Exact Top Mass Determinations and BSM Physics

Manfred Lindner

High precision fundamental constants at the TeV scale; March 10-21, 2014

Introduction

Physics Beyond the Standard Model must exist

```
- ...
```

- neutrino masses
- evidence for Dark Matter
- evidence for Dark Energy
- BAU (Baryon Asymmetry of the Universe)
- hierarchy problem
- But so far nothing seen

```
→ only SM Higgs: "nightmare scenario"
```

 \leftrightarrow a lot happened in the last 20 years: SM as gauge theory, W,Z,t, m_v

- Different ways to see (or guess) new physics:
 - new particles and interactions (see neutrinos, DM, ...)
 - indications from QFT effects: consistency, extrapolation, ... this talk

Look very careful at the SM as QFT

- The SM itself (without embedding) is a QFT like QED
 - infinities, renormalization → only differences are calculable
 - perfectly OK → many things unexplained...
- It has (like QED) a triviality problem (Landau poles)
 - running U(1) coupling (pole well beyond Planck scale...)
 - running Higgs / top coupling \rightarrow upper bounds on m_H and m_t
 - \rightarrow requires some scale Λ where the SM is embedded
 - **→** the physics of this scale is unknown
 - → does not hurt SM QFT-calculations @ 0,1,2,.. loops
- Another potential problem is vacuum instability (negative λ)
 - does occur in SM for large top mass > 79 GeV → lower bounds on m_H

SM as QFT: A hard cutoff and the sensitivity towards Λ has no meaning

←→ The SM (without an embedding) is a renormalizable QFT just like QED

Triviality and Vacuum Stability

The allowed Range + Experiment

$$m_{ ext{min}} = [126.3 + rac{m_t - 171.2}{2.1} imes 4.1 - rac{lpha_s - 0.1176}{0.002} imes 1.5] ext{ GeV}
onumber \ m_{ ext{max}} = [173.5 + rac{m_t - 171.2}{2.1} imes 1.1 - rac{lpha_s - 0.1176}{0.002} imes 0.3] ext{ GeV}$$

\rightarrow interesting experimental cases (for $\Lambda = M_{Planck}$):

- 1) m_H < ca. 126 GeV → instability → new physics (or disaster)
- 2) 126 GeV 135 GeV perfect: SM + MSSM range, ...
- 3) 135 GeV 157 GeV perfect: SM, non-minimal SUSY, ...
- 4) above 157 GeV BSM

→ Remarkable aspects:

- SM parameters ←→ quantum corrections over large scales
- we seem to be very precisely at the transition between 1) and 2)

A special Value of λ at M_{planck} ?

ML '86

downward flow of RG trajectories

- → IR QFP → random λ flows to $m_H > 150 \text{ GeV}$
- \rightarrow m_H \simeq 126 GeV flows to tiny values at M_{Planck}...

Holthausen, ML Lim (2011) Different conceivable special conditions:

- Vacuum stability $\lambda(M_{pl}) = 0$ [7–12]
- vanishing of the beta function of λ $\beta_{\lambda}(M_{pl}) = 0$ [9, 10]
- the Veltman condition [13–15] $Str \mathcal{M}^2 = 0$,

$$\delta m^{2} = \frac{\Lambda^{2}}{32\pi^{2}v^{2}} Str \mathcal{M}^{2}$$

$$= \frac{1}{32\pi^{2}} \left(\frac{9}{4}g_{2}^{2} + \frac{3}{4}g_{1}^{2} + 6\lambda - 6\lambda_{t}^{2} \right) \Lambda^{2}$$

• vanishing anomalous dimension of the Higgs mass parameter

$$\gamma_m(M_{pl}) = 0, \ m(M_{pl}) \neq 0$$

 m_H < 150 GeV → random λ = O(1) excluded

- Why do all these boundary conditions work?
 - suppression factors compared to random choice = O(1)
 - $-\lambda = F(\lambda, g_i^2, ...)$ loop factors $1/16\pi^2$
 - top loops → fermion loops → factors of (-1)
- \rightarrow any scenario which 'predicts' a suppressed (small/tiny) λ at M_{Planck} is OK
- \rightarrow more precision \rightarrow selects options; e.g. $\gamma_m = 0$ now ruled out

Is the Higgs Potential at M_{Planck} flat?

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia

Notes:

- remarkable relation between weak scale, m_t , couplings and $M_{Planck} \leftarrow \rightarrow$ precision
- strong cancellations between Higgs and top loops
 - \rightarrow very sensitive to exact value and error of $m_{H_s} m_{t_s} \alpha_s = 0.1184(7)$
- higher orders, other physics, ... Planck scale thresholds... Lalak, Lewicki, Olszewski,
 - **→** important: watch central values & errors

What if the SM were metastable?

- \rightarrow for large m_t the Higgs potential has two minima. If $m_t >$ stability bound
- EW (false, required, local, metastable)
- "true" (deeper, global minimum)

- 1st bubble of true vacuum in U grows (surface vs. volume)
- mechanisms producing a 1st bubble in the Universe: r~1/m_H
 - → random CR collission / tunneling
 - \rightarrow metastability (slightly negative λ) is OK (yellow region)
- do other (faster) mechanisms exist?
 - → maybe some intelligent form of life did already collide somewhere particles to form a critical bubble...?

The dynamics of metastability:

- the bubble discussion ignores thermal cool-down, i.e. how/why we ended up in the (metastable) EW vacuum

→ does the fluctuating field fall into EW or global (wrong) vacuum?

The answer depends on exact parameters:

- correct vacuum → bubble discussion...
- wrong vacuum → always instable!
- → SM metastability potentially dangerous
- → or avoid it: embedding into...
- \rightarrow importance of precise m_H , m_t determinations

2nd order

T<T.

→ metàstability

F

T>T.

Interpretations of special Conditions: E.g. $\lambda(M_{Planck}) = 0$

- $\lambda \phi^4 \rightarrow 0$ at the Planck scale \rightarrow no Higgs self-interaction (V is flat)
- \rightarrow m_H at low E radiatively generated value related to m_t and g_i
- **→** SM emdedded directly into gravity ...!?
- What about the hierarchy problem?
 - → GR is different: Non-renormalizable!
 - → requires new concepts beyond QFT/gauge theories: ... ?
 - → BAD: We have no facts which concepts are realized by nature
 - → Two GOOD aspects:
 - 1) QFTs cannot explain absolute masses and couplings
 - QFT embeddings = shifting the problem only to the next level
 - → new concepts beyond QFT might explain absolute values

- 2) Asymmetry SM←→Planck scale may allow new solutions of the HP
- → new non-QFT Planck-scale concepts could have mechanism which explain hierarchies
- \rightarrow lost in effective theory = SM

Anaology: Type II superconductor
Ginzburg-Landau effective QFT ←→ BCS theory

$$E \approx \alpha |\phi|^2 + \beta |\phi|^4 + \dots$$
 \iff α , β , dynamical details lost

→ Important consequence of this scenario: no intermediate QFT scales ← → hierarchy problem back (separation of two scalars unnatural in QFT)

Embedding the SM

Remember: The SM does not exist without some embedding triviality/vacuum stab. \rightarrow scale \land required \rightarrow cannot be ignored!

Embedding into which concept? → two options:

- 1) some new concept beyond d=4 QFT
- 2) some d=4 QFT

The $\lambda(M_{Planck})=0$ scenario above was along route #1 Most work over many years was along route #2:

- add representations
- extended gauge groups with and without GUTs
- include SUSY: MSSM, NMSSM, ..., SUSY GUTs
- hidden (gauge) sectors, mirror symmetry, ...
- Must face the gauge hierarchy problem

The Hierarchy Problem: Specify A

- Renormalizable QFTs with two scalars ϕ , Φ with masses m, M and a mass hierarchy m << M
- These scalars must interact since $\phi^+\phi$ and $\Phi^+\Phi$ are singlets
 - $\rightarrow \lambda_{mix}(\phi^+\phi)(\Phi^+\Phi)$ must exist in addition to ϕ^4 and Φ^4
- Quantum corrections $\sim M^2$ drive both masses to the (heavy) scale
 - → two vastly different scalar scales are generically unstable

Therefore: If (=since) the SM Higgs field exists

- \rightarrow problem: embedding with a 2nd scalar with much larger mass
- **→** solutions:
 - a) new scale @TeV
 - b) protective symmetry (SUSY) @TeV

Remark: SUSY & gauge unification → SUSY GUT →

→ doublet-triplet splitting problem → hierarchy problem back

Reconsider SM Embedding Directions

Recap.: Embedding options (and some examples) at scale Λ

1) some new concept beyond d=4 QFT

extra dimensions @TeV , $\lambda(M_{Planck})=0$, ...

- 2) some d=4 QFT
 - a) new scale @TeV

LR symmetry, Z', composite, ...

b) protective symmetry @TeV

SUSY: MSSM, ...

BUT: no new physics

@TeV observed???

BUT: Maybe there is another way out: **conformal symmetry (CS)**

The SM has almost CS

$$V(\Phi^{+}\Phi) = -X^{2}\Phi^{+}\Phi + \frac{\lambda}{2} \left(\Phi^{+}\Phi\right)^{2}$$

$$\sim 0 @ M_{Planck}$$

Conformal Symmetry as Protective Symmetry

- Exact (unbroken) CS
 - \rightarrow absence of Λ^2 and $\ln(\Lambda)$ divergences
 - **→** no preferred scale and therefore no scale problems
- Conformal anomaly: Quantum effects break CS
 - **→** explicit breaking of CS **→** anomaly induced spontaneous EWSB
 - \rightarrow CS breaking $\leftarrow \rightarrow \beta$ -functions $\leftarrow \rightarrow \ln(\Lambda)$ divergences
 - **BUT:** maybe CS still forbids Λ^2 divergences

 Conformal anomaly → no symmetry preserving regularization
 - cutoff $\rightarrow \Lambda^2$ terms but violates CS explicitly \rightarrow Ward Identity
 - dimensional regularization gives no Λ^2 terms only $\ln(\Lambda)$

IMPORTANT CONSEQUENCE: The conformal limit of the SM (or extensions) may have no hierarchy problem!

Realizing this Idea

Minimalistic: The Standard Model

choose $\mu = 0 \iff CS$

Coleman Weinberg: effective potential

- **→** CS breaking (dimensional transmutation)
- → induces for m_t < 79 GeV</p>
 a Higgs mass m_H = 8.9 GeV

This would conceptually realize the idea, but:

Higgs too light and the idea does not work for $m_t > 79$ GeV

AND: We need neutrino masses, dark matter, ...

→ Other realizations:

- A) new SM singlets
- B) embeddings of the SM gauge group into larger groups
- C) orthogonal (hidden) sectors
- D) new scalar representations of QCD

Realizing this Idea: Left-Right Extension

M. Holthausen, ML, M. Schmidt

Radiative SB in conformal LR-extension of SM

(use isomorphism $SU(2) \times SU(2) \simeq Spin(4) \rightarrow representations)$

particle	parity \mathcal{P}	\mathbb{Z}_4	$\operatorname{Spin}(1,3) \times (\operatorname{SU}(2)_L \times \operatorname{SU}(2)_R) \times (\operatorname{SU}(3)_C \times \operatorname{U}(1)_{B-L})$
$\mathbb{L}_{1,2,3} = \left(egin{array}{c} L_L \ -\mathrm{i}L_R \end{array} ight)$	$P\mathbb{PL}(t,-x)$	$L_R o \mathrm{i} L_R$	$\left[\left(\frac{1}{2},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\frac{1}{2}\right)(\underline{1},\underline{2})\right](\underline{1},-1)$
$\mathbb{Q}_{1,2,3}=\left(egin{array}{c} Q_L \ -\mathrm{i}Q_R \end{array} ight)$	$P\mathbb{PQ}(t,-x)$	$Q_R \to -\mathrm{i}Q_R$	$\left[\left(\underline{\frac{1}{2}},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\underline{\frac{1}{2}}\right)(\underline{1},\underline{2})\right]\left(\underline{3},\frac{1}{3}\right)$
$\Phi = \left(egin{array}{cc} 0 & \Phi \ - ilde{\Phi}^\dagger & 0 \end{array} ight)$	$\mathbb{P}^{\Phi^{\dagger}}\mathbb{P}(t,-x)$	$\Phi \to \mathrm{i} \Phi$	$(\underline{0},\underline{0})\ (\underline{2},\underline{2})\ (\underline{1},0)$
$\Psi = \left(egin{array}{c} \chi_L \ -\mathrm{i}\chi_R \end{array} ight)$	$\mathbb{P}\Psi(t,-x)$	$\chi_R \to -\mathrm{i}\chi_R$	$(\underline{0},\underline{0})\left[(\underline{2},\underline{1})+(\underline{1},\underline{2})\right](\underline{1},-1)$

- → the usual fermions, one bi-doublet, two doublets
- → a Z₄ symmetry
- \rightarrow no scalar mass terms $\leftarrow \rightarrow$ CS

→ Most general gauge and scale invariant potential respecting Z4

$$\begin{split} \mathcal{V}(\Phi, \Psi) &= \frac{\kappa_1}{2} \left(\overline{\Psi} \Psi \right)^2 + \frac{\kappa_2}{2} \left(\overline{\Psi} \Gamma \Psi \right)^2 + \lambda_1 \left(\mathrm{tr} \Phi^{\dagger} \Phi \right)^2 + \lambda_2 \left(\mathrm{tr} \Phi \Phi + \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 + \lambda_3 \left(\mathrm{tr} \Phi \Phi - \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 \\ &+ \beta_1 \, \overline{\Psi} \Psi \mathrm{tr} \Phi^{\dagger} \Phi + f_1 \, \overline{\Psi} \Gamma [\Phi^{\dagger}, \Phi] \Psi \; , \end{split}$$

- \rightarrow calculate V_{eff}
- → Gildner-Weinberg formalism (RG improvement of flat directions)
 - anomaly breaks CS
 - spontaneous breaking of parity, \mathbb{Z}_4 , LR and EW symmetry
 - m_H << v ; typically suppressed by 1-2 orders of magnitude Reason: V_{eff} flat around minimum $\leftarrow \rightarrow m_H \sim loop \ factor \sim 1/16\pi^2$
 - everything works nicely...

→ requires moderate parameter adjustment for the separation of the LR and EW scale... PGB...?

Realizing the Idea: Other Directions

SM + extra singlet: Φ, φ

Nicolai, Meissner Farzinnia, He, Ren Foot, Kobakhidze, Volkas

SM + extra SU(N) with new N-plet in a hidden sector

Ko

Carone, Ramos Holthausen, Kubo, Lim, ML

• • •

SM + new **QCD** representation

Kubo, Lim, ML

Since the SM-only version does not work \rightarrow observable effects:

- Higgs coupling to other scalars (singlet, hidden sector, ...)
- dark matter candidates ←→ hidden sectors & Higgs portals
- consequences for neutrino masses

More Scalars + Conformal Symmetry

- SM scalar Φ plus some new scalar φ (or more scalars)
- $CS \rightarrow no scalar mass terms$
- the scalars interact: λ_{mix}(φ+φ)(Φ+Φ) must exist
 ⇒ a condensate in the φ direction can lead to <φ+φ> > 0
 λ_{mix} ⇒ effective mass term for Φ
- CS anomalous ... \rightarrow broken by quantum effects \rightarrow only $\ln(\Lambda)$
- Note that this opens many other possibilities:
 - φ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
 - → phenomenology safe since NP comes only via portal

On the arXiv today: SM + QCD Scalar

New scalar representation $S \rightarrow QCD$ gap equation:

$$C_2(S) lpha(\Lambda) \gtrsim X$$

 $C_2(\Lambda)$ increases with larger representations

 $\leftarrow \rightarrow$ condensation for smaller values of running α

Phenomenology

Figure 3. The S pair production cross section from gluon fusion channel is calculated for different value of m_S . The 95% confidence level exclusion limit on $\sigma \times BR$ for $\sqrt{s} = 7 \text{ TeV}$ by ATLAS is plotted. We assume 100% BR of $\langle S^{\dagger} S \rangle$ into two jets.

Summary

- SM works perfectly no signs of new physics
- The standard hierarchy problem suggests TeV scale physics ... which did (so far...) not show up
- Revisit how the hierarchy problem may be solved
- Embedding into new concepts beyond QFT at M_{planck}
 - ←→ might be connected to $\lambda(M_{Planck}) = 0$?
 - precise value of top mass
- Embeddings into QFTs with classical conformal symmetry
 - → SM: Coleman Weinberg effective potential excluded
 - → extended versions: singlets, SM=subgroup, hidden sectors
 - → implications for Higgs couplings, dark matter, neutrinos
 - → testable consequences @ LHC, DM search, neutrinos