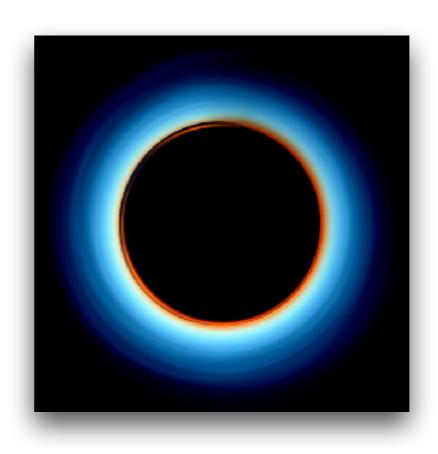
Dynamical symmetry enhancement near black hole horizons

Ulf Gran Chalmers University of Technology

Outline

- Introduction & Motivation
- Tools
- Method
- Results
- Outlook

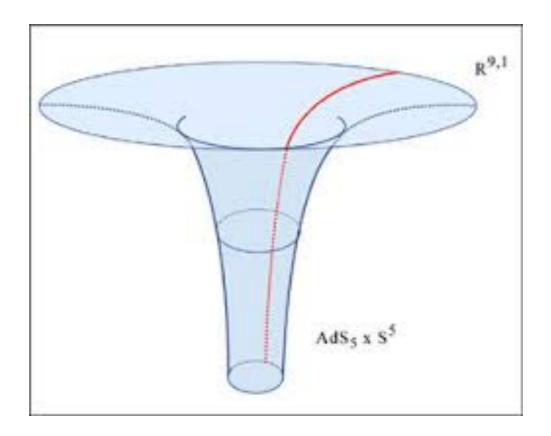


Introduction & Motivation

- The physics near black hole/brane horizons has many interesting features and puzzles (information paradox, BMS transformations, firewalls etc).
- And interesting applications, most notably in the context of the AdS/CFT correspondence.
- One generic feature, observed on a case-by-case basis, is the (super)symmetry enhancement occurring in the near horizon region of supersymmetric black holes and branes.

A familiar example of symmetry enhancement: D3-branes in IIB supergravity

- Near the horizon the symmetry enhances to SO(2,4), i.e. the conformal group in D=4
- In addition the number of preserved SUSY doubles (no SUSY broken)



Questions

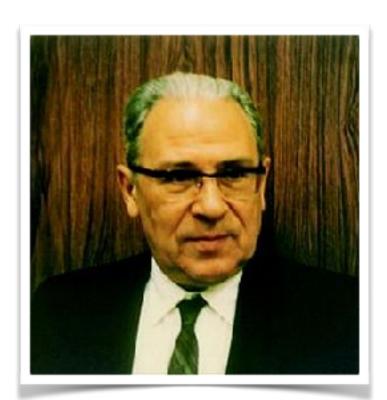
- General picture?
- What is required for (super)symmetry enhancement near the black hole horizon?
- Aim: General proof of (super)symmetry enhancement for supersymmetric horizons.
- Talk mainly based on:
 - U. Gran, J. Gutowski, U. Kayani & G. Papadopoulos [arXiv: 1411.5286 & 1409.6303]
 - U. Gran, J. Gutowski & G. Papadopoulos [arXiv:1306.5765]
- Related work include
 - J. Gutowski & G. Papadopoulos [arXiv:1303.0869]
 - J. Grover, J. Gutowski, G. Papadopoulos, & W. Sabra [arXiv: 1303.0853]

Tools

- The Hopf Maximum Principle
- Lichnerowicz Type of Theorems
- Index Theorem
- GAMMA

The Hopf Maximum Principle

- "Classic and bedrock result" in the theory of second order elliptic PDEs.
- The Hopf maximum principle (1927) states that if a function achieves its maximum in the interior of the domain, the function is a constant.
- Requires that the PDE satisfies a certain positive definiteness property.
- Example: Harmonic functions (Gauss 1839).
- We assume *compact* horizons.
- Strategy: Rewrite the equations in such a form that the maximum principle can be applied.



Eberhard Hopf 1902-1983

Lichnerowicz Type of Theorems

• Fundamental equation in the analysis of spinors on pseudo-Riemannian manifolds

$$\mathscr{D}^2 \epsilon = \nabla^2 \epsilon + \frac{1}{4} R \epsilon$$

- Relates the Dirac and Laplace operator acting on a spinor, and the scalar curvature
- Since the Laplace operator is an *elliptic* operator we apply the Hopf maximum principle.
- In D=4 important in Seiberg-Witten theory

André Lichnerowicz 1915-1998

Index Theorem

- We use the Atiyah–Singer index theorem (1963).
- Index theorems relate *analytic* quantities to *topological* invariants.
- Applicable for *elliptic* differential operators on *compact* manifolds.
- Since we have Dirac-like operators (modified by fluxes) we can use index theorems to count their *zero-modes*.
- The zero-modes will be identified with the Killing spinors.
- Through (modified) Lichnerowicz type of theorems we can combine analytical and topological constraints from spinor theory with constraints on elliptic PDEs for which the Hopf maximum principle applies.

GAMMA

- Mathematica package for performing Γ-matrix algebra.
- Very lengthy calculations...
- Download from <u>www.gran.name</u>
- Compatible with Mathematica 11.1

Equations to Analyze

- The Killing spinor equations (KSE) encode the requirement of preserving SUSY: linear
- Field equations encode the interplay between fluxes and geometry: non-linear
- Integrability conditions relate the KSEs and the field equations.
- Usual approach: Remove the redundant field equations.
- We will do the opposite! (Since some of the KSE are very complicated)

Assumptions

- 1. The horizons admit at least one supersymmetry.
- 2. The horizons are *compact*.
- 3. The near horizon geometries are *smooth*.

Incorporate the Horizon

- Coordinate independent definition of an event horizon for an extremal black hole: *Killing horizon*
- Introduce Gaussian null coordinates and use adapted metric and fields [Isenberg & Moncrief '83, Friedrich, Racz & Wald '98]

$$ds^{2} = 2\mathbf{e}^{+}\mathbf{e}^{-} + \delta_{ij}\mathbf{e}^{i}\mathbf{e}^{j} , \quad G = \mathbf{e}^{+} \wedge \mathbf{e}^{-} \wedge X + r\mathbf{e}^{+} \wedge Y + \tilde{G} ,$$
$$H = \mathbf{e}^{+} \wedge \mathbf{e}^{-} \wedge L + r\mathbf{e}^{+} \wedge M + \tilde{H} , \quad F = \mathbf{e}^{+} \wedge \mathbf{e}^{-}S + r\mathbf{e}^{+} \wedge T + \tilde{F} ,$$

where

$$\mathbf{e}^+ = du, \qquad \mathbf{e}^- = dr + rh - \frac{1}{2}r^2\Delta du, \qquad \mathbf{e}^i = e^i{}_I dy^I$$

.

- The forms in the right hand sides above are forms on the spatial horizon section **S** given by u = r = 0.
- NB: All *u* and *r* dependence is explicit.
- Smoothness required for the field equations and Bianchis to be valid.

Killing Spinor Equations

 The Killing spinor equations (KSE) are the gravitino and dilatino supersymmetry variations evaluated at the locus where all fermions vanish.

$$\begin{split} \mathcal{D}_{\mu} \epsilon &\equiv \nabla_{\mu} \epsilon + \frac{1}{8} H_{\mu\nu_{1}\nu_{2}} \Gamma^{\nu_{1}\nu_{2}} \Gamma_{11} \epsilon + \frac{1}{16} e^{\Phi} F_{\nu_{1}\nu_{2}} \Gamma^{\nu_{1}\nu_{2}} \Gamma_{\mu} \Gamma_{11} \epsilon \\ &+ \frac{1}{8 \cdot 4!} e^{\Phi} G_{\nu_{1}\nu_{2}\nu_{3}\nu_{4}} \Gamma^{\nu_{1}\nu_{2}\nu_{3}\nu_{4}} \Gamma_{\mu} \epsilon + \frac{1}{8} e^{\Phi} m \Gamma_{\mu} \epsilon = 0 \ , \\ \mathcal{A} \epsilon &\equiv \partial_{\mu} \Phi \Gamma^{\mu} \epsilon + \frac{1}{12} H_{\mu_{1}\mu_{2}\mu_{3}} \Gamma^{\mu_{1}\mu_{2}\mu_{3}} \Gamma_{11} \epsilon + \frac{3}{8} e^{\Phi} F_{\mu_{1}\mu_{2}} \Gamma^{\mu_{1}\mu_{2}} \Gamma_{11} \epsilon \\ &+ \frac{1}{4 \cdot 4!} e^{\Phi} G_{\mu_{1}\mu_{2}\mu_{3}\mu_{4}} \Gamma^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}} \epsilon + \frac{5}{4} e^{\Phi} m \epsilon = 0 \ , \end{split}$$

• Use the Ansatz for the metric and the fields to re-express the field equation, Bianchi identities and the KSEs.

Integrate along the light cone

- Since all *u* and *r* dependence is explicit it is possible to integrate the KSE along the light-cone directions.
- This leads to conditions in terms of the KSEs restricted to the horizon $\nabla_i^{(\pm)}\eta_{\pm} = 0, \quad \mathcal{A}^{(\pm)}\eta_{\pm} = 0,$

where

$$abla_i^{(\pm)} = ilde{
abla}_i + \Psi_i^{(\pm)} \; ,$$

$$\begin{split} \Psi_i^{(\pm)} &= \left(\mp \frac{1}{4} h_i \mp \frac{1}{16} e^{\Phi} X_{l_1 l_2} \Gamma^{l_1 l_2} \Gamma_i + \frac{1}{8 \cdot 4!} e^{\Phi} \tilde{G}_{l_1 l_2 l_3 l_4} \Gamma^{l_1 l_2 l_3 l_4} \Gamma_i + \frac{1}{8} e^{\Phi} m \Gamma_i \right) \\ &+ \Gamma_{11} \left(\mp \frac{1}{4} L_i + \frac{1}{8} \tilde{H}_{i l_1 l_2} \Gamma^{l_1 l_2} \pm \frac{1}{8} e^{\Phi} S \Gamma_i - \frac{1}{16} e^{\Phi} \tilde{F}_{l_1 l_2} \Gamma^{l_1 l_2} \Gamma_i \right) \,, \end{split}$$

$$\begin{aligned} \mathcal{A}^{(\pm)} &= \partial_i \Phi \Gamma^i + \left(\mp \frac{1}{8} e^{\Phi} X_{l_1 l_2} \Gamma^{l_1 l_2} + \frac{1}{4 \cdot 4!} e^{\Phi} \tilde{G}_{l_1 l_2 l_3 l_4} \Gamma^{l_1 l_2 l_3 l_4} + \frac{5}{4} e^{\Phi} m \right) \\ &+ \Gamma_{11} \left(\pm \frac{1}{2} L_i \Gamma^i - \frac{1}{12} \tilde{H}_{ijk} \Gamma^{ijk} \mp \frac{3}{4} e^{\Phi} S + \frac{3}{8} e^{\Phi} \tilde{F}_{ij} \Gamma^{ij} \right) \,. \end{aligned}$$

Modified Dirac operators

- Goal: Identify the Killing spinors with the zero-modes of modified Dirac operators allowing us to use index theorems to count the Killing spinors.
- NB: There are two Killing spinor equations!
- Dirac operators: $\mathscr{D}^{(\pm)} = \mathcal{D}^{(\pm)} \mathcal{A}^{(\pm)}$,

where

$$\mathcal{D}^{(\pm)} \equiv \Gamma^i \nabla_i^{(\pm)} = \Gamma^i \tilde{\nabla}_i + \Psi^{(\pm)} ,$$

and

$$\Psi^{(\pm)} \equiv \Gamma^i \Psi_i^{(\pm)} = \mp \frac{1}{4} h_i \Gamma^i \mp \frac{1}{4} e^{\Phi} X_{ij} \Gamma^{ij} + e^{\Phi} m$$
$$+ \Gamma_{11} \left(\pm \frac{1}{4} L_i \Gamma^i - \frac{1}{8} \tilde{H}_{ijk} \Gamma^{ijk} \mp e^{\Phi} S + \frac{1}{4} e^{\Phi} \tilde{F}_{ij} \Gamma^{ij} \right)$$

Lichnerowicz Type of Theorems

• Needed to show

$$abla_i^{(+)}\eta_+=0 \;, \quad \mathcal{A}^{(+)}\eta_+=0 \iff \mathscr{D}^{(+)}\eta_+=0 \;.$$

i.e. that there is a 1-1 correspondence between Killing spinors and zero modes.

$$\mathscr{D}^{(+)}: \qquad \tilde{\nabla}^{i}\tilde{\nabla}_{i} \parallel \eta_{+} \parallel^{2} - (2\tilde{\nabla}^{i}\Phi + h^{i})\tilde{\nabla}_{i} \parallel \eta_{+} \parallel^{2} = 2 \parallel \hat{\nabla}^{(+)}\eta_{+} \parallel^{2} + (-4\kappa - 16\kappa^{2}) \parallel \mathcal{A}^{(+)}\eta_{+} \parallel^{2} ,$$

 $\mathscr{D}^{(-)}:$

$$\begin{split} \tilde{\nabla}^{i} \big(e^{-2\Phi} V_{i} \big) &= \\ &- 2 e^{-2\Phi} \parallel \hat{\nabla}^{(-)} \eta_{-} \parallel^{2} + e^{-2\Phi} (4\kappa + 16\kappa^{2}) \parallel \mathcal{A}^{(-)} \eta_{-} \parallel^{2} \ , \end{split}$$

where

$$\begin{split} \hat{\nabla}_i^{(\pm)} &= \nabla_i^{(\pm)} + \kappa \Gamma_i \mathcal{A}^{(\pm)} \\ V &= -d \parallel \eta_- \parallel^2 - \parallel \eta_- \parallel^2 h \end{split}$$

Supersymmetry enhancement

• Now, use the index theorem to arrive at $N_+ = N_-$

$$N = N_+ + N_- = 2N_-$$

• Then, it is possible to show that if η_{-} is a Killing spinor, then so is

where
$$\eta_+ = \Gamma_+ \Theta_- \eta_-$$

$$\Theta_{-} = \frac{1}{4}h_{i}\Gamma^{i} + \frac{1}{4}\Gamma_{11}L_{i}\Gamma^{i} - \frac{1}{16}e^{\Phi}\Gamma_{11}(-2S + \tilde{F}_{ij}\Gamma^{ij}) - \frac{1}{8\cdot 4!}e^{\Phi}(-12X_{ij}\Gamma^{ij} + \tilde{G}_{ijkl}\Gamma^{ijkl}) - \frac{1}{8}e^{\Phi}m$$

• Using the Hopf maximum principle one can show that

$$\operatorname{Ker} \Theta_{-} = \{0\}$$

(otherwise a contradiction) unless all fields vanish, so the extra Killing spinor is non-zero.

Symmetry enhancement

- We just showed that there is always at least two Killing spinors.
- The three Killing vectors that can be constructed from them form an sl(2,R) algebra

$$\begin{split} K_1(\epsilon_1, \epsilon_2) &= -2u \parallel \eta_+ \parallel^2 \partial_u + 2r \parallel \eta_+ \parallel^2 \partial_r + \tilde{V} ,\\ K_2(\epsilon_2, \epsilon_2) &= -2 \parallel \eta_+ \parallel^2 \partial_u ,\\ K_3(\epsilon_1, \epsilon_1) &= -2u^2 \parallel \eta_+ \parallel^2 \partial_u + (2 \parallel \eta_- \parallel^2 + 4ru \parallel \eta_+ \parallel^2) \partial_r + 2u\tilde{V} , \end{split}$$

where $\tilde{V} = \langle \Gamma_+ \eta_-, \Gamma^i \eta_+ \rangle \, \tilde{\partial}_i \,$

and

 $[K_1, K_2] = 2 \parallel \eta_+ \parallel^2 K_2 , \quad [K_2, K_3] = -4 \parallel \eta_+ \parallel^2 K_1 , \quad [K_3, K_1] = 2 \parallel \eta_+ \parallel^2 K_3 .$

Results

• There is always supersymmetry enhancement

```
N = 2N_{-} + \operatorname{Index}(D_{E})
```

- Killing horizons in IIA SUGRA always preserve and even number of supersymmetries.
- Horizons with $N_{-} \neq 0$ and non-trivial fluxes have an sl(2,R) symmetry subalgebra.
- Conjecture that this holds in general for all supergravity theories.
- The sl(2,R) symmetry provides evidence that all such horizons have an AdS/CFT dual.
- Reduction from D=11 breaks an even number of supersymmetries.

Outlook

- All information obtained solving neither the (horizon) KSEs nor the field equations!
- Solving the Killing spinor equations is feasible and could give more information on the structure of generic black holes.
- Can we exploit the sl(2,R) symmetry to get information about the dual CFT?