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Motivation 

•  Heavy quark masses: 

•  Monte-Carlo Mass 

 
 
 

Fields, couplings, masses in classic action are bare quantities that need 
to be renormalized to have (any) physical relevance 

+ 

•  Most versatile and flexible tool 
•  Can be applied for any observable 
•  Mass scheme unclear 
•  BUT: short-distance mass 

with scale R=Λcut 
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Motivation 
 

•  Total cross sections: 

   
 
 

ILC LHC 

•  totally inclusive (OPE)  
•  physically clean 
•  theoretically clean 
•  normalization dependent 

Q Q 
r → Cancellation of IR sensitivity in self energy and interaction  

 
 

between quarks. 
 
 

�(tt̄ + X) , d�/dpT , . . .



LCWS 2013, The University of Tokyo 

Total ttbar Cross Section (ILC) 
Status of NNLL (QCD) predictions:  

•  All NNLL QCD effects known since 2000 except for NNLL RG-evolution of leading S-
wave production current Wilson coefficient c1.  

•  Non-mixing NNLL corrections to anom.dim. known since 2006 (apparently only 
computable in vNRQCD                                                            

•  Mixing usoft NNLL corrections to anom.dim. since  2011 
Hoang (2006) 

Hoang, Stahlhofen (2007,2011) 
Pineda (2011) 

Non-mixing: from UV-div’s of 3-
loop vertex corrections 



LCWS 2013, The University of Tokyo 

Total ttbar Cross Section (ILC) 
Status of NNLL (QCD) predictions:  

•  All NNLL QCD effects known since 2000 except for NNLL RG-evolution of leading S-
wave production current Wilson coefficient c1.  

•  Non-mixing NNLL corrections to anom.dim. known since 2006 (apparently only 
computable in vNRQCD                                                            

•  Mixing usoft NNLL corrections to anom.dim. since  2011 
Hoang (2006) 

Hoang, Stahlhofen (2007,2011) 
Pineda (2011) [pNRQCD] 

Mixing: 2-loop anom. dim.’s of 
coefficients in NLL anom.dim. of c1.  

Known soft corrections (spin-
dependent) tiny. 
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Total ttbar Cross Section (ILC) 
Status of NNLL (QCD) predictions: 

 
•  Uncertainty in NNLL evolution due to missing soft mixing corrections small 
•  Evolution of c1 stable 
•  Huge cancellations between mixing and non-mixing corrections 
•  Non-mixing corrections contain logs from NNNNLO fixed order !! 

Hoang, Stahlhofen (2013) 
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Motivation 

•  Jet cross sections with massive quarks: 

  
 
 
 

•  invariant mass distribution  
•  event shapes 
•  jettiness 
•  end-point reconstruction 

→ mass reconstruction for a   
 
 

single quark  
 
 

→ color neutralization (collinear): jet functions 
 
 
→ color neutralization (soft):        soft functions 
 
 

Fleming, Mantry, Stewart, AH (2008) 



MITP High Precision WS, March 20, 2014 

Motivation / Status for Top 

•  Top invariant mass distribution for e+e- : 

  
 
 
 

Fleming, Mantry, Stewart, AH (2008) 

•  Top peak region for hemisphere jets 
•  Full NLO calculation (+summation at NNLL) 
•  Jet mass definition  mJ(R=Γt) 
•  Relation to the MSbar mass 
•  Two-Loop B-jet function 
•  Two-loop soft function 

Mpeak = mt + �t(↵s + ↵2
s + . . .) +

PT

mt
(↵s + ↵2

s + . . .) +
PT

mt
⌦1 +O(

mt⇤QCD

PT
)

Control of scheme dependence 
 
 

Contr. of scheme dependence 
 
 

•  NNLOfull to be published soon 
•  Generalization to LHC: w.i.p. 

Pathak, Pietrulewicz, Stewart, AH 
Mantry, Pathak,, Stewart, AH 

Jain, Scimemi, Stewart 
AH, Stewart 

Schwartz etal, 
Gritschacher etal., 
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Prelude 
This talk: →  Role of massive quarks (mq > ΛQCD, for all cases) 

 
 

� ⇠ H ⇥ J ⌦ S ⌦ ⇤

Q 
 
 J 
 
 S 
 
  
 
 

Λ 
 
 

observable 
dependent 

 
 

→  Full systematics of massive quarks in jets  
 
 
→  Account for mass-dependent and ALL OTHER logarithms 
 

“profile functions” 
 
 

m 
 
 

→  Can we “measure” the MC mass? 
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Outline 

•  Plain fixed-order vs. RG-improved: R-ratio for massless quarks  

•  R-ratio with a massive quark   → CWZ (VFN) scheme for αs   

•  ACOT (VFN) scheme for parton distribution functions            

(initial state jets) 

•  VFN scheme for final state jets: 

•  Outlook and Conclusions 

* In collaboration with: P. Pietrulewicz, I. Jemos, S. Gritschacher 

 
 
 

arXiv:1302.4743  (PRD 88, 034021 (2013)) 
arXiv:1309.6251  (PRD 89, 014035 (2013)) 

CWZ: Collins - Wilczek - Zee 
 
 
ACOT: Aivazis - Collins - Olness - Tung 
 
  

More papers to come 

Simplest non-trivial case:  
 
 
•  Massless primary 
•  Massive secondary 
•  e+e- 

m

m

p p

p
′

p
′
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Fixed-Order vs. RGI 
R-ratio for massless quarks:  

→ Same calculation applies also if there is an 

R =

�(e+e� ! hadrons)

�(e+e� ! µ+µ�)

= Nc

X

q

e2
q

⇢
1 +

↵s(µ0)
⇡

+
↵2

s(µ0)
⇡2

h
f3 �

�0

4
ln

⇣ s

µ2
0

⌘ i
+ . . .

�

→ vector current conserved: not renormalized         
→ UV divergences only related to strong coupling + field renorm.  
→ MSbar result for any scale µ0  
 
 

= Nc

X

q

e2
q

⇢
1 +

↵s(
p

s)
⇡

+
↵2

s(
p

s)
⇡2

f3 + . . .

�

⇠ Im

� i

Z
dx e

ix.q

D
0
���Tj

µ(x)j
µ

(0)
���0

E �

→ no large logarithms for µ0
 ~ √s 

→ √s characteristic scale   
 
 √s 

 
 

 
 
 

mlight 
 
 

ultramassive quark with mheavy ≫ √s   (up to terms O(s/m2
heavy) 

mheavy 
 
 

→ Decoupling of very heavy degrees of freedom   

→ valid up to term O(m2
light/s) 

 
 

�0 = 11� 2
3
nlight

d↵s(µ)
d lnµ2

= ��0
↵2

s(µ)
(4⇡)

+ . . .
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R-ratio with a Massive Quark 

Virtual quarks: 

R =

�(e+e� ! hadrons)

�(e+e� ! µ+µ�)

→ no hierarchy between m and √s         
→ approximations m≪√s or m≫√s not applicable 
→ full mass-dependent matrix elements and phase space 
→ renormalization scheme for the massive quark 
 
 
 
 

√s 
 
 

 
 
 

mlight 
 
 

mheavy 
 
 

m 
 
 

= i(qµq⌫ � gµ⌫q2) ⇧(q2)

=
Tf↵s

⇡


1
3✏

� 2
Z 1

0
dxx(1� x) ln

m

2
2 � x(1� x)(q2 + i✏)

µ

2

�

Choice 1: 
 

→ MSbar for nlight quarks and massive quark 
→ strong coupling  
  
 

↵(nl+1)
s (µ) with �0 = 11� 2/3(nl + 1)

•  R calculation stable for m~√s but also for m≪√s (calculation 
smoothly approaches the massless result) 

•  R calculation with large logarithm for m≫√s  

R(s) = R(0) +
↵(nl+1)

s (s)
⇡

R(1) +
⇣↵(nl+1)

s (s)
⇡

⌘2 h
R(2) +

TfR(1)

3
ln

m2

s

i
+ . . .
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R-ratio with a Massive Quark 

Virtual quarks: 

R =

�(e+e� ! hadrons)

�(e+e� ! µ+µ�)

→ no hierarchy between m and √s         
→ approximations m≪√s or m≫√s not applicable 
→ full mass-dependent matrix elements and phase space 
→ renormalization scheme for the massive quark 
 
 
 
 

√s 
 
 

 
 
 

mlight 
 
 

mheavy 
 
 

m 
 
 

= i(qµq⌫ � gµ⌫q2) ⇧(q2)

=
Tf↵s

⇡


1
3✏

� 2
Z 1

0
dxx(1� x) ln

m

2
2 � x(1� x)(q2 + i✏)

µ

2

�

Choice 2: 
 

→ MSbar for nlight quarks, on-shell for massive quark  (subtract          )    
→ strong coupling  
  
 

•  R calculation stable for m~√s but also for m≫√s  
•   (calculation smoothly approaches the decoupling result) 
•  R calculation with large logarithm for m≪√s  

⇧(0)
↵(nl)

s (µ) with �0 = 11� 2/3nl

R(s) = R(0) +
↵(nl+1)

s (s)
⇡

R(1) +
⇣↵(nl+1)

s (s)
⇡

⌘2 h
R̃(2) � TfR(1)

3
ln

m2

s

i
+ . . .
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R-ratio with a Massive Quark 

Virtual quarks: 

R =

�(e+e� ! hadrons)

�(e+e� ! µ+µ�)

→ no hierarchy between m and √s         
→ approximations m≪√s or m≫√s not applicable 
→ full mass-dependent matrix elements and phase space 
→ renormalization scheme for the massive quark 
 
 
 
 

√s 
 
 

 
 
 

mlight 
 
 

mheavy 
 
 

m 
 
 

→ Choice 1 and choice 2 are equally good for µ ~ √s ~ m 
 → Scheme relation for the strong coupling: 
 

↵(nl)
s (µ) = ↵(nl+1)

s (µ)
⇣
1 +

Tf↵(nl+1)
s (µ)
3⇡

ln
m2

µ2
+ . . .

⌘

→ Variable flavor number scheme:  Choice 1 for µ ~ √s  ≳ m 
   
 

Choice 2 for µ ~ √s  ≲ m 
   
 
Swap 1↔2 at  √s ~ µm ~ m 
   
 

Collins - Wilczek - Zee (CWZ) scheme 
   
 

→ Full m2/s dependence without approximations and w.o. any large logarithms 
 

(VFN) 
 

→ comes at the cost of 
additional µm-dependence  
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R-ratio with a Massive Quark 

Virtual quarks: 

R =

�(e+e� ! hadrons)

�(e+e� ! µ+µ�)

→ no hierarchy between m and √s         
→ approximations m≪√s or m≫√s not applicable 
→ full mass-dependent matrix elements and phase space 
→ renormalization scheme for the massive quark 
 
 
 
 

√s 
 
 

 
 
 

mlight 
 
 

mheavy 
 
 

m 
 
 

→ Zero-Mass Variable flavor number:  (ZM-VFN) 
 Use                     for µ ~ √s  ≳ m  ⊕  massive quark treated massless  

   
 

→ Gap in the description for µ ~ √s  ~ m  
  

 
   
 

Use                  for µ ~ √s  ≲ m  ⊕  massive quark decoupled  
   
 

↵(nl)
s (µ)

↵(nl+1)
s (µ)

→ Useful as long as kinematic region √s  ~ m not crucial  
 

→ Very simple implementation (in lack of full information) 
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ACOT Scheme for Hadron Collisions 

e.g. Deep Inelastic Scattering: 

 
 
 

mlight 
 
 

Q 
 
 

Λ 
 
 

d�(e�p ! e

� + X)
dQ dx

→ quark number operators with an anomalous dimension  
 
 

between proton states  →  DGLAP equations 
 
 → Hadronic tensor: 

 
 

Q2 = �q2

Wµ⌫(Q, x) ⇠
X

partons a

fa(µ)⌦ wµ⌫(Q, x, µ)

→ µ-dependence with DGLAP equations for (light) parton distribution functions 
 
 

d↵s(Q)
d lnQ2

= ��0
↵2

s(Q)
(4⇡)

+ . . . �0 = 11� 2
3
nlight

→ consider all quarks as as light (mq < Λ)  
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ACOT Scheme for Hadron Collisions 

 
 
 

mlight 
 
 

Q 
 
 

m 
 
 

Λ 
 
 

e.g. Deep Inelastic Scattering: d�(e�p ! e

� + X)
dQ dx

→ realistic case: massive quarks with Q > m > Λ   
 
 

(charm, bottom [top])  
 
 

→ Hadronic tensor: 
 
 

ACOT scheme: 

•  DGLAP evolution for nl flavors for µ ≲ m (only light quarks)  
•  DGLAP evolution for nl+1 flavors for µ ≳ m (light quarks + massive quark) 
•  Flavor matching for αs and the pdfs at µm ~ m 

f (nl+1)
q,g,Q (µm) =

X

a=q,g

Fq,g,Q|a(m, µm)⌦ f (nl)
a (µm)

→ hard coefficient wµν(m,Q,x) approaches massless wµν(Q,x) for m→0 
→ calculations of wµν(m,Q,x) involves subtraction of pdf IR mass singularities 
→ full dependence on m/Q without any large logarithms 
 
 
 
 
 

Wµ⌫(m, Q, x) ⇠
X

a=q,g,Q

f

(nl+1)
a (µ)⌦ wµ⌫(m, Q, x, µ)
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Final State Jets in SCET1 

→ consider: dijet in e+e- annihilation, all quarks are light (mq < Λ)  
 
 

Bauer, Fleming, Luke 
 
 
Bauer, Fleming, Pirjol, 

Stewart 
 
 

p2 = p�p+ + p2
?

pµ = p�
nµ

2
+ p+ n̄µ

2
+ p?

n̄µ = (1, 0, 0,�1)nµ = (1, 0, 0, 1)
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Final State Jets in SCET1 

→ consider: dijet in e+e- annihilation, all quarks are light (mq < Λ)  
 
 e.g. Thrust: 

ALEPH, DELPHI, L3, OPAL, SLD 

peak 
2 jets + soft radiation 

tail 
2 jets, 3 jets 

� = 0

� = 0.5

Schwartz 
 
 
Fleming, AH, Mantry, Stewart 
 
 
Bauer, Fleming, Lee, Sterman 
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Final State Jets in SCET1 

→ evolution with nl light quark flavors 
→ consistency conditions w.r. to   
 
 
 
 
 

different evolution choices  
 
 
 
 
 

→ top-down evolution considered  
 
 
 
 
 

in the following 
 
 
 
 
 

observable-dependent 
profile functions 
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VFN Scheme for Final State Jets 
→ consider: dijet in e+e- annihilation, nl light quarks ⊕ one massive quark 
  
 

“profile functions” 
 
 

m 
 
 

•  Full mass dependence (little room for any 
strong hierarchies): decoupling, massless limit 

•  Smooth connections between different EFTs 
•  Determination of flavor matching for current-, 

jet- and soft-evolution 
•  Reconcile problem of SCET2-type rapidity 

divergences 

nl + 1

nl

→ obvious: (nl+1)-evolution for µ ≳ m  and (nl)-evolution for µ ≲ m  
 
 
 
 

Aims: 

→ obvious: different EFT scenarios w.r. to mass vs. Q – J – S scales 
 

→ Deal with collinear and soft “mass modes” 
 → Additional power counting parameter 
 

Gritschacher, AH, 
Jemos, Pietrulewicz 
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VFN Scheme for Final State Jets 
Simplest non-trivial case to study: 
→ massless primary quark dijet production in e+e- annihilation:  
 nl light quarks ⊕ one massive quark arise only through secondary production 

  
 

→ does not lead to bHQET-type theory when 
 the jet scale approaches the quark mass 

 → only SCET-type theories  
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VFN Scheme for Final State Jets 
Simplest non-trivial case to study: 
→ massless primary quark dijet production in e+e- annihilation:  
 nl light quarks ⊕ one massive quark arise only through secondary production 

  
 

→ field theory: close relation to the problem  
 of massive gauge boson radiation 

 
→ dispersion relation: massive quark results  
 can be obtained directly from massive gluon  

 calculations when quark pair treated inclusively  
 (e.g. hard coefficient, jet function) 
 

→ separation of conceptual issues to be resolved 
 and calculations issues related to gluon splitting. 
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VFN Scheme for Final State Jets 

Scenario 1: λm > 1 > λ > λ2   ( m > Q > J > S )  

•  EFT only contains light quarks 
•  Massive quark only in current matching coeff. 
•  Decoupling for m/Q → ∞ 
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VFN Scheme for Final State Jets 

U (0)
i stands for:

(a) massive gluon integrated out   
(b) (nl)-evolution   
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VFN Scheme for Final State Jets 

Scenario 2: 1> λm > λ > λ2   ( Q > m > J > S )  

•  Massive modes only virtual 
•  Jet and soft function as in massless case  
•  Hard coefficient must have massless limit 
•  Known Sudakov problem for massive gauge 

boson 

Chiu, Golf, Kelley, Manohar 
 
 
Chiu, Führer, Hoang, Kelley 
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VFN Scheme for Final State Jets 

U (0)
i stands for:

(a) massive gluon integrated out   
(b) (nl)-evolution   
 U (1)

i stands for:

(a) massive gluon dynamical   
(b) (nl+1)-evolution   
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VFN Scheme for Final State Jets 
Scenario 2: mass mode SCET calculation 
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VFN Scheme for Final State Jets 

Scenario 3: 1 > λ > λm > λ2   ( Q > J > m > S )  

•  Current evolution unchanged w.r. to Scen. 2 
•  Hard coefficient must have massless limit 
•  Jet function must have massless limit 
•  Massive and massless collinear in same sector  
•  Collinear mass modes integrated out at m 
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VFN Scheme for Final State Jets 



MITP High Precision WS, March 20, 2014 

VFN Scheme for Final State Jets 

Matching to full theory:  
 

Continuity Scenario 2 ↔ Scenario 3: (“consistency condition”)  
 

(for s < m2
)
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VFN Scheme for Final State Jets 

Scenario 4: 1 > λ > λ2 > λm ( Q > J > S > m )  

•  Current evolution unchanged w.r. to Scen. 2 
•  Jet function and evolution as in Scen. 2 
•  Massive and massless coll. modes same sector 
•  Massive and massless soft modes same sector 
•  Hard coefficient, jet and soft function must have 

massless limit 
•  All RG-evolution for (nl+1) flavors  
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VFN Scheme for Final State Jets 
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VFN Scheme for Final State Jets 

No matching correction:  
 

Continuity Scenario 3 ↔ Scenario 4: (“consistency condition”)  
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VFN Scheme for Final State Jets 
Important role of consistency relation:  soft – jet – hard for scenario III  
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VFN Scheme for Final State Jets 
Numerical results:  secondary bottom effects (Q=14 GeV)    
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VFN Scheme for Final State Jets 
Numerical results:  secondary bottom effects (Q=35 GeV)    
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VFN Scheme for Final State Jets 
Numerical results:  secondary top quark effects (Q=500 GeV)    
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VFN Scheme for Final State Jets 
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VFN Scheme for Final State Jets 
Comparison with Zero-Mass VFN scheme: 
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→  VFN Scheme for final state jets 

 

→  Upcoming: 

  

→  Conceptually important. 

→  Relevant issues where VFN scheme for jets is important: 

Outlook & Conclusion  
Conclusion: 

→ Combination with ACOT scheme for PDFs (DIS) 
→ beam functions 
→ etc. 
 

→ (top) mass measurement from jets (reconstruction) 
→ MC mass systematics (Is the MC a more model OR more QCD?  
→ intrinsic charm and charm mass determinations (e.g. DIS) 
 

m

m

p p

p
′

p
′

Upcoming: This talk: 

m

m

m

p p

p
′

p
′

m

m

p p

p
′

p
′

m
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VFN Scheme for Final State Jets 
Scenario 3: Jet function 
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VFN Scheme for Final State Jets 
Scenario 4: Soft function 
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VFN Scheme for Final State Jets 
From massive gluons to secondary quarks: 

→ dispersion relation: massive quark results  
 

(e.g. hard coefficient, jet function) 
 

can be obtained directly from massive gluon  
 calculations when quark pair treated inclusively  
 

→ explicit two-loop calculation needed when quarks  
 are treated exclusively 

(e.g. soft function  → hemisphere prescription) 
 

non-global 
logs 

 
Gritschacher, AH, Jemos, 
Pietrulewicz 
arXiv:1309.6251  
 
 


