv:1302.4743 (PRD 88, 034021 (2013)) arXiv:1309.6251 (PRD 89, 014035 (2013)) More papers to come

Fixed-Order vs. RGI

R-ratio for massless quarks: \rightarrow valid up to term O(m²_{light}/s) $R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} \sim \text{Im} \left| -i \int dx \, e^{ix \cdot q} \left\langle 0 \left| T j^{\mu}(x) j_{\mu}(0) \right| 0 \right\rangle \right|$ \rightarrow vector current conserved: not renormalized \rightarrow UV divergences only related to strong coupling + field renorm. \rightarrow MSbar result for any scale μ_n $= N_c \sum_{n=1}^{\infty} e_q^2 \left\{ 1 + \frac{\alpha_s(\mu_0)}{\pi} + \frac{\alpha_s^2(\mu_0)}{\pi^2} \left[f_3 - \frac{\beta_0}{4} \ln\left(\frac{s}{\mu_0^2}\right) \right] + \dots \right\}$ m_{heavy} $\frac{d\alpha_s(\mu)}{d\ln\mu^2} = -\beta_0 \frac{\alpha_s^2(\mu)}{(4\pi)} + \dots \qquad \rightarrow \text{ no large logarithms for } \mu_0 \sim \sqrt{s}$ $\beta_0 = 11 - \frac{2}{3}n_{\text{light}} \qquad \rightarrow \sqrt{s} \text{ characteristic scale}$ $= N_c \sum e_q^2 \left\{ 1 + \frac{\alpha_s(\sqrt{s})}{\pi} + \frac{\alpha_s^2(\sqrt{s})}{\pi^2} f_3 + \dots \right\}$ √s \rightarrow Same calculation applies also if there is an ultramassive quark with $m_{heavy} \gg \sqrt{s}$ (up to terms O(s/m²_{heavy}) \rightarrow Decoupling of very heavy degrees of freedom m_{light}

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- \rightarrow no hierarchy between m and \sqrt{s}
- \rightarrow approximations m $\ll \sqrt{s}$ or m $\gg \sqrt{s}$ not applicable
- \rightarrow full mass-dependent matrix elements and phase space
- \rightarrow renormalization scheme for the massive quark

Virtual quarks:

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- \rightarrow no hierarchy between m and \sqrt{s}
- \rightarrow approximations m $\ll \sqrt{s}$ or m $\gg \sqrt{s}$ not applicable
- \rightarrow full mass-dependent matrix elements and phase space
- \rightarrow renormalization scheme for the massive quark

Virtual quarks:

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- \rightarrow no hierarchy between m and \sqrt{s}
- \rightarrow approximations m $\ll \sqrt{s}$ or m $\gg \sqrt{s}$ not applicable
- \rightarrow full mass-dependent matrix elements and phase space
- \rightarrow renormalization scheme for the massive quark

Virtual quarks:

- \rightarrow Choice 1 and choice 2 are equally good for μ ~ \sqrt{s} ~ m
- \rightarrow Scheme relation for the strong coupling:

$$\alpha_s^{(n_l)}(\mu) = \alpha_s^{(n_l+1)}(\mu) \left(1 + \frac{T_f \alpha_s^{(n_l+1)}(\mu)}{3\pi} \ln \frac{m^2}{\mu^2} + \dots \right)$$

 $→ \underline{Variable \ flavor \ number \ scheme:} \ Choice \ 1 \ for \ \mu \sim \sqrt{s} \ \gtrsim m \\ (VFN) \ Choice \ 2 \ for \ \mu \sim \sqrt{s} \ \lesssim m \\ Swap \ 1↔2 \ at \ \sqrt{s} \sim \mu_m \sim m$

- $\begin{array}{c|c} & & & \\$
- \rightarrow Full m²/s dependence without approximations and w.o. any large logarithms

Collins - Wilczek - Zee (CWZ) scheme

 \rightarrow comes at the cost of additional μ_m -dependence

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- \rightarrow no hierarchy between m and \sqrt{s}
- \rightarrow approximations m $\ll \sqrt{s}$ or m $\gg \sqrt{s}$ not applicable
- \rightarrow full mass-dependent matrix elements and phase space
- \rightarrow renormalization scheme for the massive quark

Virtual quarks:

 \rightarrow <u>Zero-Mass Variable flavor number</u>: (ZM-VFN)

Use $\alpha_s^{(n_l+1)}(\mu)$ for $\mu \sim \sqrt{s} \gtrsim m \oplus$ massive quark treated massless Use $\alpha_s^{(n_l)}(\mu)$ for $\mu \sim \sqrt{s} \lesssim m \oplus$ massive quark decoupled

- \rightarrow Very simple implementation (in lack of full information)
- \rightarrow Gap in the description for μ ~ $\sqrt{s}~$ ~ m
- \rightarrow Useful as long as kinematic region \sqrt{s} ~ m not crucial

ACOT Scheme for Hadron Collisions

 $Q^2 = -q^2$

e.g. Deep Inelastic Scattering:

$$\frac{d\sigma(e^-p \to e^- + X)}{dQ \, dx}$$

- \rightarrow consider all quarks as as light (m_q < Λ)
- \rightarrow quark number operators with an anomalous dimension between proton states $\rightarrow\,$ DGLAP equations
- \rightarrow Hadronic tensor:

$$W_{\mu\nu}(Q,x) \sim \sum_{\text{partons a}} f_a(\mu) \otimes w_{\mu\nu}(Q,x,\mu)$$

 \rightarrow µ-dependence with DGLAP equations for (light) parton distribution functions

$$\frac{\partial}{\partial \ln Q^2} \begin{pmatrix} q_i(x, Q^2) \\ g(x, Q^2) \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \sum_j \int_x^1 \frac{\mathrm{d}\xi}{\xi} \\ \times \begin{pmatrix} P_{q_i q_j} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) & P_{q_i g} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) \\ P_{g q_j} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) & P_{g g} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) \end{pmatrix} \begin{pmatrix} q_j(\xi, Q^2) \\ g(\xi, Q^2) \end{pmatrix},$$
(11)

$$\frac{d\alpha_s(Q)}{d\ln Q^2} = -\beta_0 \frac{\alpha_s^2(Q)}{(4\pi)} + \dots \qquad \beta_0 = 11 - \frac{2}{3}n_{\text{light}}$$

Q

Λ

m_{light}

ACOT Scheme for Hadron Collisions

 $\frac{d\sigma(e^-p \to e^- + X)}{dQ \, dx}$

- e.g. Deep Inelastic Scattering:
 - → realistic case: massive quarks with Q > m > Λ (charm, bottom [top])
 - \rightarrow Hadronic tensor:

$$W_{\mu\nu}(m,Q,x) \sim \sum_{a=q,g,Q} f_a^{(n_l+1)}(\mu) \otimes w_{\mu\nu}(m,Q,x,\mu) \bigvee_{P} f_a^{(n_l+1)}(\mu) \otimes w_{\mu\nu}(\mu) \otimes$$

ACOT scheme:

- DGLAP evolution for n_1 flavors for $\mu \leq m$ (only light quarks)
- DGLAP evolution for n_i +1 flavors for $\mu \ge m$ (light quarks + massive quark)
- Flavor matching for α_s and the pdfs at $\mu_m \sim m$

$$f_{q,g,Q}^{(n_l+1)}(\mu_m) = \sum_{a=q,g} F_{q,g,Q|a}(m,\mu_m) \otimes f_a^{(n_l)}(\mu_m)$$

- \rightarrow hard coefficient $w_{\mu\nu}(m,Q,x)$ approaches massless $w_{\mu\nu}(Q,x)$ for $m{\rightarrow}0$
- \rightarrow calculations of $w_{\mu\nu}(m,Q,x)$ involves subtraction of pdf IR mass singularities
- \rightarrow full dependence on m/Q without any large logarithms

Q

m

Λ

m_{light}

Final State Jets in SCET₁

Final State Jets in SCET₁

 \rightarrow consider: dijet in e⁺e⁻ annihilation, all quarks are light (m_q < Λ)

e.g. Thrust:

$$T = \max_{i} \frac{\sum_{i} |\hat{\mathbf{t}} \cdot \vec{p}_{i}|}{\sum_{i} |\vec{p}_{i}|} \quad \tau = 1 - T$$
ALEPH, DELPHI, L3, OPAL, SLD
$$\frac{1}{\sigma} \frac{d\sigma}{d\tau} \frac{20}{15} \int_{0}^{1} \frac{peak}{2 \text{ jets + soft radiation}} \quad \tau = 0$$

$$\int_{0}^{1} \frac{\tau}{\sigma} \frac{d\sigma}{d\tau} \frac{2}{15} \int_{0}^{1} \frac{peak}{\sigma} \frac{2}{15} \int_{0}^{1} \frac{1}{\sigma} \frac{peak}{2 \text{ jets + soft radiation}} \quad \tau = 0.5$$

$$\int_{0}^{1} \frac{d\sigma}{\sigma} \frac{d\sigma}{\sigma} \frac{d\sigma}{\sigma} - \frac{2}{\sigma_{0}} H_{0}(Q, \mu) \int d\ell J_{0}(Q\ell, \mu) S_{0}(Q\tau - \ell, \mu)}{\int d\ell J_{0}(Q\ell, \mu) S_{0}(Q\tau - \ell, \mu)}$$
Schwartz
Fleming, AH, Mantry, Stewart
Bauer, Fleming, Lee, Sterman

Final State Jets in SCET₁

- \rightarrow consider: dijet in e⁺e⁻ annihilation, n_l light quarks \oplus one massive quark
- \rightarrow obvious: (n₁+1)-evolution for $\mu \gtrsim m$ and (n₁)-evolution for $\mu \leq m$
- \rightarrow obvious: different EFT scenarios w.r. to mass vs. Q J S scales

 $\mu_H \sim Q$ Q $\mu_J \sim Q \sqrt{\tau}$ $n_l + 1$ m $\mu_S \sim Q \tau$ n_l $Q\Lambda_{QCD}$ τ Λ_{QCD} 0.1 0.3 0.0 0.2 0.4 05

"profile functions"

- \rightarrow Deal with collinear and soft "mass modes"
- ightarrow Additional power counting parameter $\lambda_m = m/Q$

mode	${\pmb ho}^\mu = (+,-,\perp)$	p ²
<i>n</i> -coll MM	$Q(\lambda_m^2, 1, \lambda_m)$	m^2
soft MM	$Q(\lambda_m, \lambda_m, \lambda_m)$	m^2

Aims:

- Full mass dependence (little room for any strong hierarchies): decoupling, massless limit
- Smooth connections between different EFTs
- Determination of flavor matching for current-, jet- and soft-evolution
- Reconcile problem of SCET₂-type rapidity divergences

uark Gritschacher, AH, Jemos, Pietrulewicz

Simplest non-trivial case to study:

→ massless primary quark dijet production in e^+e^- annihilation: n_l light quarks \oplus one massive quark arise only through secondary production

- → does not lead to bHQET-type theory when the jet scale approaches the quark mass
- \rightarrow only SCET-type theories

Simplest non-trivial case to study:

→ massless primary quark dijet production in e^+e^- annihilation: n_l light quarks \oplus one massive quark arise only through secondary production

- → field theory: close relation to the problem of massive gauge boson radiation
- → dispersion relation: massive quark results can be obtained directly from massive gluon calculations when quark pair treated inclusively (e.g. hard coefficient, jet function)

$$\underbrace{\overset{q}{\longrightarrow}}_{\text{cocc}} \bigoplus \underbrace{\overset{\mathbf{m}}{\longrightarrow}}_{4m^2} \underbrace{\overset{q}{\longrightarrow}}_{M^2} \underbrace{\overset{dM^2}{M^2}}_{\mathbf{M}} (\underbrace{\overset{q}{\longrightarrow}}_{\mathbf{M}}) \times \operatorname{Im} [\underbrace{\overset{q}{\longrightarrow}}_{\mathbf{M}} \underbrace{\overset{q}{\longrightarrow}}_{\mathbf{M}} \Big|_{q^2 \to M^2}$$

 \rightarrow separation of conceptual issues to be resolved and calculations issues related to gluon splitting.

<u>Scenario 1:</u> $\lambda_m > 1 > \lambda > \lambda^2$ (m > Q > J > S)

- EFT only contains light quarks
- Massive quark only in current matching coeff.
- Decoupling for $m/Q \rightarrow \infty$

ML = massless

<u>Scenario 2</u>: $1 > \lambda_m > \lambda > \lambda^2$ (Q > m > J > S)

- Massive modes only virtual
- Jet and soft function as in massless case
- Hard coefficient must have massless limit
- Known Sudakov problem for massive gauge boson

Chiu, Golf, Kelley, Manohar Chiu, Führer, Hoang, Kelley

Scenario 2: mass mode SCET calculation

$$\delta F_m^{\text{eff}}(Q, M, \mu) = \frac{\alpha_s C_F}{4\pi} \left\{ \ln\left(\frac{M^2}{\mu^2}\right) \left[2\ln\left(\frac{-Q^2}{\mu^2}\right) - \ln\left(\frac{M^2}{\mu^2}\right) - 3 \right] - \frac{5\pi^2}{6} + \frac{9}{2} \right\}$$

Chiu, Golf, Kelley, Manohar (2008) Chiu, Fuhrer, Hoang, Kelley, Manohar (2009)

large logarithm $\ln\left(\frac{M^2}{\mu_H^2}\right)$ cancels between C' and δF_m^{eff} correct massless limit for $C''(\mu_H)$:

$$\mathcal{C}^{\prime\prime}(Q, M, \mu_H) = \mathcal{C}^{\prime}(Q, M, \mu_H) - \delta \mathcal{F}_m^{\text{eff}}(Q, M, \mu_H) \xrightarrow{M \to 0} 2\mathcal{C}_0(Q, \mu_H)$$

<u>Scenario 3</u>: $1 > \lambda > \lambda_m > \lambda^2$ (Q > J > m > S)

- Current evolution unchanged w.r. to Scen. 2
- Hard coefficient must have massless limit
- Jet function must have massless limit
- Massive and massless collinear in same sector
- Collinear mass modes integrated out at m

ML = masslessMM = mass modeM = massive

ML = masslessMM = mass modeM = massive Continuity Scenario 2 ↔ Scenario 3: ("consistency condition") $\rightarrow J_{0+m}(s, \mu_J) \mathcal{M}_J(s, \mu_J) = J_0(s, \mu_J) \text{ (for } s < m^2)$

<u>Scenario 4</u>: $1 > \lambda > \lambda^2 > \lambda_m$ (Q > J > S > m)

- Current evolution unchanged w.r. to Scen. 2
- Jet function and evolution as in Scen. 2
- Massive and massless coll. modes same sector
- Massive and massless soft modes same sector
- Hard coefficient, jet and soft function must have massless limit
- All RG-evolution for (n₁+1) flavors

Important role of consistency relation: soft - jet - hard for scenario III

alternative description in bottom-up running ($\mu \sim \mu_H$):

$$\begin{split} \frac{d\sigma}{d\tau} &\sim \left|\mathcal{C}^{\prime\prime}(\mu_{H})\right|^{2} \int d\ell \int d\ell' \int d\ell'' \int ds \int ds' \\ &\times U_{J}^{(1)}(s-s',\mu_{J},\mu_{H}) J_{0}(s',\mu_{J}) U_{S}^{(1)}(\ell''-s/Q,\mu_{M},\mu_{H}) \\ &\times \mathcal{M}_{S}(\ell'-\ell'',\mu_{M}) U_{S}^{(0)}(\ell-\ell',\mu_{S},\mu_{M}) S_{0}\left(Q\tau-\ell,\mu_{S}\right) \end{split}$$

 $\mathcal{M}_{\mathcal{S}}(\ell,\mu_{\mathcal{M}}) = \delta(\ell) + \delta S^{\mathrm{virt}}_{m}(\ell,\mu_{\mathcal{M}})$

consistency relation: $\mathcal{M}_{\mathcal{S}}(\ell, \mu_{\mathcal{M}}) = Q |\mathcal{M}_{\mathcal{H}}(\mu_{\mathcal{M}})|^2 \mathcal{M}_{\mathcal{J}}(Q\ell, \mu_{\mathcal{M}})$

similarly:
$$U_{S}^{(1)}(\ell, \mu_{S}, \mu_{M}) = Q U_{H}^{(1)}(\mu_{M}, \mu_{S}) U_{J}^{(1)}(Q\ell, \mu_{M}, \mu_{S})$$

Numerical results: secondary bottom effects (Q=14 GeV)

Numerical results: secondary bottom effects (Q=35 GeV)

Numerical results: secondary top quark effects (Q=500 GeV)

- $Q = 500 \text{ GeV} \leftrightarrow \text{ILC}$
- comparison of ML (6 light q) and M (5 light q + massive t) thrust distribution
- default values: $\alpha_s(M_z) = 0.118$, $m_t = 175 \text{ GeV}$

Consistency check: continuous transition and correct limiting behaviour

Thrust distribution: Q = 500 GeV, $\tau = 0.15 \text{ fixed}$, vary mass massless limit (6 flavors): dashed decoupling limit (5 flavors): dotted

Comparison with Zero-Mass VFN scheme:

Outlook & Conclusion

Conclusion:

→ VFN Scheme for final state jets

Upcoming:

- \rightarrow Upcoming:
 - \rightarrow Combination with ACOT scheme for PDFs (DIS)
 - \rightarrow beam functions
 - \rightarrow etc.
- → Conceptually important.
- \rightarrow Relevant issues where VFN scheme for jets is important:
 - \rightarrow (top) mass measurement from jets (reconstruction)
 - \rightarrow MC mass systematics (Is the MC a more model OR more QCD?
 - \rightarrow intrinsic charm and charm mass determinations (e.g. DIS)

Scenario 3: Jet function

diagram J_a individually not well-defined \rightarrow soft-bin subtractions are crucial!

 $\delta J_m \sim J_a - J_{a,0M} + J_b + J_c$

 $J_{0+m}(s, M, \mu) = J_0(s, \mu) + \delta J_m^{\text{virt}}(s, M, \mu) + \theta(s - M^2) \, \delta J_m^{\text{real}}(s, M)$

$$\mu^{2} \delta J_{m}^{\text{virt}}(\boldsymbol{s}, \boldsymbol{M}, \mu) = \frac{\alpha_{s} C_{F}}{4\pi} \left\{ \delta(\bar{\boldsymbol{s}}) \left[-4 \ln^{2} \left(\frac{M^{2}}{\mu^{2}} \right) - 6 \ln \left(\frac{M^{2}}{\mu^{2}} \right) + 9 - 2\pi^{2} \right] + 8 \ln \left(\frac{M^{2}}{\mu^{2}} \right) \left[\frac{\theta(\bar{\boldsymbol{s}})}{\bar{\boldsymbol{s}}} \right]_{+} \right\}$$
$$\delta J_{m}^{\text{real}}(\boldsymbol{s}, \boldsymbol{M}) = \frac{\alpha_{s} C_{F}}{4\pi} \left\{ \frac{2(M^{2} - \boldsymbol{s})(3\boldsymbol{s} + M^{2})}{s^{3}} + \frac{8}{s} \ln \left(\frac{\boldsymbol{s}}{M^{2}} \right) \right\}$$

→ δJ_m^{virt} = virtual radiation ($\bar{s} \equiv s/\mu^2$) → δJ_m^{real} = real radiation for $s > M^2$, continuous: $\delta J_m^{\text{real}}(s = M^2, M) = 0$ → correct massless limit: $J_{0+m}(s, M, \mu_J) \xrightarrow{M \to 0} 2J_0(s, \mu_J)$

Scenario 4: Soft function

rapidity divergences in S_a and S_b (not regularized by DIMREG) \rightarrow we use an analytic regulator $(\int dk^- \rightarrow \int dk^- \left(\frac{\nu}{k^-}\right)^{\alpha})$ Smirnov (1995) $\rightarrow S_a = 0, \ \delta S_m = S_b$

$$S_{0+m}(\ell, M, \mu) = S_0(\ell, \mu) + \delta S_m^{\text{virt}}(\ell, M, \mu) + \theta(\ell - M) \,\delta S_m^{\text{real}}(\ell, M)$$
$$\mu \,\delta S_m^{\text{virt}}(\ell, M, \mu) = \frac{\alpha_s C_F}{4\pi} \left\{ \delta(\bar{\ell}) \left[2 \ln^2 \left(\frac{M^2}{\mu^2} \right) + \frac{\pi^2}{3} \right] - 8 \ln \left(\frac{M^2}{\mu^2} \right) \left[\frac{\theta(\bar{\ell})}{\bar{\ell}} \right]_+ \right\}$$
$$\delta S_m^{\text{real}}(\ell, M) = \frac{\alpha_s C_F}{4\pi} \left\{ -\frac{8}{\ell} \ln \left(\frac{\ell^2}{M^2} \right) \right\}$$

 \rightarrow correct massless limit: $S_{0+m}(\ell, M, \mu_S) \xrightarrow{M \to 0} 2S_0(\ell, \mu_S)$

From massive gluons to secondary quarks:

