α_s from lattice QCD

Eigo Shintani (Mainz Univ. & RIKEN-BNL)

and H-J. Kim, T. Blum and T. Izubuchi & RBC-UKQCD collaboration

MITP workshops, High precision fundamental constants at the TeV scale, March 10–21, 2014, JGU Campus Mainz

Plan of this talk

Introduction

- Lattice calculation
- Recent update (preliminary)
- Summary

1. Introduction Strong coupling constant: α_s

- High accuracy of α_s is required from the precise SM test and Beyond the SM (BSM) prediction.
 - LHC (8TeV)

 $\Delta\Gamma(H\rightarrow bb)$: ~2.3% for $\Delta\alpha_s$ (and ~3% for Δm_b and ~2% for 2loop EW)

1. Introduction Running of α_s

1. Introduction Running of α_s

1. Introduction World average

World average: 0.1185(6) 0.5 % relative error Omitting lattice $\rightarrow 0.1183(12)$ 50% error increase \Rightarrow lattice calculation is leading the precision.

Confirm and pursue further precision

1. Introduction History of $\alpha_s(M_z)$ from lattice QCD

1. Introduction Recent lattice efforts

Wilson loop

HPQCD [Davies et al. (2008)](Nf=2+1, KS)

Heavy current correlator (Moments) HPQCD [Allison et al. (2008), McNeile et al. (2010)](Nf=2+1, KS)

- Light current correlator (Adler function)
 JLQCD [ES et al.(2009)](Nf=2+1, Overlap)
 RBC/UKQCD [ES et al, lattice 2013] (Nf=2+1, Domain-wall) : recent update
- Schrödinger functional

ALPHA [DellaMorte et al. (2005)] (Nf=2, Clover) PACS-CS [Aoki et al. (2009)](Nf=2+1, Clover)

Gluon-gluon (-ghost) vertex

ETMC [Blossier et al. (2012,2014)](Nf=2+1+1, Twisted mass)

Static energy

Bazavov et al. (2012) (Nf=2+1, KS)

2. Lattice calculation Strategy

Two ingredients required as "input"

2. Lattice calculation Strategy

Two ingredients required as "input"

For determination of scale on the lattice

$$F_{obs} a = F_{lattice}$$

F: observable like omega masses, pion decay constant or static potential (or force) ...

Precise determination of a is necessary to match a running points with MSbar scheme

2. Lattice calculation Strategy

Two ingredients required as "input"

For determination of scale on the lattice

 $F_{obs} a = F_{lattice}$ F: observable like omega masses, pion decay constant or static potential (or force) ...

Precise determination of a is necessary to match a running points with MSbar scheme

- Choose target quantity and scheme
 - Known as perturbative expansion (NNLO, NNNLO, ...)

 $\mathcal{O}_{\mathrm{PT}}(\alpha_s) = c_0 + c_1 \alpha_s + c_2 \alpha_s^2 + \cdots$ $\mathbf{c}_{\mathbf{0},\mathbf{1},\mathbf{2},\ldots}$: analytic function

Lattice quantity

 $\mathcal{O}_{\text{lat}} = \sum_{n} C_n^{\text{renom scheme}} (1/\beta^r)^n \quad \text{heavy quark potential, small Wilson} \\ \text{loops, vacuum polarization function, } \dots$

Matching at good convergent region, evaluated α_s with any scheme. Lattice PT, expanded by bare lattice coupling β^{-1} , is bad convergence, so the quantity should be given by appropriately renormalized coupling.

Legape and Mackenzie (1993)

- 2. Lattice calculation Vacuum polarization function (VPF)
- Adler function, which is given by derivative of Q², is physical quantity.

2. Lattice calculation Vacuum polarization function (VPF)

- Adler function, which is given by derivative of Q², is physical quantity.
- > PT expansion (MSbar) up to NNNLO has been known.
- OPE describes non-perturbative effect as the expansion of multiple dimension operator condensate.

2. Lattice calculation Vacuum polarization function (VPF)

- Adler function, which is given by derivative of Q^2 , is physical quantity.
- PT expansion (MSbar) up to NNNLO has been known.
- OPE describes non-perturbative effect as the expansion of multiple dimension operator condensate.
- Current-current correlator

$$\int d^4x e^{iQx} \langle 0|J^a_{\mu}(x)J^{b\dagger}_{\nu}(0)|0\rangle = \delta^{ab} \Big[(\delta_{\mu\nu}Q^2 - Q_{\mu}Q_{\nu})\Pi^{(1)}_J - Q_{\mu}Q_{\nu}\Pi^{(0)}_J(Q) \Big]$$

- *J* : vector (V) or axial-vector (A) current (conserved and local current correlator is better for implimentation)
- $\Pi_{I}^{(1)}(Q)$: VPF (transverse part), $\Pi_{I}^{(0)}(Q)$: VPF (longitudinal part)
- Using $\Pi_{l}^{(0)}(Q) + \Pi_{l}^{(1)}(Q)$
- Q: Euclidean (= space-like, $Q^2 < 0$) momentum

2. Lattice calculation Perturbative expansion

• OPE for VPF at Q²:

$$\Pi_{J}^{0+1}(Q) = d + C_{0}(Q^{2}, \mu^{2}, \alpha_{s}) + C_{m}^{J}(Q^{2}, \mu^{2}, \alpha_{s}) \frac{\bar{m}^{2}(Q)}{Q^{2}} + \sum_{q=u,d,s} C_{\bar{q}q}^{J} \frac{\langle m_{q}\bar{q}q \rangle}{Q^{4}} + C_{GG}(Q^{2}, \alpha_{s}) \frac{\langle \alpha_{s}/\pi GG \rangle}{Q^{4}} + \mathcal{O}(Q^{-6})$$

- *d* is scheme dependent divergence, depending on cut-off scale.
- Perturbative expansion in the continuum scheme (MSbar) $\rightarrow \alpha_{s}$ in MSbar directly
- 4 free parameters : d, <qq>, <GG>, α_s (or Λ_{QCD})
- C_0 up to $O(\alpha_s^4)$ [Baikov et al. (2008)]

 C_m , C_{qq} up to $O(\alpha_s^2)$ [Chetyrkin et al. (1997), Chetyrkin et al. (1985)] C_{GG} up to $O(\alpha_s)$ [Chetyrkin et al. (1985)]

2. Lattice calculation Lattice QCD

The path integral is computed by <u>Monte-Carlo integral</u> in the lattice regularization

$$\langle O \rangle = Z^{-1} \int D\Psi O(\Psi) e^{-S(\Psi)} \to \sum_{i=1}^{N} p[\Psi_i] O(\Psi_i) + O(1/\sqrt{N})$$

- Exact QCD calculation (but need enough large number of sampling N)
- Gauge invariant
- Translational invariant
- Ultraviolet cut-off *a* (lattice spacing)
 Infrared cut-off V=L₀^D (lattice volume)
- Continuum limit, and infinite volume are needed.
- The development of machine (BG, GPGPU, ...) and algorithm, which make much progress.

2. Lattice calculation Hadron spectrum in lattice QCD

Good agreement with <u>various lattice action and fermion</u> with experimental results ! Kronfeld, 1209.3468

2. Lattice calculation Method

 Current-current correlator is computed by contraction of two quark propagators between (0,0) ⇔ (x,t)

$$\sum_{x,t} e^{i\vec{Q}\vec{x}+iQ_tt} \left[\mathbf{J}_{\mu}(0,0) \underbrace{\qquad} \mathbf{J}_{\nu}(\mathbf{x},\mathbf{t}) \right]$$

Background gluonic and sea quark contribution is included in gauge ensemble p(U). RBC-UKQCD, Phys.Rev.D83.074508(2011)

How To

- I. Lattice calculation of current-current correlator, and extracts VPF with tuning parameters, L, a^{-1} , $m_{u,d,s}$ to physical points.
- 2. Fitting lattice result at Nf=3 (or 4) with OPE formula, $\alpha_s^{(3 \text{ or } 4)}$ (or $\Lambda_{OCD}^{(3 \text{ or } 4)}$) is determined at renormalization scale μ
- 3. RG running to threshold m_b (and also m_c), and switching on 5 flavor
- 4. Scale to M_z

2. Lattice calculation Systematic uncertainties

- Lattice artifact in large Q² $\langle V_{\mu}^{\rm cv} V_{\nu}^{\rm lc} \rangle(Q) = \Pi_J(Q) \Big(Q^2 \delta_{\mu\nu} - Q_{\mu} Q_{\nu} \Big) + \mathcal{O}((aQ)^3)$ Lattice artifact
 - partially satisfy Ward-Takahashi identity for conserved V^{cv} but not local V^{lc} $\sum_{\mu} Q_{\mu} \langle V_{\mu}^{cv} V_{\nu}^{lc} \rangle = 0, \quad \sum_{\nu} Q_{\nu} \langle V_{\mu}^{cv} V_{\nu}^{lc} \rangle \neq 0$ • Π_{J} (Q) also has effect of breaking Lonrenz symmetry on the lattice.

2. Lattice calculation Systematic uncertainties

- Lattice artifact in large Q² $\langle V_{\mu}^{\rm cv} V_{\nu}^{\rm lc} \rangle(Q) = \Pi_J(Q) \Big(Q^2 \delta_{\mu\nu} - Q_{\mu} Q_{\nu} \Big) + \mathcal{O}((aQ)^3)$ $\searrow {\rm Lattice artifact}$
 - partially satisfy Ward-Takahashi identity for conserved V^{cv} but not local V^{lc} $\sum_{\mu} Q_{\mu} \langle V_{\mu}^{cv} V_{\nu}^{lc} \rangle = 0, \quad \sum_{\nu} Q_{\nu} \langle V_{\mu}^{cv} V_{\nu}^{lc} \rangle \neq 0$ • Π_{J} (Q) also has effect of breaking Lonrenz symmetry on the lattice.
- Truncation error
 - Higher order of PT expansion, and higher dimension operator

2. Lattice calculation Systematic uncertainties

- Lattice artifact in large Q² $\langle V_{\mu}^{\rm cv} V_{\nu}^{\rm lc} \rangle(Q) = \Pi_J(Q) \Big(Q^2 \delta_{\mu\nu} - Q_{\mu} Q_{\nu} \Big) + \mathcal{O}((aQ)^3)$ Lattice artifact
 - partially satisfy Ward-Takahashi identity for conserved V^{cv} but not local V^{lc} $\sum_{\mu} Q_{\mu} \langle V_{\mu}^{cv} V_{\nu}^{lc} \rangle = 0, \quad \sum_{\nu} Q_{\nu} \langle V_{\mu}^{cv} V_{\nu}^{lc} \rangle \neq 0$ • $\Pi_{|}$ (Q) also has effect of breaking Lonrenz symmetry on the lattice.
- Truncation error
 - Higher order of PT expansion, and higher dimension operator
- Threshold effect

2. Lattice calculation Choice of lattice fermion

- There are several kinds of fermion definition on the lattice.
 Wilson(-clover), staggered, domain-wall, overlap, ...
- Require "realistic" fermion for the precise calculation
 - good approximated chiral symmetry on the lattice.
 - suppression of O(a) effect, but trading computational time
 - Domain-wall fermion is appropriate selection.
- Domain-Wall fermion (DWF)
 - L, R fermion are localized on boundaries Exact chiral symmetry is realized if $L_s \rightarrow \infty$.
 - In finite L_s Violation of chiral symm. is suppressed as $am_{res} \sim exp(-L_s) \ll 1$.

[Blum Soni, (97), RBC/UKQCD. (05 --)]

3. Recent update (preliminary) Tuning parameters

DWF

- ▶ $24^3 \times 64$ lattice, $a^{-1} = 1.73$ GeV (~2.7 fm³ lattice) $32^3 \times 64$ lattice, $a^{-1} = 2.28$ GeV (~2.8 fm³ lattice) C
 - Continuum limit
- ▶ $L_s = 16$ and $am_{res} = 0.003$ (< 1% pion mass shift) \rightarrow negligible
- $m_{\pi} = 0.28 0.42 \text{ GeV} \rightarrow \text{chiral extrapolation}$
- All-mode-averaging (AMA) Blum, Izubuchi, ES (2013)
 - Statistical error is significantly reduced by using truncated solver
 - Low-mode preconditioning
 - # of low-mode : $N_{\lambda} = 400 \text{ (m=0.005)}, 180 \text{ (m=0.01)}$
 - Stopping condition, 180 CG iteration
 - $N_G = 32$ (2 for spatial $\times 4$ for temporal direction of source location)
 - More than 5 times speed-up,

3. Recent update (preliminary) VPF from 1 GeV^2 to 2 GeV^2

3. Recent update (preliminary) Discrepancy from perturbation + OPE

Discrepancy is linearly increasing, which is $O((aQ)^2)$ lattice artifact.

3. Recent update (preliminary) Lattice artifacts

3. Recent update (preliminary) Convergence

• Correction to C_0 from higher orders than NNLO

- The contribution of $O(\alpha_s^3)$ is small.
- The correction of $O(\alpha,^4)$ [5-loop] is about the same size.

Baikov, Chetyrkin, Kuhn (2008)

3. Recent update (preliminary) Table of fitting result

<i>a</i> ⁻¹ (GeV)	$\alpha_{\rm s}/\pi(2{ m GeV})$	$\Lambda^{(3)}_{\overline{ m MS}}({ m GeV})$	$\langle q\bar{q}\rangle_{\overline{\mathrm{MS}}}^{1/3}(\mathrm{GeV})$	$\left< \frac{\alpha_s}{\pi} G G \right> (\text{GeV}^4)$	χ^2/dof
1.73	0.0819(3)	0.2486(24)	-0.256(fix)	0.205(3)	2.5
2.23	0.0820(3)	0.2489(19)	-0.256(fix)	0.474(10)	2.7
1.83[1]	0.0817(6)	0.247(5)	-0.242(fix)	-0.020 (2)	2.8
1.73	0.0819(4)	0.2486(27)	-0.276(11)	0.237(18)	1.8
2.23	0.0830(8)	0.2557(56)	-0.325(29)	0.744(144)	1.3
Cont.	0.0844(20)				

[1] overlap fermion, [JLQCD (2010)]

- More accurate statistics
- Chiral condensate is in good agreement with result obtained from Hadron spectroscopy. \Rightarrow consistency with OPE formula
- Strong coupling constant in Nf=3 in physical point is 2.4% accuracy. (but it is statistical error only)

3. Recent update (preliminary) $\alpha_s(M_Z)$ from lattice QCD

- Precision of statistics is I % level.
- Our result is smaller value than world average, discrepancy over 2 sigma.
- Careful estimate of systematic error is needed (under way)

Summary

- Lattice QCD calculation of α_s is important to lead the precision.
- Several groups pursue very high precision, ~0.5% accuracy.
- Starting the computation including sea charm quark, which is able to avoid the m_c threshold uncertainty.
- Physical pion simulation is also under way.

Backup

▶ Target: Wilson loop, PT expansion \rightarrow MSbar alpha_s (M_Z)

$$W_{mn}, \left\langle _{BR} = \bigcap \right\rangle_{lat} \left\langle _{CC} = \bigcap \right\rangle_{lat}$$
$$\Rightarrow \sum_{n=1}^{5} c_n \alpha_v^n (d/a)$$

- Lattice PT with improved coupling constant for $c_{n=1,2,3}$ and multi cut-off fit for $c_{n=4,5}$
- Fitting $\alpha_V(d/a)$ at different cut-off and several W loops $q^2 \frac{d\alpha_V(q)}{d\alpha_V(q)} = -\beta_0 \alpha_V^2 - \beta_1 \alpha_0^3 - \beta_2 \alpha_1^4 - \beta_2 \alpha_2^5$

$$\frac{\partial \alpha_V(4)}{\partial q^2} = -\beta_0 \alpha_V^2 - \beta_1 \alpha_V^3 - \beta_2 \alpha_V^4 - \beta_3 \alpha_V^3$$
$$\Rightarrow \alpha_V (7.5 \text{GeV}, n_f = 3) = 0.2120(28)$$

Convert to MSbar in N³LO and b, c scale with PT

$$\alpha_s^{\overline{MS}}(M_Z, n_f = 5) = 0.1183(8)$$

HPQCD (2008)

Heavy quark correlator

Target : the moments of Heavy-heavy current correlator

$$G(t) = a^{6} \sum_{\vec{x}} (am_{h})^{2} \langle j_{5}^{h}(\vec{x},t) j_{5}^{h}(0,0) \rangle, \quad G_{n} = \sum_{t} (t/a)^{n} G(t)$$

and ratio to the tree level

$$R_n = \begin{cases} G_4(t)/G_4(0) & (n=4), \\ \frac{am_{\eta_h}}{2am_h} (G_n/G_n^{(0)})^{1/(n-4)} & (n \ge 6) \end{cases}$$

Fitting R_{4-18} with PT form:

$$r_n(\alpha_s^{\overline{MS}},\mu) = 1 + \sum_{j=1}^{N_{\rm ph}=6} r_{nj}(\mu/m_h)(\alpha_s^{\overline{MS}})^j(\mu)$$

to obtain $\alpha_s^{(5)}(M_Z) = 0.1183(7)$

Also they obtained $m_c(3 \text{ GeV}, \text{Nf=4}) = 0.986(6) \text{ GeV},$ $m_b(10 \text{ GeV}, \text{Nf=5}) = 3.62(3) \text{ GeV}$

Schrödinger functional scheme

Target : Dirichlet BC

 $\frac{\partial \Gamma}{\partial \eta}\Big|_{\eta=\nu=0} = \frac{k}{\bar{g}^2(L)} \quad \text{Differential of } \Gamma[\eta,\nu] = \ln Z \text{ with respect to BC field } \eta,\nu$ gives renormalized coupling. k determined by PT.

Non-perturbative running coupling with step scaling method

$$\Sigma(u,\frac{a}{L}) = \bar{g}^2(2L)\big|_{u=\bar{g}^2(L)}, \quad \sigma(u) = \lim_{a/L \to 0} \Sigma(u,\frac{a}{L})$$

continuum limit with L=4,6,8 $\bar{g}^2(L)$ is run to high scale using $\sigma(u)$, and then converted to MSbar with NNLO PT $\alpha_s^{\overline{MS}}(sq) = \sum_{i=0}^2 c_i(s) \alpha_{SF}^{i+1}(q)$ \downarrow matching at physical m_c and m_b $\alpha_s^{(5)}(M_z) = 0.1205(^{+9}_{-16})$

Analytic form of C

$$\begin{split} C_{0}(Q^{2},\mu^{2}) &= \frac{1}{16\pi^{2}} \Big\{ \frac{20}{3} + 4\ln\frac{\mu^{2}}{Q^{2}} + \frac{\alpha_{s}(\mu^{2})}{\pi} \Big[\frac{55}{3} - 16\zeta(3) + 4\ln\frac{\mu^{2}}{Q^{2}} \Big] \\ &+ \Big(\frac{\alpha_{s}(\mu^{2})}{\pi} \Big)^{2} \Big[\frac{41927}{216} - \frac{3701}{324} N_{f} - \Big(\frac{1658}{9} - \frac{76}{9} N_{f} \Big) \zeta(3) + \frac{100}{3} \zeta(5) \\ &+ \Big\{ \frac{356}{6} - \frac{11}{3} N_{f} - \Big(44 - \frac{8}{3} N_{f} \Big) \zeta(3) + \Big(\frac{11}{2} - \frac{1}{3} N_{f} \Big) \ln\frac{\mu^{2}}{Q^{2}} \Big\} \ln\frac{\mu^{2}}{Q^{2}} \Big] \Big\} \\ C_{m}^{V}(Q^{2},\mu^{2}) &= \frac{1}{4\pi^{2}} \Big[-6 + \frac{\alpha_{s}(\mu^{2})}{\pi} \Big(-16 - 12\ln\frac{\mu^{2}}{Q^{2}} \Big) \\ &+ \Big(\frac{\alpha_{s}(\mu^{2})}{\pi} \Big)^{2} \Big\{ -\frac{19691}{72} + \frac{95}{12} N_{f} - \frac{124}{9} \zeta(3) + \frac{1045}{9} \zeta(5) \\ &- \Big(55 + 12\ln\frac{\mu^{2}}{Q^{2}} \Big) \ln\frac{\mu^{2}}{Q^{2}} - \Big(11 - \frac{2}{3} N_{f} \Big) \Big(\frac{13}{2} + \frac{3}{2} \ln\frac{\mu^{2}}{Q^{2}} \Big) \ln\frac{\mu^{2}}{Q^{2}} \Big\} \Big] \\ &+ \frac{N_{f}}{16\pi^{2}} \Big(\frac{\alpha_{s}(\mu^{2})}{\pi} \Big)^{2} \Big[\frac{128}{3} - 32\zeta(3) \Big] \\ C_{m}^{A}(Q^{2},\mu^{2}) &= \frac{1}{4\pi^{2}} \Big[-6 + \frac{\alpha_{s}(\mu^{2})}{\pi} \Big(-12 - 12\ln\frac{\mu^{2}}{Q^{2}} \Big) \\ &+ \Big(\frac{\alpha_{s}(\mu^{2})}{\pi} \Big)^{2} \Big\{ -\frac{4681}{24} + \frac{55}{12} N_{f} - \Big(34 - \frac{8}{3} N_{f} \Big) \zeta(3) + 115\zeta(5) \\ &- \Big(47 + 12\ln\frac{\mu^{2}}{Q^{2}} \Big) \ln\frac{\mu^{2}}{Q^{2}} - \Big(11 - \frac{2}{3} N_{f} \Big) \Big(\frac{11}{2} + \frac{3}{2} \ln\frac{\mu^{2}}{Q^{2}} \Big) \ln\frac{\mu^{2}}{Q^{2}} \Big\} \Big] \\ &+ \frac{N_{f}}{16\pi^{2}} \Big(\frac{\alpha_{s}(\mu^{2})}{\pi} \Big)^{2} \Big[\frac{128}{3} - 32\zeta(3) \Big] \end{split}$$

Analytic form of C

$$\begin{aligned} C_{\bar{q}q}^{V/A}(Q^2,\mu^2) &= -2\frac{\alpha_s(\mu^2)}{\pi} \Big[1 + \frac{1}{24} \frac{\alpha_s(\mu^2)}{\pi} \Big\{ 116 - 4N_f + (66 - 4N_f) \ln \frac{\mu^2}{Q^2} \Big\} \Big] \\ &+ /- 2 \Big[1 + \frac{4}{3} \frac{\alpha_s(\mu^2)}{\pi} + \frac{4}{3} \Big(\frac{\alpha_s(\mu^2)}{\pi} \Big)^2 \Big\{ \frac{191}{24} - \frac{7}{36} N_f + \Big(\frac{11}{4} - \frac{1}{6} N_f \Big) \ln \frac{\mu^2}{Q^2} \Big\} \Big] \\ &+ \frac{N_f}{3} \Big(\frac{\alpha_s(\mu^2)}{\pi} \Big)^2 \Big(4\zeta(3) - 3 + \ln \frac{\mu^2}{Q^2} \Big) + 0/4 \end{aligned}$$

$$C_{GG}(Q^2, \alpha_s) = \frac{1}{12} \left[1 - \frac{11}{18} \frac{\alpha_s(Q)}{\pi} \right]$$