Supersymmetric Corrections to Top Quark Production at Threshold

Nikolai Zerf

Department of Physics University of Alberta

High precision fundamental constants at the TeV scale March 20th 2014

SUSY Correction to TQTP

イロト イポト イラト イラ

Overview

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

N. Zerf (Dep. of Phys. UofA)

SUSY Correction to TQTP

SFB/TR9 2009 2 / 12

Motivation

[Beneke,Schuller,Kiyo 08]

A precise theoretical prediction of $\sigma_{tot}^{t\bar{t}}$ at threshold:

ightarrow accurate measurement α_s, m_t, Γ_t at ILC. [talk by J. Fuster]

Future theory predictions with 3% uncertainty in σ :

 $\rightarrow \Delta m_t = \pm 27_{exp} \pm 9_{th} MeV \ 10 fb^{-1} pp!!$ [Seidel,Simon,Tesar,Poss 2013]

Todays (SM) predictions (NNLL):[Hoang, Stahlhofen 13] $\delta\sigma/\sigma \approx \pm 5\%$ uncertainty

 \rightarrow NNNLO in progress [talk by J. Piclum]

What happens with the total cross section when we use the MSSM as underlying theory?

Cross Section via Optical Theorem

$$\sigma_{tot}(e^+e^- \to t\bar{t}) \propto \frac{1}{s} Im[C^2 G(E+i\Gamma_t)].$$

🚺 G

- 2-point Greens function of the Top Quark pair in S_1^3 -state.
- Top quarks are very slow after creation.
 - \rightarrow Calculated in (p/v)Non Relativistic QCD.
- Contains resummed potential, soft and ultra soft QCD modes.

Cross Section via Optical Theorem

$$\sigma_{tot}(e^+e^- \to t\bar{t}) \propto \frac{1}{s} Im[C^2 G(E+i\Gamma_t)].$$

$$R = \frac{\sigma_{tot}(e^+e^- \to t\bar{t})}{\sigma_{tot}(e^+e^- \to \mu^+\mu^-)}, E = \sqrt{s} - 2m_t.$$

N. Zerf (Dep. of Phys. UofA)

Cross Section via Optical Theorem

$$\sigma_{tot}(e^+e^- \to t\bar{t}) \propto \frac{1}{s} Im[C^2 G(E+i\Gamma_t)].$$

🚺 G

- > 2-point Greens function of the Top Quark pair in S_1^3 -state.
- Top quarks are very slow after creation.
 - \rightarrow Calculated in (p/v)Non Relativistic QCD.
- Contains resummed potential, soft and ultra soft QCD modes.

2 C

- Matching Coefficient of the creation and annihilation operator for S³₁ Top Quark pairs in NRQCD.
- Matches the NRQCD vector current to the full theory (SM or MSSM).
- Contains all hard modes $\sim m_t$.
 - \rightarrow SUSY enters here.

Extracting the Matching Coefficient in Full Theory

$$C_{SM}^{LO} = C_{MSSM}^{LO}$$

C can be understood as effective charge.

N. Zerf (Dep. of Phys. UofA)

SUSY Correction to TQTP

- EW Contributions to C^{1L} are known. [Guth,Kühn 92],[Hoang,Reißer 06] We reproduced the results (in t'Hooft Feynman Gauge). ✓
 - Divergences are regularized with **D**imensional **REG**ularization (**DREG**) renormalized in On-Shell-Scheme.

$$C_{ ext{QCD}}^{ ext{NLO}} = -rac{8}{3}rac{lpha_s}{\pi} imes C^{LO}$$

(*C*_{QCD}^{NNNLO} calculated (up to singlet contribution)!! [Marquard,Piclum,Seidel,Steinhauser 2014]).

Known Parts of MSSM

1-Loop contribution to $\gamma t\bar{t}$ - and $Zt\bar{t}$ -vertex:

Higgs sector of MSSM \leftrightarrow THDM Type II.

ightarrow calculated in DREG ($m_b=0\,, {
m CKM}=1$)[Denner,Guth,Kühn 92]. \checkmark

SUSY QCD Contributions are known [Su,Wise 01]. \checkmark

1-Loop Vector Boson SE Corrections:

Calculated for $\sigma_{\rm tot}^{\rm NLO}$ above threshold in DREG [Hollik, Schappacher 98]. \checkmark

イロト イポト イモト イモト

New parts of MSSM

MSSM: Super symmetric theory.

Use Dimensional REDuction for regularization!

Contribution of EW SUSY-particles in $e^-e^+/t\bar{t}$ -vertex and box diagrams:

Synthesis:

MATHEMATICA package TQPAT.M.

Numerical analysis using mSUGRA scenarios. [Kiyo,Steinhauser,NZ 09]

SUSY Correction to TQTP

$$\Delta = \frac{\sigma_{\rm tot}^{\rm 1L}}{\sigma_{\rm tot}^{\rm tree}} \big|_{s=4m_t^2}$$
 .

mSUGRA Scenario SPS2 Slope.

$$\Delta = \frac{\sigma_{\rm tot}^{\rm 1L}}{\sigma_{\rm tot}^{\rm tree}} \big|_{s=4m_t^2}$$
 .

$$\Delta = \frac{\sigma_{\rm tot}^{\rm 1L}}{\sigma_{\rm tot}^{\rm tree}} \big|_{s=4m_t^2}$$
 .

$$\Delta = \frac{\sigma_{\rm tot}^{\rm 1L}}{\sigma_{\rm tot}^{\rm tree}} \big|_{s=4m_t^2}$$
 .

$$\Delta = \frac{\sigma_{\rm tot}^{\rm 1L}}{\sigma_{\rm tot}^{\rm tree}} \big|_{s=4m_t^2}$$
 .

$$\Delta = \frac{\sigma_{\rm tot}^{\rm 1L}}{\sigma_{\rm tot}^{\rm tree}} \big|_{s=4m_t^2}$$
 .

mSUGRA Scenario SPS2 Slope.

 $\Delta(m_H \to m_{h_0})$

$$\Delta = \frac{\sigma_{\rm tot}^{\rm 1L}}{\sigma_{\rm tot}^{\rm tree}} \big|_{s=4m_t^2}$$
 .

• mSUGRA Scenario SPS2 Slope.

 $\Delta(m_H \rightarrow m_{h_0})$

N. Zerf (Dep. of Phys. UofA)

SUSY Correction to TQTP

SFB/TR9 2009 10 / 12

N. Zerf (Dep. of Phys. UofA)

SUSY Correction to TQTP

SFB/TR9 2009 10 / 12

N. Zerf (Dep. of Phys. UofA)

SUSY Correction to TQTP

SFB/TR9 2009 10 / 12

• Light *t*-Scenario [Carena,Heinmeyer,Stal,Wagner,Weiglein 13]

PRELIMINARY

 Δ^{EW}

• Light *t*-Scenario [Carena,Heinmeyer,Stal,Wagner,Weiglein 13]

light stop tan β = 20 (using SoftSusy 3.3.4)

PRELIMINARY

PRELIMINARY

 $\tan\beta=15, M_A=300 \text{GeV}$

PRELIMINARY

SFB/TR9 2009 11 / 12

 $\tan\beta=20, M_A=300 \text{GeV}$

Summary

• Hard 1L corrections (C^{1L}) for $e^+e^- \rightarrow t\bar{t}$ -Pair Production at threshold in SM, THDM and MSSM are available. [Kiyo,Steinhauser,NZ 09] Known results:

$$\begin{split} \Delta_{\rm EW}^{\rm SM}(\alpha = 137^{-1}) &\approx +14\%, \quad \Delta_{\rm QCD}^{\rm SM} \approx -17\%, \\ \Delta_{\rm QCD}^{\rm SUSY} &\lesssim 1\%. \end{split}$$

② Observation for mSUGRA SPSx $(m_H \rightarrow m_{h_0})$:

$$\Delta_{\rm EW}^{\rm SUSY} = \Delta_{\rm EW}^{\rm MSSM} - \Delta_{\rm EW}^{\rm THDM} \lesssim 1\%. \label{eq:susy}$$

③ Small SUSY effects $\lesssim 1\%$ expected (pathologic cases?).

- Numerical analysis for up-to-date MSSM scenarios
- SUSY parameter space scan

N. Zerf (Dep. of Phys. UofA)

SUSY Correction to TQTP

イロト イポト イラト イラト

Summary End

N. Zerf (Dep. of Phys. UofA)

SUSY Correction to TQTP

イロト イヨト イヨト イヨト

$\Delta(C_A, C_V)$

 $C_A \propto$ leptonic axial vector current. $C_V \propto$ leptonic vector current.

$$\Delta = 2 \mathrm{Re} rac{\mathrm{C}_{\mathrm{A}}^{(0)} \mathrm{C}_{\mathrm{A}}^{(1)} + \mathrm{C}_{\mathrm{V}}^{(0)} \mathrm{C}_{\mathrm{V}}^{(1)}}{(\mathrm{C}_{\mathrm{A}}^{(0)})^2 + (\mathrm{C}_{\mathrm{V}}^{(0)})^2} \,.$$

ъ

A (1) > A (2) > A

SUSYQCD-Effects

ъ

• • • • • • • • • • • •

SUSYQCD-Effects

