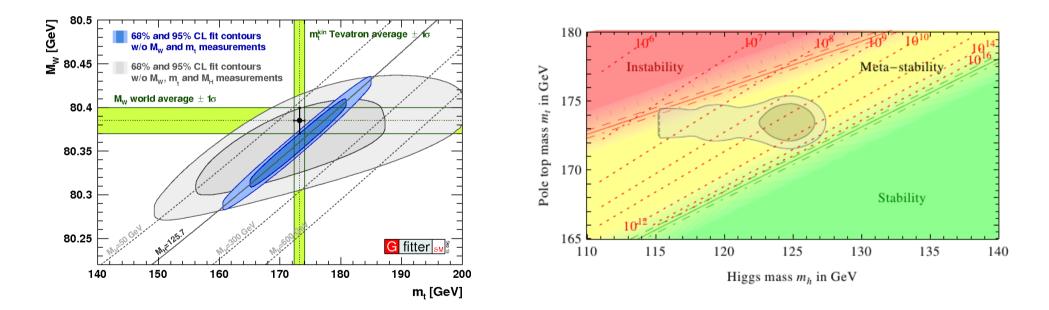
#### MITP 2014

High precision fundamental constants at the TeV scale


Top quark mass determination from kinematic distributions

Markus Schulze



#### **General motivation**

$$\mathcal{L}_{\rm mass} = -v \left( \lambda_e^i \bar{e}_{\rm L}^i e_{\rm R}^i + \frac{\lambda_u^i \bar{u}_{\rm L}^i u_{\rm R}^i}{2 \cos^2 \theta_W} + \lambda_d^i \bar{d}_{\rm L}^i d_{\rm R}^i + \text{h.c.} \right) - M_W^2 W_\mu^+ W^{-\mu} - \frac{M_W^2}{2 \cos^2 \theta_W} Z_\mu Z^\mu ;$$



- El. weak precision test: 5.4 MeV uncertainty in  $M_W \leftrightarrow 0.9$  GeV uncertainty in  $m_{top}$
- El. weak vacuum stability: Change of  $m_{top}$  by  $\pm 2.1 \text{ GeV} \leftrightarrow \mu_{neg} = 10^8 10^{16} \text{ GeV}$

$$\mathcal{O}^{\mathrm{exp}}(\{\mathbf{Q}\}) = \mathcal{O}^{\mathrm{theor}}(\mathbf{m_t}, \{\mathbf{Q}\})$$

$$\mathcal{O}^{\exp}(\{\mathbf{Q}\}) = \mathcal{O}^{\text{theor}}(\mathbf{m}_{t}, \{\mathbf{Q}\})$$

$$\downarrow$$

$$\mathcal{P}^{\exp}(\{\mathbf{Q}\}) = \mathcal{O}^{\text{theor}}(\mathbf{m}_{t}, \{\mathbf{Q}\}, \alpha_{s}, \text{RS}, \Lambda_{\text{QCD}}, \{\mathbf{p}_{t}, \mathbf{p}_{\overline{t}}\}, \Gamma_{t}, \text{MC}$$

- Higher orders, renormalization scheme
- Non-perturbative effects (*e.g.* bound state, renormalons)
- Reconstruction of top quark momenta
- Finite width effects
- Monte Carlo modeling, tunes
- Contamination from New Physics

### **Top mass extraction at hadron colliders**

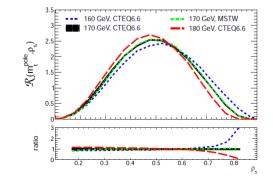
Total cross section

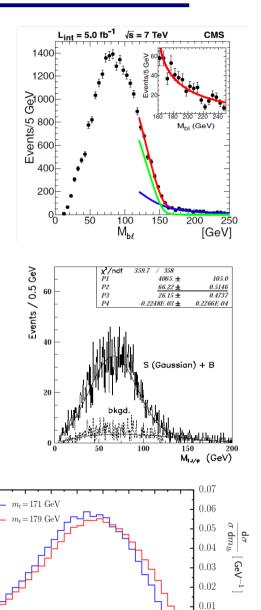
Known at NNLO QCD; Relatively low sensitivity to  $m_{top}$ 

• Matrix element method

Method which gave smallest uncertainties at Tevatron; Currently only LO matrix elements are used in likelihood functions; Difficult to identify leading uncertainties

• Kinematic distributions


Known to NLO QCD; Good sensitivity to  $m_{top}$ ; Reduces dependence on uncertainties of production mechanism; Sensitive to finite width effects, details of *b*-jet fragmentation


### **Kinematic distributions**

- End-point methods
- $J/\psi$  method
- $m_{\rm lb/lB}$  distribution
- Other lepton-related observables ( $E_{\rm l}, E_{\rm b}$ )
- "Threshold scan" (*ttb*+jet)

# **Kinematic distributions**

- End-point methods [CMS `13]
- $J/\psi$  method [Kharchilava `99]
- *m*<sub>lb/lB</sub> distribution [Corcella,Mangano,Seymour,Mescia `00] [Biswas,Melnikov,M.S. `10] [Heinrich,Maier,Nisius,Schlenk,Winter`13]
- Other lepton-related observables (*E*<sub>l</sub>, *E*<sub>b</sub>)
   [Beneke,Efthymiopoulos,Mangano,Womersley `00]
   [Biswas,Melnikov,M.S. `10]
- "Threshold scan" (*ttb*+jet) [Alioli,Fuster,Irles,Moch,Uwer,Vos `13]

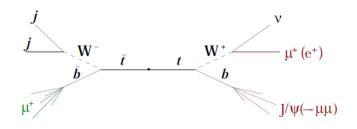




20

40 60

80 100 120 140 160


 $m_{lb} \, [\text{GeV}]$ 

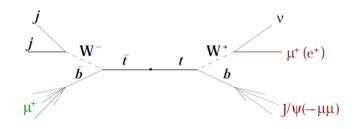
# The $J/\psi$ method

• Basic idea:

Study  $m_{l,J/\psi}$  from top quark decay in a "very" leptonic decay channel

 $\rightarrow\,$  Clean final state vs. low event rate



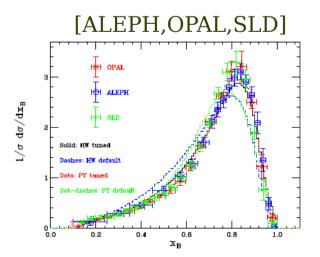

- One in  $10^5$  top quark pairs decays in this channel. Hence, an integr. luminosity of ~100 fb<sup>-1</sup> is required to obtain  $\mathcal{O}(1\,{\rm GeV})$
- With relaxed assumptions, uncert. of  $\mathcal{O}(1.5\,{
  m GeV})$  seems possible with 20 fb<sup>-1</sup>

# The $J/\psi$ method

• Basic idea:

Study  $m_{l,J/\psi}$  from top quark decay in a "very" leptonic decay channel

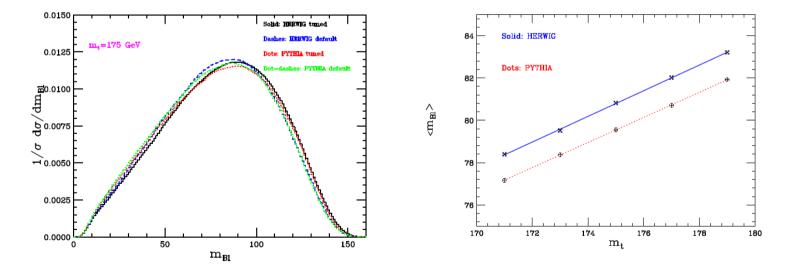
 $\rightarrow\,$  Clean final state vs. low event rate




• Theoretical treatment:

Include B-meson fragmentation function

$$D_{b\to B}(\mu, x) = \int_{x}^{1} \frac{\mathrm{d}\xi}{\xi} D_b(\mu, \xi) D_{\mathrm{np}}\left(\frac{x}{\xi}\right)$$


 $B\!\rightarrow\!J\!/\psi$  transition is well studied in  $B\text{-}\mathrm{factories}$ 



### The $J/\psi$ method

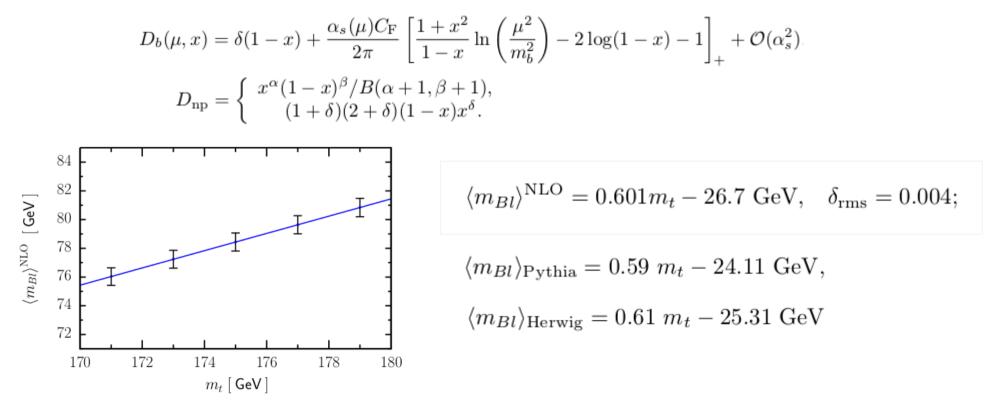
• Early studies show promising sensitivity to  $m_{top}$ [Corcella,Mangano,Seymour,Mescia `00]

Consider  $m_{\rm lB}$  from  $t \rightarrow Wb \rightarrow l\nu B$ , assume  $\Delta < m_{\rm lB} >= 0.4 \text{ GeV}$ 



 $\langle m_{Bl} \rangle_{\rm Pythia} = 0.59 \ m_t - 24.11 \ {\rm GeV}, \ \langle m_{Bl} \rangle_{\rm Herwig} = 0.61 \ m_t - 25.31 \ {\rm GeV}$ 

→ Uncertainty from comparing HERWIG vs. PYTHIA  $\Delta m_{\text{top}} = 1.5-2 \text{ GeV}$ 

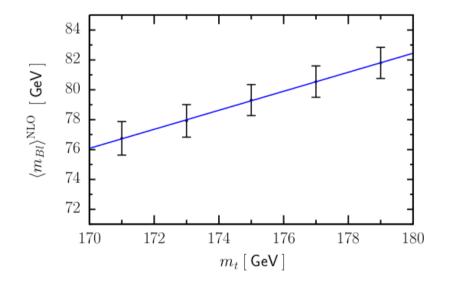

#### The $J/\psi$ method

• Similar analysis at NLO QCD [Biswas,Melnikov,M.S. `10]

$$D_b(\mu, x) = \delta(1 - x) + \frac{\alpha_s(\mu)C_F}{2\pi} \left[ \frac{1 + x^2}{1 - x} \ln\left(\frac{\mu^2}{m_b^2}\right) - 2\log(1 - x) - 1 \right]_+ + \mathcal{O}(\alpha_s^2)$$
$$D_{\rm np} = \begin{cases} x^{\alpha}(1 - x)^{\beta}/B(\alpha + 1, \beta + 1), \\ (1 + \delta)(2 + \delta)(1 - x)x^{\delta}. \end{cases}$$

#### The $J/\psi$ method

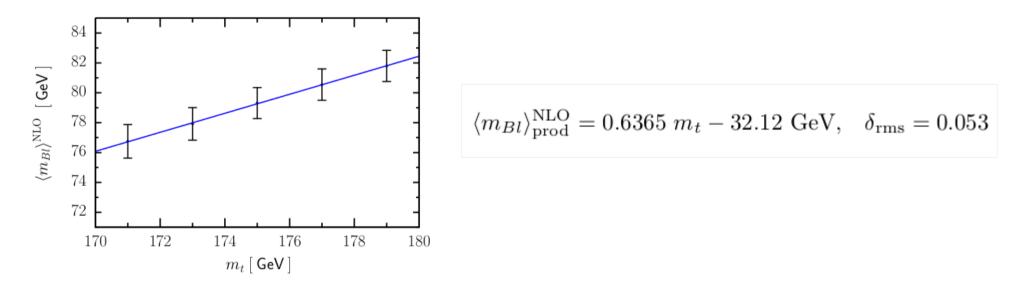
• Similar analysis at NLO QCD [Biswas,Melnikov,M.S. `10]




 $\rightarrow$  Uncertainty from NLO scale variation and variation of  $D_{np}$  parameters

 $\Delta m_{\rm top} = 0.8 \; {\rm GeV}$ 

### The $J/\psi$ method


 Include full production and decay process at NLO QCD including realistic selection cuts [Biswas,Melnikov,M.S. `10]



$$\langle m_{Bl} \rangle_{\rm prod}^{\rm NLO} = 0.6365 \ m_t - 32.12 \ {\rm GeV}, \quad \delta_{\rm rms} = 0.053$$

## The $J/\psi$ method

• Include full production and decay process at NLO QCD including realistic selection cuts [Biswas,Melnikov,M.S. `10]



→ Uncertainty budget from scale variation ( $\mu_{ren}$ , $\mu_{fac}$ , $\mu_{frag}$  independently), two different parameters of  $D_{np}$ , and two different pdf sets (MSTW,CTEQ)

 $\Delta m_{\rm top} = 1.5 \,\,{\rm GeV}$ 

#### $m_{top}$ estimator

• Basic idea: Construct an estimator for  $m_{top}$ [Beneke,Efthymiopoulos,Mangano,Womersley `00]

$$M_{\rm est}^2 = m_W^2 + \frac{2\langle m_{lb}^2 \rangle}{1 - \langle \cos \theta_{lb} \rangle}$$

$$\rightarrow$$
 at LO,  $M_{\rm est} = m_{\rm top}$ 

$$\langle m_{lb}^2 \rangle = \frac{m_t^2 - m_W^2}{2} \left( 1 - \langle \cos \theta_{lb} \rangle \right), \quad \langle \cos \theta_{lb} \rangle = \frac{m_W^2}{m_t^2 + 2m_W^2}$$

Hence, we expect a strong correlation.

### $m_{\rm top}$ estimator

• Basic idea: Construct an estimator for  $m_{top}$ [Beneke,Efthymiopoulos,Mangano,Womersley `00]

$$M_{\rm est}^2 = m_W^2 + \frac{2\langle m_{lb}^2 \rangle}{1 - \langle \cos \theta_{lb} \rangle}$$

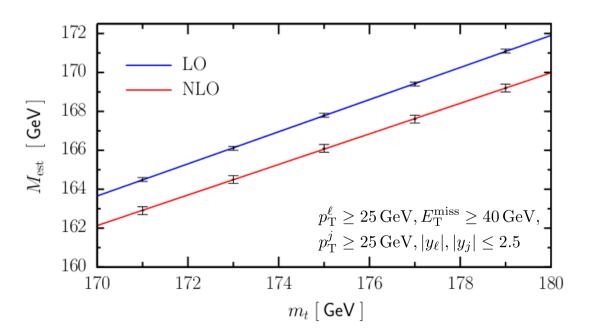
$$\rightarrow$$
 at LO,  $M_{\rm est} = m_{\rm top}$ 

$$\langle m_{lb}^2 \rangle = \frac{m_t^2 - m_W^2}{2} \left( 1 - \langle \cos \theta_{lb} \rangle \right), \quad \langle \cos \theta_{lb} \rangle = \frac{m_W^2}{m_t^2 + 2m_W^2}$$

Hence, we expect a strong correlation. In reality  $M_{est} \neq m_{top}$  due to:

- kinematic selection cuts
- higher orders
- lepton b-jet pairing
- experimental effects (JES,b-tagging,...)

Accounting for the first three points points is possible within pert. QCD


#### $m_{\rm top}$ estimator

• Basic idea: Construct an estimator for  $m_{top}$ 

$$M_{\rm est}^2 = m_W^2 + \frac{2\langle m_{lb}^2 \rangle}{1 - \langle \cos \theta_{lb} \rangle}$$

[Biswas,Melnikov,M.S. `10]

NLO QCD results (14 TeV) for  $pp \to t\bar{t} \to (bW \to b\ell\nu) (\bar{b}W \to bjj)$ 



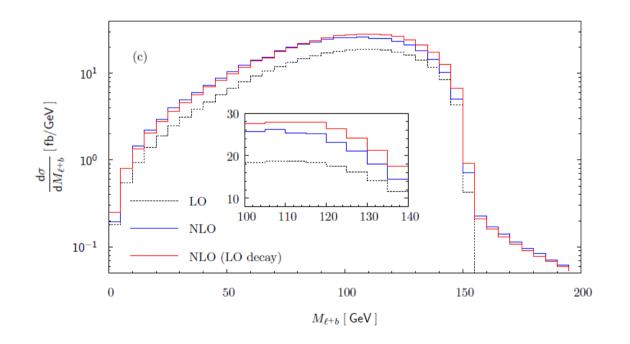
 $M_{\rm est}^{\rm LO} = 0.8262m_t + 23.22 \,\,{\rm GeV}$ 

 $M_{\rm est}^{\rm NLO} = 0.7850m_t + 28.70 \,{\rm GeV}.$ 

 $\rightarrow \Delta m_{\rm top} = 0.25 \; {\rm GeV}$ 

expect additional uncert. of ±0.7 GeV (*b*-fragm.) ±0.6 GeV (JES)

### *m*<sub>lb</sub> distribution


0.0740 LO band  $m_t = 171 {
m ~GeV}$ 0.06 $m_t = 179 \text{ GeV}$ NLO band 30  $rac{\mathsf{d}\sigma}{\mathsf{d}m_{lb}}$  [ fb/GeV ]  $\sigma \, dm_{lb}$ 0.05dσ 0.04 20  $[GeV^{-1}]$ 0.030.02 10 0.010 2060 80 120140160 204060 80 100 120140160 0 401000  $m_{lb} \, [{\rm GeV}]$  $m_{lb} \, [\text{GeV}]$ 

 $\rightarrow$  Good sensitivity within the range  $m_{\text{top}} \in [171..179] \text{ GeV}$ 

• Shape of  $m_{\rm lb}$  distribution

### m<sub>lb</sub> distribution

• Shape of  $m_{lb}$  distribution



NLO correction to decay leads to shape changes [Melnikov,M.S. `10]

### m<sub>lb</sub> distribution

## Finite width effects and non-factorizable corrections thanks to $WWb\overline{b}$ calculations by [Denner,Dittmaier,Kallweit,Pozzorini] + HELAC and GOSAM+Sherpa groups

| Collider | $\sqrt{s}$ [TeV] | approx. | $\sigma_{ m t\bar{t}}$ [fb]    | $\sigma_{ m WWbar{b}}$ [fb]    | $\sigma_{t\bar{t}}/\sigma_{WWb\bar{b}}$ $-1$ |  |
|----------|------------------|---------|--------------------------------|--------------------------------|----------------------------------------------|--|
| Tevatron | 1.96             | LO      | $44.691(8)^{+19.81}_{-12.58}$  | $44.310(3)^{+19.68}_{-12.49}$  | + 0.861(19)%                                 |  |
|          |                  | NLO     | $42.16(3)^{+0.00}_{-2.91}$     | $41.75(5)^{+0.00}_{-2.63}$     | +0.98(14)%                                   |  |
| LHC      | 7                | LO      | $659.5(1)^{+261.8}_{-173.1}$   | $662.35(4)^{+263.4}_{-174.1}$  | -0.431(16)%                                  |  |
|          |                  | NLO     | $837(2)^{+42}_{-87}$           | $840(2)^{+41}_{-87}$           | -0.41(31)%                                   |  |
| LHC      | 14               | LO      | $3306.3(1)^{+1086.8}_{-763.6}$ | $3334.6(2)^{+1098.5}_{-771.2}$ | -0.849(7)%                                   |  |
|          |                  | NLO     | $4253(3)^{+282}_{-404}$        | $4286(7)^{+283}_{-407}$        | -0.77(19)%                                   |  |

### m<sub>lb</sub> distribution

Finite width effects and non-factorizable corrections thanks to  $WWb\overline{b}$  calculations by [Denner,Dittmaier,Kallweit,Pozzorini] + HELAC and GOSAM+Sherpa groups

| Collider | $\sqrt{s}$ [TeV] | approx. | $\sigma_{ m t\bar{t}}$ [fb]    | $\sigma_{ m WWbar{b}}$ [fb]    | $\sigma_{ m t\bar t}/\sigma_{ m WWbar b} - 1$ |
|----------|------------------|---------|--------------------------------|--------------------------------|-----------------------------------------------|
| Tevatron | 1.96             | LO      | $44.691(8)^{+19.81}_{-12.58}$  | $44.310(3)^{+19.68}_{-12.49}$  | +0.861(19)%                                   |
|          |                  | NLO     | $42.16(3)_{-2.91}^{+0.00}$     | $41.75(5)^{+0.00}_{-2.63}$     | +0.98(14)%                                    |
| LHC      | 7                | LO      | $659.5(1)^{+261.8}_{-173.1}$   | $662.35(4)^{+263.4}_{-174.1}$  | -0.431(16)%                                   |
|          |                  | NLO     | $837(2)^{+42}_{-87}$           | $840(2)^{+41}_{-87}$           | -0.41(31)%                                    |
| LHC      | 14               | LO      | $3306.3(1)^{+1086.8}_{-763.6}$ | $3334.6(2)^{+1098.5}_{-771.2}$ | -0.849(7)%                                    |
|          |                  | NLO     | $4253(3)^{+282}_{-404}$        | $4286(7)^{+283}_{-407}$        | -0.77(19)%                                    |
|          |                  |         |                                |                                |                                               |

### m<sub>lb</sub> distribution

Study of finite width effects and non-factorizable corrections [Denner, Dittmaier, Kallweit, Pozzorini, M.S.]  $\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\mathrm{e^+,\,b}}} \left[\frac{\mathrm{fb}}{\mathrm{GeV}}\right]$  $pp \rightarrow \nu_e e^+ \mu^- \bar{\nu}_\mu b\bar{b} + X$ LO/NLO - 1 [%]  $\sqrt{s} = 7 \,\mathrm{TeV}$ 80WWbb 10 $t\bar{t}$ 40-----0 -401 -8050100 1502000  $t\bar{t}/WWb\bar{b} - 1$  [%] NLO WWbb 0 0.1NLO  $t\bar{t}$ -25LO WWbb NLO -----LO tī -----LO ------50

50

0

100

 $M_{\rm e^+b}$  [GeV]

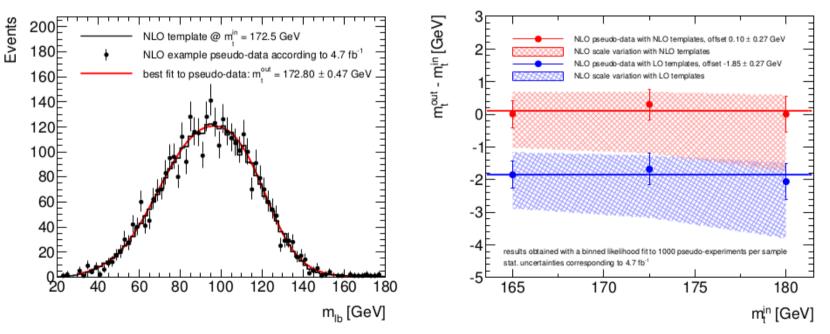
150

200

0

50

100


 $M_{\rm e^+b}$  [GeV]

150

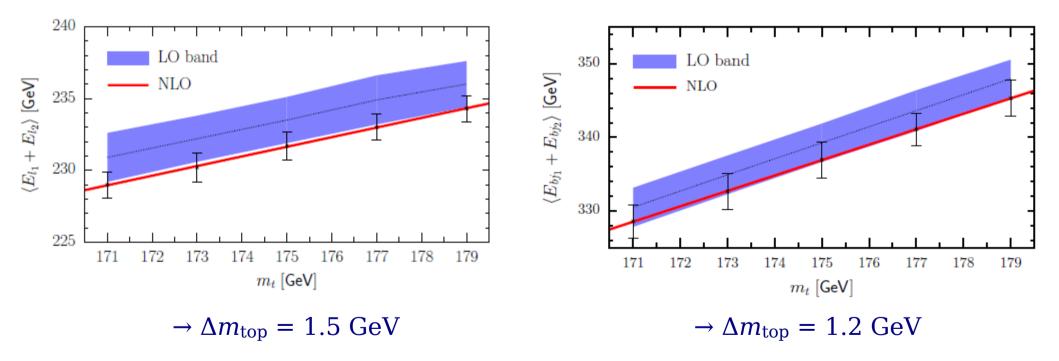
200

### m<sub>lb</sub> distribution

• Template fit to (pseudo) data



#### [Heinrich, Maier, Nisius, Schlenk, Winter `13]


Pseudo data always generated with NLO QCD.

Templates are either generated at NLO (red) or LO (blue).

- Certain types of kinematic distributions have good sensitivity to  $m_{top}$ . Up to know those methods have been rarely applied to real data.
- Uncertainty estimates from kinematic distributions ~ ±1.5 GeV.
   Good theoretical control. No obvious show stopper.
- Reducing uncertainties to  $\sim \pm 0.5$  GeV will probably require a combination of several methods ( $\rightarrow$  study correlated errors).
- Significant improvements require more precise *B*-meson frag. function.
- Possibility of BSM physics hiding in top data (*e.g.*  $ttb+E_{T,miss}$ ) which shifts  $m_{top}$  is not fully excluded.

# EXTRAS





# EXTRAS

|               | Ref. analysis | Projections    |                |                 |                 |                 |
|---------------|---------------|----------------|----------------|-----------------|-----------------|-----------------|
| CM Energy     | $8 { m TeV}$  |                | $14 { m TeV}$  |                 | $33 { m TeV}$   | 100  TeV        |
| Cross Section | 240 pb        | 951 pb         |                | 5522  pb        | 25562  pb       |                 |
| Luminosity    | $20 f b^{-1}$ | $100 f b^{-1}$ | $300 f b^{-1}$ | $3000 f b^{-1}$ | $3000 f b^{-1}$ | $3000 f b^{-1}$ |
| Theory (GeV)  | _             | 1.5            | 1.5            | 1.0             | 1.0             | 0.6             |
| Stat. (GeV)   | 7.00          | 1.8            | 1.0            | 0.3             | 0.1             | 0.1             |
| Total         | -             | 2.3            | 1.8            | 1.1             | 1.0             | 0.6             |
| Total (%)     | -             | 1.3            | 1.0            | 0.6             | 0.6             | 0.4             |

Table 6. Extrapolations based on the  $J/\Psi$  method.