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(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

o The metric tensor g is non-degenerate but can be indefinite.
@ A proper subspace U C T, M can be totally isotropic, that is, g, |y = 0.

@ The Witt index s of (M, g) is the maximal dimension of a totally isotropic
subspace U C Tp M.

o Riemannian s = 0 (positive definite).
o Lorentzian s = 1 (“lightlike lines”).

By homogeneity of (M, g):
© M = G/H for a connected Lie group G and a closed subgroup H,
@ G acts transitively and by isometries (in particular volume-preserving),

@ G acts almost effectively (H has no connected normal subgroups).

Question:
When is a space of this type an Einstein manifold (Ric = Ag)?
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The Levi decomposition of G (simply connected) is G = (K x §) x R, with
@ K compact semsimple,
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The metric g on M induces a symmetric bilinear form (-, -) on g. Then:
o (-,-) is Adg(H )-invariant (that is, (Adg(h)x, Adg(h)y) = (x.y)).
o The kernel g = {x € g | (x,-) = 0} is precisely b.

Since (-, -) is a quadratic function on g, a density theorem by Mostow (1971) implies:
Corollary

Q ()is Wz-invariant,
@ (-,-) is invariant under Adg(S) and Adg(R)uig-

In particular, (-, -) is invariant under all nilpotent elements in of Lie(Adgy(H )Z).
We say (-, -) is nil-invariant (generalizes (bi-)invariance).
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Algebraic Theorem
© (-,-) is invariant under adg (s X v).
@ The restriction (-, ) sx¢ t0 s X v is invariant under adg/(g).
Q tls.
Q hcCexr.

Geometric Theorem
Suppose G = S x R, and M = G/H is a pseudo-Riemannian homogeneous space
of finite volume on which G acts almost effectively and isometrically. Then:

Q@ H isalatticeinG.
@ The pseudo-Riemannian metric g on M pulls back to a bi-invariant metric on G.

© M is alocally symmetric space.



IT Nil-invariant pseudo-Riemannian Einstein metrics



(M, g) is called Einstein manifold if

Ric = Ag
for some constant A € R.
For a bi-invariant metric g on G,

Ri !
1C = ——K
4

where k(x, y) = tr(ad(x)ad(y)) is the Killing form of g.

Einstein metrics
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Einstein Lie algebras

Consider the product (-,-) on g = (¢ x §) x v induced by an Einstein metric on G.

Proposition
If (-, -) is invariant on g, then

@ cither g is semisimple and (-, -) is a non-zero multiple of the Killing form k,

@ or g is solvable and k = 0.

Remark

@ This holds in particular if the Levi subgroup of G has no compact semisimple
factors.

@ Unclear for nil-invariant (-, -) on g with £ # 0.
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Semisimple splitting
Theorem A
Let

@ M be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,

o G = K x § a semisimple, connected and simply connected Lie group acting
transitively and almost effectively by isometries on M,

@ K compact semisimple and S semisimple without compact factors.
Then M is a pseudo-Riemannian product of Einstein manifolds
M = Mg x Mg,

where
@ Mg = K/(H N K) for a closed subgroup H < G,and H° < H N K,

@ Mg = S/I' and a lattice I' < S, and the Einstein metric on Mg is induced by
a multiple of the Killing form on S.

Proof

@ For the stabilizer H, we have H°® < H N K. Then M g is the K-orbit througho = eH .

@ t 1 s, and K, S commute. Hence S-orbits and M g are orthogonal everywhere.
o ns(H) =TI isalatticein S,so Mg = S/TI.

The metric g is Einstein and bi-invariant, hence gs ~ k5. O
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Compact Einstein solvmanifolds

Let (M, gpr) be a compact pseudo-Riemannian solvmanifold.

Recall:
@ M = G/I foralattice I’ <G.
@ gjs pulls back to bi-invariant g¢ .

@ (-,-) on g is non-degenerate and invariant.

If (M, gpr) is Einstein,
Ric =0 =«.
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Solvable, but not nilpotent?

If g is nilpotent, then k = 0.

Question:
Are there solvable g, not nilpotent, with

Q@ «=0

@ and invariant scalar product (-, -)?

Yes!
Construct examples of dimension 6 and index 2 using Medina’s double extension.
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Einstein scalar products

g solvable with nilradical n, then g = a @ n.
@ ad(x) for x € nis nilpotent, so k(x,x) = 0.
@ For a € q, the Einstein condition (Ricci-flat, k = 0) becomes

A AT 4207 . 200 - 27— 2B =0,
where A; € Rand {; = o; +if; € C\R are the eigenvalues of ad(a).
Theorem B

Let (g, (-, -)) be a solvable Lie algebra with invariant Einstein scalar product.
If g is not nilpotent, then dim g > 6 and the index of (-, -) is > 2.

Corollary
Every Lorentzian Einstein Lie algebra (g, (-, -)) is abelian.

This follows from the Theorem B and the classification of invariant Lorentzian scalar
products (Medina 1985, Hilgert & Hofmann 1985).
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Solvable non-nilpotent Lie groups G with Einstein metrics exist.

For the existence of a compact quotient M of G, there must be a lattice I" < G.

Necessary conditions for the existence of a lattice (Auslander 1973):
@ Q-structure on n,

@ adjoint action of a on n can be represented by integer matrices.

The characteristic polynomial of exp(ad(a)) has coefficients in Z for all a € a...
ebi of exp(ad(a)) are algebraic numbers.

which means that all eigenvalues et
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Digression: Hilbert’s 7th Problem

Hilbert’s 7th Problem
“The expression b, for an algebraic base « and an irrational algebraic exponent f,

e.g., the number 2V2 ore” , always represents a transcendental or at least an
irrational number.”

Gelfond-Schneider Theorem (1935)
Leta € C\{0, 1} and Ilet B € C be irrational.
Then at least one of a, B and af is transcendental.

Schanuel’s Conjecture states:
Letay, ..., o  be complex numbers, linearly independent over Q. Then

trdegq Qa1 ..., g, €%, ... e%) > d.
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Algebraic Lemma
Let X be a matrix in the normal form of ad(a) with eigenvalues A1, ..., A; € R and
C1oeo i lm, Cq, ..., ¢, € C\RR. Suppose the eigenvalues satisty

AT+ A2+ 2Re(C1)? + ...+ 2Re(Gm)? — 2Im(81)? — ... — 2Im(§m)? = 0.

Ifn <5, then there is no t € R such that exp(tX) is conjugate to a matrix in
SL(n, Z).

Proof
@ To satisfy the given equation, X has at least one non-real eigenvalue pair ¢, ¢
Ifn <5,thenn =4orn =5.
@ One can show that there always exists a pair of eigenvalues £, &' for exp(tX)
(needn < 5).
@ By Gelfond-Schneider Theorem:
One of £ or ! is transcendental, so exp(2X) is not conjugate to a matrix in SL(%, Z). [
Conjecture
If Schanuel’s Conjecture is true, then the Algebraic Lemma holds without “n < 5”.
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Solv = Nil

Theorem C
Let M be a compact pseudo-Riemannian Einstein solvmanifold and dim M < 7.
Then M is a nilmanifold.

Proof
@ M = G/I',with I' < G alattice and G solvable, but not nilpotent.
@ By Theorem A: May assume 6 < dim M < 7.

@ Consider g = a @ n as before. For a € a, ad(a) is not nilpotent.

By Auslander’s criterion, exp(zad(a)) is conjugate to a matrix in SL(n, Z) for some 7.

@ Let W = imad(a). Then dim W < 5 (from structure theory).

@ Apply Algebraic Lemma to ad(a)|w :
exp(tad(a)) is not conjugate to a matrix in SL(n, Z) for any .

@ Contradiction, so G must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.
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