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Gauged sigma-models

Ingredients:

» (X, /5, wy) Kahler structure on an oriented surface (base)

v

(X, jx,wx) another Kahler manifold (target)

» G compact Lie group with invariant metric
g := Lie(G)

» #:g" — g ‘musical’ isomorphism

v

G-action on X: holomorphic, Hamiltonian

ut X LN g* L g moment map

v



Gauged sigma-models
Fields: (A,¢) € A(P) x I'(Z, PX)

» A connection in principal G-bundle P — ¥
» ¢ section of associated bundle PX := P xc X — X
i.e. G-equivariant map ¢: P — X

Topological charge:

[015 := ((f x 9)/G).[Z] € HF(X;Z) for P=f"EG

The GSM action and Bogomol'nyi trick:

EA0) = 5 [(IFaP+1d%P +luooP)

= (x — B l015) + 5 [ ([#Fa i 0o + 20%F)




Vortex moduli spaces
The (symplectic) vortex equations:
(V1) &¢p=0

(V2) *Fa+pfop=0

Invariant under action of gauge group G = Auts(P) > g:

(A¢) — (AdgoA—g ldg,g-9)

NB: Same can be done for “antivortices’ s.t. 9*¢ = 0 etc.

But they don't live with vortices in BPS configurations.

We'll see in a moment how to implement coexistence of vortices
and antivortices in another sense.



Vortex moduli spaces

Fix h € HE(X;Z). Moduli spaces defined:

(V1),(V2) }/g

M (E) = {(A, D | and 1

Can recast this quotient in terms of Kahler reduction:
» (V1) is invariant under complexification GC.
» RHS of (V2) interpreted as G-moment map.

Thus (the smooth part of) M;{(X) receives a Kihler structure.



Vortex moduli spaces

Tangent spaces:
TAAP) = QYZ; P xaq9)
Tyr(Z, PX) Mz, ¢"TX/G)

Complex structure:
(A, ) = (xA, (¢"/5)9)

L2-metric:

(. n) - () i= (3 4] + (0" e s



Vortex moduli spaces
An interesting setting:
» X Kahler toric manifold,
» G=T cC T® C X its (real) torus
Then for X, X compact we have a good description of /\/th(Z):

THEOREM (M Bokstedt + NR):
Suppose X is constructed as Fana for a Delzant polytope A,
h € TBPSY with a o h([ws]Y) € int A and

k, = (c{ (D,), h) for p € Fana(1).
Then MX(X) is the smooth manifold

M) = Divi(Z(08))c J] Sym*(%)
pEFanna (1)

¢
=: {d Aoy, A # (94)Y = () supp(dy,) = @}

i=0



The gauged P'-model: BPS vortices and antivortices

» For today's talk we will take X =P = §2 T = U(1) = SL.
> In this situation, Mszo kl)(Z) was already well understood as a
complex manifold: (Mundet, Sibner-Sibner-Yang, Baptista)

Mo, 1 )(5) = Sym* () x Sym* () \ A

These spaces have a boundary even if ¥ is compact.



The gauged P'-model: BPS vortices and antivortices
Analysis: work on (dense) trivialising U C ¥, and use a
(stereographic) coordinate on target P!.

Moment map:

_ IxP-1
Cx2+1

1(x)

T, T real

Integrating (V2) over ¥ yields a constraint
—(14+7)Vol(X) < 2m(ky — k—) < (1 —7)Vol(X)

usually called ‘Bradlow's bound'.
Here, (ky — k_) = deg P.

Energy bound: E(A,¢) > 27(1 — 1)k +2m(1 + 7)k_



The case > =C

v

Topology is different for ¥ = C: P trivial, 0¥ = SL,

w(e) = g1 ¢ maps SL to equator of P!

v

v

Js Fa= [s A=2mdeg(]sy) = 2m(ks — k-)

ki, = t{ signed preimages of zeros/poles }

v

Total energy = 27(ky + k)

v

THEOREM (Y Yang):

M, (€)= Sym*+C x Sym*C\ Ag, 4



The case > =C

» Stereographic coordinate on target,

h = log |¢|?
» (V1)+(V2) =  Taubes' equation:

k—

k_
h
2 _
VZh—2tanh 7 = 4x ;:1 6+ (2) — ;:1 6,-(2)



The case > =C

» Stereographic coordinate on target h := log |¢|?
» Taubes' equation: (k ko) =1(1,1)

VZh — 2tanhg =47 (6,+(2) — 0,-(2))



The case > =C

» Stereographic coordinate on target h := log |¢|?

> Taubes' equation: Zp =—z_=¢

V2h — 2tanhg = 41 (0:(2) — 0-(2))



The case > =C

» Stereographic coordinate on target h := log |¢|?

» Taubes' equation:
2 h
V<h — 2tanh 5= Am (0:(z) — 0_2(2))

> Regularize: h = log |Z= + h




The case > =C

» Stereographic coordinate on target h := log |¢|?

» Taubes' equation:
z—¢ 2 +i’1

> Regularize: h = log|Z:Z

o lzmPe—jz e
|z —el2eh + |z + |2




The case > =C

v

Stereographic coordinate on target h := log |¢|?

v

Taubes’' equation:

Z—€

ZiJrE‘f'h

v

Regularize: h = log

2 h 2

~ z—c¢le" —|z+¢€

VI Lk il ES A GO
|z —el?eh + |z +¢]?

~

Rescale: z =: ew, h(w) = h(ew)

v



The case > =C

v

Stereographic coordinate on target h := log|¢|?

» Taubes' equation:
2 .
» Regularize: h = log|% Z+6 +h
» Rescale: z =:ew
~ 112eh 112
V2 - 2e 2w —1[%" — [w + 1 _0

lw —1[2eh 4 |w + 1]2



The case > =C

v

Stereographic coordinate on target h := log|¢|?

v

Taubes' equation:
2 .
+h

v

Regularize: h = log |2 Z+6

Rescale: z =: ew

v

112eh 2
N w— w+1
]W— 1]2eh 4 |w + 1]2

|w |ﬁoo

v

Solve with boundary condition h



The case > =C

& &
_1 1
—vortex +vortex




The case ¥ = C




The case > =C

Calculation of the metric: Strachan—Samols localisation

A0 = 5 [ (14~ + 16P)



The case > =C

Calculation of the metric: Strachan—Samols localisation

A0 = 5 [ (14~ + 16P)

Assume all vortex positions remain distinct

v

> ¢ =: e2M+iX and b =:¢n, son = %/14—1)'(

h satisfies the linearisation of Taubes’ equation

v

v

x from GauB's law: L2-orthogonality to G-orbits



The case > =C

Calculation of the metric: Strachan—Samols localisation

A0 = 5 [ (14~ + 16P)

Assume all vortex positions remain distinct
1 . . ' ..
» ¢ =:ezMXand ¢ =: ¢, son = %h—i—lx

h satisfies the linearisation of Taubes’ equation

v

v

v

x from GauB's law: L2-orthogonality to G-orbits

<V — sech?= >T]—4-7T 225 225



The case > =C

Calculation of the metric: Strachan—Samols localisation

A0 = 5 [ (14~ + 16P)

Assume all vortex positions remain distinct
1 . . ' ..
» ¢ =:ezMXand ¢ =: ¢, son = %h—i—lx

h satisfies the linearisation of Taubes’ equation

v

v

v

x from GauB's law: L2-orthogonality to G-orbits

<V — sech?= >T]—4-7T ZzﬂS Zz 5

z;, —— is (unique) solution



The case > =C

Calculation of the metric: Strachan—Samols localisation
o 1 5 1
4D = 5 [ (14~ +19P)
C

1 h
= /( 82778;7]+sech277n>
2 Je 2



The case > =C

Calculation of the metric: Strachan—Samols localisation

Aot = 5 [ (1A +1oP)

1 h
= Zlim / <4 0,N0=n + sechzﬁn>
2 e—0 (C\Ur,sBe(er,:s) 2



The case > =C

Calculation of the metric: Strachan—Samols localisation
o 1 5 o
IANIE = 5 [ (AP +19P)
C

1 h
= = Iim/ (402 70s1) — (V2 — sech®=)7 >
2% Jeronm ot (710zn) — ( 2



The case > =C

Calculation of the metric: Strachan—Samols localisation

Ao = 5 [ (1AF+1op)

ki k_

S

r,s=1 Be(z,:{:s)



The case > =C

Calculation of the metric: Strachan—Samols localisation

Aok = 5 [ (1AF+10p)

Kok
= ilim Z j{ 01
e—0 e aBe(z,jfs)
s+
¥z
n = - +0o(l) asz— er,[s

zZ—Zrs



The case > =C

Calculation of the metric: Strachan—Samols localisation

1

IAaNE = 5 [ (1A +1oP)

k+,k_ + or —

ob

2y

= 7 E ‘er‘ E 7quzq
P

r,s=1 P,q



The case > =C

Calculation of the metric: Strachan—Samols localisation

1

IAaNE = 5 [ (1A +1oP)

k+,k_ + or —

_ 2, Obg |
= 7 E ‘Zr S+ E 72132(1
r,s=1 P,q P

Asymptotics near vortex cores, z = z,:

; PR +12 +
(Z Zy )+7(Z_Zr )+O(|Z_Zr | ) as z— 2z,

b;
+h=log|z—z|*+a +—= 5

2



The case > =C

Calculation of the metric: Strachan—Samols localisation

IAaNE = 5 [ (1A +1oP)

k+,k_ + or —
_ 1252 4 %ZZ
= 7 r,s Oz, Pca
r,s=1 P,q P

Asymptotics near vortex cores, z = z,:

b; b
—h=log|z—z; |*+a; +—= > = (z— zs_)+75(2—25_)+0(\z—zs_|2) as z — z,



The case > =C

M(ll( ) = Cem x C*

Aim: understand metric for centred (4, —)-pairs (i.e. on C*)
zy = —z4 +— = ee
g = F(e)(de? + £2d9?)
where:
» Fle)=2m (2+ %d%(sb(e)))

> b(e) := bf (g, —¢)

> cb(e) = 73(32‘”) Ve 1



The case > =C




The case > =C

Self-similarity conjecture: consider ¢ << 1.

> Results suggest

he(w) = efi(ew) for £, fixed 17

» To test this: study

- 35



The case > =C

f ()

_ I
e ““%%%% X £=0.09
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The case > =C

v

Results suggest

he(w) = ef,(ew) for f, fixed 1?

v

To test this: study

() =1h(%) ~ )

9 9

v

Now plug this into Taubes’ equation to obtain PDE for f,

v

Take formal limit as € — 0;
obtain screened Poisson equation with a simple source.

Solve equation to obtain asymptotics of metric g(®).

v



The case > =C

f.00




The case > =C

Asymptotics of conformal factor:

» Ase — 0T
Fi(e) =2m(2 + 4Ko(e) — 2eKi(e)) ~ —8mloge

» As ¢ — oo (different argument, cf. Manton & Speight):

2
Foole) =27 (2 + 7C:2Ko(2e)> , g~ —7.1388



The case > =C

B
o 4
w o
\
\
A
A
B \
\
X
By
4k N\ ~
e, D
* ~
~
~
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2L
1
0 05



The case > =C

Our formula for F, implies incompleteness with unbounded positive
GauB curvature as € — 0.




Geometry of Mf, , |(¥) from GLSMs

Consider a parent model with & compact, X = C?, T2 = U(1)*.
Representation with weights Q. € Z,

1 02 1 2
(X+7X*) = <)‘S+)\2Q+X+a )‘f)‘g){)

The vortex equations on (Az, A2) and ¢ = (¢4, p_) are:

2
ArA) = [ 5 - iz QLA | ¢+ =0
=1

N

e

Fay=—piod =2 (QlesP+ Qe -75) j=1.



]Pul
Geometry of M, , ,(¥) from GLSMs
1) Integrating the latter over ¥, with (k1, k2) = deg P, get
2k; T 1 _
T = 2Vol(®) - 5 (Qf el + Q) lle- )
J
which gives as Bradlow's bound: (71, 7) must lie in the affine cone

with vertex V‘Y(rz)(ké, k%) € Lie(T) spanned by Q4+, Q—.

2) Will consider the P'-model as a formal limit as e? — oo, €3 = 1
Get a constraint:

QLo+ l? + QLllp—|? = 71 + O(e; ) uniformly on X

Model P! = S3/S? = {this hypersurface}/U(1)1, by setting
QL = 1. Then take @ = (1,0) and

¢ =lp+ -], A =extra_12/u01), (A1, A2) = A2



Geometry of Mf, , |(¥) from GLSMs

3) Thus get 9%¢ = 0i.e. (V1) and also

— 2 _
xFp, = _1 <(T1 17__2|_)||Z||2 7‘2> + O(e;2)

2
which matches (V2) iff (11, 72) = (4,2 — 7).
Bradlow’s bounds also match as e? — oo.

PROPOSITION 1 (NR + M Speight):
Suppose ki = ij 1 Qj'[ > max{2g — 2,0} with Q4 as above, and

k k 4
Vol <*1 - ej) > 2Vﬂ1(22) Then

T — T >

M(k17k2)( ) 2 Sym*+(Z) x Sym*~ (%)



Geometry of Mf, , |(¥) from GLSMs
PROPOSITION 2 (NR + M Speight):

Under the same conditions, the Kahler class of the L2-metric for
the GLSM vortex moduli space is

[wL2] = Z(Csns + Dses)
s==+

where 74 = Cl(Pgi)- 0+ = AJ%(©-class) and

212 (ky — k_
. = WTQVOI(Z)—M+—2),
€
ke ky —k_
C. = —p)Vol(¥) —27% (&= — "),
m(m1 — 1) Vol(X) T <ef e22 >
272
D = —
+ 622’



Geometry of Mf, , |(¥) from GLSMs

This leads to the result

g IC”S*"SD"S
VOl( (k+ (Z)> H Z (ns fls)'( — is)lis!

s== js=0

as well as to the

CONJECTURE:
Vol (Mfy, 4 (%)) = fim Vol (MG (= ))eg:1

(zﬂ)k++k,

i (Vol(E) + mlke = ko)) (Vol(D) = (k- — ki)

(Similarly, get conjectural formula for total scalar curvature.)



The case ¥ = 53

Round metric: gy = - oypdzdz =: Q(|z|) dzdz

(1+| |2)
Taubes' equation:

ks k_
h
2
V<h — 2Q(|z]) tanh 5= 47 E 6,+(2) - E_l 6,-(2)

r=1

L2-metric on M]Et%ki)(s,%):

g2 = 2« ZQ\zﬂ ydz+y2+2mz )|dz;|?

+ Z g ftdz*d‘* Z 82: dz-dz,

r,s=1 r,s=1

ke k- ko kg

+ZZ Sdz,er + +Zza;

rlsl r=1s=1




The case ¥ = 53
On MSO%(S,%) L?-metric given by
b
gfg) =2 <2§2(5) + b'(e) + (;)> (de? + £2dy?)

where b is determined through

oh
= —1
eb(e) Doy
w=(1,0)
from h (regularising h) solving
V25 8R2¢? |W—1|2h—|w—i—1]2:0

w

(L+e2wl)? |w — 1]2eh + |w + 12



The case ¥ = S3

Numerical evidence suggests:

limeb(e) = —1

e—0

which implies the heuristic volume formula above.

Less clear (but still suggested?) is whether

m d(eb(e))

>0
e—0 de ’

which would imply F(g) ~ % and incompleteness of gg)).



The case ¥ = S3
LEMMA:
Any SO(3) x Zp-invariant Kahler metric on M 1y = 5% x 52\ 53
has the form

Q'(e)

1—¢? 142
=T o) o) ([ 50+ 1 0d)

1420t T 12 2%

for some smooth decreasing Q : (0,1] — R™, where o; are
left-invariant forms on SO(3).
Regularity at € — 1 requires Q(1) = 0.

This has Vol(M(1.,1), &) = (2m)?Q(0)*.

The vortex-antivortex L2-metric has

2

Qe) = —2r (5b(€) — 14R +2R% + 1) .

+ g2



The case ¥ = S3

THEOREM (NR + J Speight):

Vol (Mf]1)(S3)) = (2m)*(4R?)?

PROOF: It amounts to establishing that

éCE

HO(BI/Q(]-))

H CO(By (1)

This involves doing several elliptic estimates for the PDE satisfied
by h, a little Sobolev theory, and various other tricks.



Supersymmetry, topology, nonabelions

v

GSM admits local N' = (2, 2) susy extension

v

A-twist yields global N' = (2,0) susy gauged sigma-model.
(J Baptista)

v

Semiclassical approximation to QFT: susy QM on M{(X)

v

Waveforms taking values in local systems

v

Counting ground states amounts to computation of analytic
L2-Betti numbers for covers (Mff(Z), §L2>

» Quite generally, obtain infinite nonabelian fundemental groups.



Supersymmetry, topology, nonabelions

Eg.
1
0= Zyeak b ) = 71 (M, 4 )(D)) = HU(EZ)™ 0

Nonabelian statistics may arise from braiding:

b &K

T

0O &

Relating analytic L?-Betti numbers to more easily computable
invariants relies on understanding the asymptotics of L?-metrics.
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