Compact pseudo-Riemannian Einstein manifolds in low dimensions

WOLFGANG GLOBKE (joint work with Yuri Nikolayevsky)

School of Mathematical Sciences

Workshop Geometry, Gravity and Supersymmetry Mainz Institute for Theoretical Physics, April 2017 I Properties of compact pseudo-Riemannian homogeneous spaces

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

• The metric tensor g is non-degenerate but can be indefinite.

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_p M$ can be totally isotropic, that is, $g_p|_U = 0$.

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_p M$ can be totally isotropic, that is, $g_p|_U = 0$.
- The Witt index s of (M, g) is the maximal dimension of a totally isotropic subspace U ⊂ T_pM.
 - Riemannian s = 0 (positive definite).
 - Lorentzian s = 1 ("lightlike lines").

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_p M$ can be totally isotropic, that is, $g_p|_U = 0$.
- The Witt index s of (M, g) is the maximal dimension of a totally isotropic subspace U ⊂ T_pM.
 - Riemannian s = 0 (positive definite).
 - Lorentzian s = 1 ("lightlike lines").

By homogeneity of (M, g):

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_p M$ can be totally isotropic, that is, $g_p|_U = 0$.
- The Witt index s of (M, g) is the maximal dimension of a totally isotropic subspace U ⊂ T_pM.
 - Riemannian s = 0 (positive definite).
 - Lorentzian s = 1 ("lightlike lines").

By homogeneity of (M, g):

- M = G/H for a connected Lie group G and a closed subgroup H,
- G acts transitively and by isometries (in particular volume-preserving),
- G acts almost effectively (H has no connected normal subgroups).

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_p M$ can be totally isotropic, that is, $g_p|_U = 0$.
- The Witt index s of (M, g) is the maximal dimension of a totally isotropic subspace U ⊂ T_pM.
 - Riemannian s = 0 (positive definite).
 - Lorentzian s = 1 ("lightlike lines").

By homogeneity of (M, g):

- M = G/H for a connected Lie group G and a closed subgroup H,
- G acts transitively and by isometries (in particular volume-preserving),
- G acts almost effectively (H has no connected normal subgroups).

Question:

When is a space of this type an Einstein manifold (Ric = λg)?

The Levi decomposition of G (simply connected) is $G = (K \times S) \ltimes R$, with

- K compact semsimple,
- S semisimple without compact normal subgroups,
- *R* the solvable radical of *G*.

The Levi decomposition of G (simply connected) is $G = (K \times S) \ltimes R$, with

- K compact semsimple,
- S semisimple without compact normal subgroups,
- R the solvable radical of G.

Their Lie algebras are $\mathfrak{g}, \mathfrak{k}, \mathfrak{s}$ and \mathfrak{r} .

The Levi decomposition of G (simply connected) is $G = (K \times S) \ltimes R$, with

- K compact semsimple,
- S semisimple without compact normal subgroups,
- *R* the solvable radical of *G*.

Their Lie algebras are $\mathfrak{g}, \mathfrak{k}, \mathfrak{s}$ and \mathfrak{r} .

The metric g on M induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g.

The Levi decomposition of G (simply connected) is $G = (K \times S) \ltimes R$, with

- K compact semsimple,
- S semisimple without compact normal subgroups,
- *R* the solvable radical of *G*.

Their Lie algebras are $\mathfrak{g}, \mathfrak{k}, \mathfrak{s}$ and \mathfrak{r} .

The metric g on *M* induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g. Then:

- $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$ -invariant (that is, $\langle \operatorname{Ad}_{\mathfrak{g}}(h)x, \operatorname{Ad}_{\mathfrak{g}}(h)y \rangle = \langle x, y \rangle$).
- The kernel $\mathfrak{g}^{\perp} = \{x \in \mathfrak{g} \mid \langle x, \cdot \rangle = 0\}$ is precisely \mathfrak{h} .

The Levi decomposition of G (simply connected) is $G = (K \times S) \ltimes R$, with

- K compact semsimple,
- S semisimple without compact normal subgroups,
- *R* the solvable radical of *G*.

Their Lie algebras are $\mathfrak{g}, \mathfrak{k}, \mathfrak{s}$ and \mathfrak{r} .

The metric g on M induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g. Then:

- $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$ -invariant (that is, $\langle \operatorname{Ad}_{\mathfrak{g}}(h)x, \operatorname{Ad}_{\mathfrak{g}}(h)y \rangle = \langle x, y \rangle$).
- The kernel $\mathfrak{g}^{\perp} = \{x \in \mathfrak{g} \mid \langle x, \cdot \rangle = 0\}$ is precisely \mathfrak{h} .

Since $\langle \cdot, \cdot \rangle$ is a quadratic function on g, a density theorem by Mostow (1971) implies: Corollary

- $\langle \cdot, \cdot \rangle$ is $\overline{\mathrm{Ad}_{\mathfrak{g}}(H)}^{\mathbb{Z}}$ -invariant.
- (\bullet, \cdot) is invariant under $\operatorname{Ad}_{\mathfrak{g}}(S)$ and $\operatorname{Ad}_{\mathfrak{g}}(R)_{\operatorname{trig}}$.

The Levi decomposition of G (simply connected) is $G = (K \times S) \ltimes R$, with

- K compact semsimple,
- S semisimple without compact normal subgroups,
- *R* the solvable radical of *G*.

Their Lie algebras are $\mathfrak{g}, \mathfrak{k}, \mathfrak{s}$ and \mathfrak{r} .

The metric g on M induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g. Then:

- $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$ -invariant (that is, $\langle \operatorname{Ad}_{\mathfrak{g}}(h)x, \operatorname{Ad}_{\mathfrak{g}}(h)y \rangle = \langle x, y \rangle$).
- The kernel $\mathfrak{g}^{\perp} = \{x \in \mathfrak{g} \mid \langle x, \cdot \rangle = 0\}$ is precisely \mathfrak{h} .

Since $\langle \cdot, \cdot \rangle$ is a quadratic function on g, a density theorem by Mostow (1971) implies: Corollary

- $\langle \cdot, \cdot \rangle$ is $\overline{\mathrm{Ad}_{\mathfrak{g}}(H)}^{\mathbb{Z}}$ -invariant.
- **(a)** $\langle \cdot, \cdot \rangle$ is invariant under $\operatorname{Ad}_{\mathfrak{g}}(S)$ and $\operatorname{Ad}_{\mathfrak{g}}(R)_{\operatorname{trig}}$.

In particular, $\langle \cdot, \cdot \rangle$ is invariant under all nilpotent elements in of $\mathfrak{Lie}(\overline{\mathrm{Ad}_{\mathfrak{g}}(H)}^{\mathbb{Z}})$. We say $\langle \cdot, \cdot \rangle$ is nil-invariant (generalizes (bi-)invariance).

Properties of nil-invariant metrics (Baues, Globke, Zeghib)

The Lie algebra

$$\mathfrak{g} = (\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}$$

has a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$.

Properties of nil-invariant metrics (Baues, Globke, Zeghib)

The Lie algebra

$$\mathfrak{g} = (\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}$$

has a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$.

Algebraic Theorem

- $\langle \cdot, \cdot \rangle$ is invariant under $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{s} \ltimes \mathfrak{r})$.
- **2** The restriction $\langle \cdot, \cdot \rangle_{\mathfrak{s} \ltimes \mathfrak{r}}$ to $\mathfrak{s} \ltimes \mathfrak{r}$ is invariant under $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{g})$.

 $\ \, {\mathfrak h}\subset {\mathfrak k}\ltimes {\mathfrak r}.$

Properties of nil-invariant metrics (Baues, Globke, Zeghib)

The Lie algebra

$$\mathfrak{g} = (\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}$$

has a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$.

Algebraic Theorem

- $\langle \cdot, \cdot \rangle$ is invariant under $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{s} \ltimes \mathfrak{r})$.
- ⁽²⁾ The restriction $\langle \cdot, \cdot \rangle_{\mathfrak{s} \ltimes \mathfrak{r}}$ to $\mathfrak{s} \ltimes \mathfrak{r}$ is invariant under $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{g})$.

$$\ \, \mathfrak{h} \subset \mathfrak{k} \ltimes \mathfrak{r}.$$

Geometric Theorem

Suppose $G = S \ltimes R$, and M = G/H is a pseudo-Riemannian homogeneous space of finite volume on which G acts almost effectively and isometrically. Then:

- *H* is a lattice in *G*.
- **②** The pseudo-Riemannian metric g on M pulls back to a bi-invariant metric on G.
- *M* is a locally symmetric space.

II Nil-invariant pseudo-Riemannian Einstein metrics

Einstein metrics

(M, g) is called Einstein manifold if

$$Ric = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

For a bi-invariant metric g on G,

$$\operatorname{Ric} = -\frac{1}{4}\kappa$$

where $\kappa(x, y) = tr(ad(x)ad(y))$ is the Killing form of \mathfrak{g} .

Einstein Lie algebras

Consider the product $\langle \cdot, \cdot \rangle$ on $\mathfrak{g} = (\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}$ induced by an Einstein metric on *G*.

Einstein Lie algebras

Consider the product $\langle \cdot, \cdot \rangle$ on $\mathfrak{g} = (\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}$ induced by an Einstein metric on *G*.

Proposition

- If $\langle \cdot, \cdot \rangle$ is invariant on g, then
 - either g is semisimple and $\langle \cdot, \cdot \rangle$ is a non-zero multiple of the Killing form κ ,
 - or \mathfrak{g} is solvable and $\kappa = 0$.

Einstein Lie algebras

Consider the product $\langle \cdot, \cdot \rangle$ on $\mathfrak{g} = (\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}$ induced by an Einstein metric on *G*.

Proposition

- If $\langle \cdot, \cdot \rangle$ is invariant on $\mathfrak{g},$ then
 - either g is semisimple and $\langle \cdot, \cdot \rangle$ is a non-zero multiple of the Killing form κ ,
 - or \mathfrak{g} is solvable and $\kappa = 0$.

Remark

- This holds in particular if the Levi subgroup of G has no compact semisimple factors.
- Unclear for nil-invariant $\langle \cdot, \cdot \rangle$ on \mathfrak{g} with $\mathfrak{k} \neq 0$.

III Semisimple isometry group

Theorem A

Let

- *M* be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,
- $G = K \times S$ a semisimple, connected and simply connected Lie group acting transitively and almost effectively by isometries on M,
- *K* compact semisimple and *S* semisimple without compact factors.

Theorem A

Let

- *M* be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,
- $G = K \times S$ a semisimple, connected and simply connected Lie group acting transitively and almost effectively by isometries on M,
- K compact semisimple and S semisimple without compact factors.

Then M is a pseudo-Riemannian product of Einstein manifolds

 $M = M_K \times M_S,$

where

- $M_K = K/(H \cap K)$ for a closed subgroup $H \leq G$, and $H^\circ \leq H \cap K$,
- $M_S = S/\Gamma$ and a lattice $\Gamma \leq S$, and the Einstein metric on M_S is induced by a multiple of the Killing form on S.

Theorem A

Let

- *M* be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,
- $G = K \times S$ a semisimple, connected and simply connected Lie group acting transitively and almost effectively by isometries on M,
- K compact semisimple and S semisimple without compact factors.

Then M is a pseudo-Riemannian product of Einstein manifolds

$$M = M_K \times M_S,$$

where

- $M_K = K/(H \cap K)$ for a closed subgroup $H \le G$, and $H^\circ \le H \cap K$,
- $M_S = S/\Gamma$ and a lattice $\Gamma \leq S$, and the Einstein metric on M_S is induced by a multiple of the Killing form on S.

Proof

• For the stabilizer H, we have $H^{\circ} \leq H \cap K$. Then M_K is the K-orbit through o = eH.

Theorem A

Let

- *M* be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,
- $G = K \times S$ a semisimple, connected and simply connected Lie group acting transitively and almost effectively by isometries on M,
- K compact semisimple and S semisimple without compact factors.

Then M is a pseudo-Riemannian product of Einstein manifolds

$$M = M_K \times M_S,$$

where

- $M_K = K/(H \cap K)$ for a closed subgroup $H \le G$, and $H^\circ \le H \cap K$,
- $M_S = S/\Gamma$ and a lattice $\Gamma \leq S$, and the Einstein metric on M_S is induced by a multiple of the Killing form on S.

Proof

- For the stabilizer H, we have $H^{\circ} \leq H \cap K$. Then M_K is the K-orbit through o = eH.
- $\mathfrak{k} \perp \mathfrak{s}$, and K, S commute. Hence S-orbits and M_K are orthogonal everywhere.

Theorem A

Let

- *M* be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,
- $G = K \times S$ a semisimple, connected and simply connected Lie group acting transitively and almost effectively by isometries on M,
- K compact semisimple and S semisimple without compact factors.

Then M is a pseudo-Riemannian product of Einstein manifolds

$$M = M_K \times M_S,$$

where

- $M_K = K/(H \cap K)$ for a closed subgroup $H \le G$, and $H^\circ \le H \cap K$,
- $M_S = S/\Gamma$ and a lattice $\Gamma \leq S$, and the Einstein metric on M_S is induced by a multiple of the Killing form on S.

Proof

- For the stabilizer H, we have $H^{\circ} \leq H \cap K$. Then M_K is the K-orbit through o = eH.
- $\mathfrak{k} \perp \mathfrak{s}$, and K, S commute. Hence S-orbits and M_K are orthogonal everywhere.
- $\pi_S(H) = \Gamma$ is a lattice in *S*, so $M_S = S/\Gamma$. The metric g_S is Einstein and bi-invariant, hence $g_S \sim \kappa_S$.

IV Einstein solvmanifolds

Compact Einstein solvmanifolds

Let (M, g_M) be a compact pseudo-Riemannian solvmanifold.

Recall:

- $M = G/\Gamma$ for a lattice $\Gamma \leq G$.
- g_M pulls back to bi-invariant g_G .
- $\langle \cdot, \cdot \rangle$ on g is non-degenerate and invariant.

Compact Einstein solvmanifolds

Let (M, g_M) be a compact pseudo-Riemannian solvmanifold.

Recall:

- $M = G/\Gamma$ for a lattice $\Gamma \leq G$.
- g_M pulls back to bi-invariant g_G .
- $\langle \cdot, \cdot \rangle$ on g is non-degenerate and invariant.

If (M, g_M) is Einstein,

 $\operatorname{Ric} = 0 = \kappa$.

Solvable, but not nilpotent?

If \mathfrak{g} is nilpotent, then $\kappa = 0$.

Question:

Are there solvable g, not nilpotent, with

- $\bigcirc \ \kappa = 0$
- (2) and invariant scalar product $\langle \cdot, \cdot \rangle$?

Solvable, but not nilpotent?

If \mathfrak{g} is nilpotent, then $\kappa = 0$.

Question:

Are there solvable g, not nilpotent, with

- $\bullet \ \kappa = 0$
- **2** and invariant scalar product $\langle \cdot, \cdot \rangle$?

Yes!

Construct examples of dimension 6 and index 2 using Medina's double extension.

Einstein scalar products

g solvable with nilradical n, then $g = a \oplus n$.

Einstein scalar products

 \mathfrak{g} solvable with nilradical \mathfrak{n} , then $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}$.

• ad(x) for $x \in \mathfrak{n}$ is nilpotent, so $\kappa(x, x) = 0$.

Einstein scalar products

 \mathfrak{g} solvable with nilradical \mathfrak{n} , then $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}$.

- ad(x) for $x \in \mathfrak{n}$ is nilpotent, so $\kappa(x, x) = 0$.
- For $a \in \mathfrak{a}$, the Einstein condition (Ricci-flat, $\kappa = 0$) becomes

$$\lambda_1^2 + \ldots + \lambda_k^2 + 2\alpha_1^2 + \ldots + 2\alpha_m^2 - 2\beta_1^2 - \ldots - 2\beta_m^2 = 0,$$

where $\lambda_i \in \mathbb{R}$ and $\zeta_j = \alpha_j + i\beta_j \in \mathbb{C} \setminus \mathbb{R}$ are the eigenvalues of ad(a).

Einstein scalar products

 \mathfrak{g} solvable with nilradical \mathfrak{n} , then $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}$.

- ad(x) for $x \in \mathfrak{n}$ is nilpotent, so $\kappa(x, x) = 0$.
- For $a \in \mathfrak{a}$, the Einstein condition (Ricci-flat, $\kappa = 0$) becomes

$$\lambda_1^2 + \ldots + \lambda_k^2 + 2\alpha_1^2 + \ldots + 2\alpha_m^2 - 2\beta_1^2 - \ldots - 2\beta_m^2 = 0,$$

where $\lambda_i \in \mathbb{R}$ and $\zeta_j = \alpha_j + i\beta_j \in \mathbb{C} \setminus \mathbb{R}$ are the eigenvalues of ad(a).

Theorem B

Let $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ be a solvable Lie algebra with invariant Einstein scalar product. If \mathfrak{g} is not nilpotent, then dim $\mathfrak{g} \ge 6$ and the index of $\langle \cdot, \cdot \rangle$ is ≥ 2 .

Einstein scalar products

 \mathfrak{g} solvable with nilradical \mathfrak{n} , then $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}$.

- ad(x) for $x \in \mathfrak{n}$ is nilpotent, so $\kappa(x, x) = 0$.
- For $a \in \mathfrak{a}$, the Einstein condition (Ricci-flat, $\kappa = 0$) becomes

$$\lambda_1^2 + \ldots + \lambda_k^2 + 2\alpha_1^2 + \ldots + 2\alpha_m^2 - 2\beta_1^2 - \ldots - 2\beta_m^2 = 0,$$

where $\lambda_i \in \mathbb{R}$ and $\zeta_j = \alpha_j + i\beta_j \in \mathbb{C} \setminus \mathbb{R}$ are the eigenvalues of ad(a).

Theorem B

Let $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ be a solvable Lie algebra with invariant Einstein scalar product. If \mathfrak{g} is not nilpotent, then dim $\mathfrak{g} \ge 6$ and the index of $\langle \cdot, \cdot \rangle$ is ≥ 2 .

Corollary

Every Lorentzian Einstein Lie algebra $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ is abelian.

This follows from the Theorem B and the classification of invariant Lorentzian scalar products (Medina 1985, Hilgert & Hofmann 1985).

Solvable non-nilpotent Lie groups G with Einstein metrics exist.

Solvable non-nilpotent Lie groups G with Einstein metrics exist. For the existence of a compact quotient M of G, there must be a lattice $\Gamma \leq G$.

Solvable non-nilpotent Lie groups G with Einstein metrics exist. For the existence of a compact quotient M of G, there must be a lattice $\Gamma \leq G$.

Necessary conditions for the existence of a lattice (Auslander 1973):

- Q-structure on n,
- 2 adjoint action of \mathfrak{a} on \mathfrak{n} can be represented by integer matrices.

Solvable non-nilpotent Lie groups G with Einstein metrics exist. For the existence of a compact quotient M of G, there must be a lattice $\Gamma \leq G$.

Necessary conditions for the existence of a lattice (Auslander 1973):

- Q-structure on n,
- 2 adjoint action of \mathfrak{a} on \mathfrak{n} can be represented by integer matrices.

The characteristic polynomial of $\exp(\operatorname{ad}(a))$ has coefficients in \mathbb{Z} for all $a \in \mathfrak{a}$... which means that all eigenvalues e^{λ_i} , e^{ζ_j} of $\exp(\operatorname{ad}(a))$ are algebraic numbers.

Digression: Hilbert's 7th Problem

Hilbert's 7th Problem

"The expression α^{β} , for an algebraic base α and an irrational algebraic exponent β , e.g., the number $2^{\sqrt{2}}$ or e^{π} , always represents a transcendental or at least an irrational number."

Digression: Hilbert's 7th Problem

Hilbert's 7th Problem

"The expression α^{β} , for an algebraic base α and an irrational algebraic exponent β , e.g., the number $2^{\sqrt{2}}$ or e^{π} , always represents a transcendental or at least an irrational number."

Gelfond-Schneider Theorem (1935)

Let $\alpha \in \mathbb{C} \setminus \{0, 1\}$ and let $\beta \in \mathbb{C}$ be irrational. Then at least one of α , β and α^{β} is transcendental.

Digression: Hilbert's 7th Problem

Hilbert's 7th Problem

"The expression α^{β} , for an algebraic base α and an irrational algebraic exponent β , e.g., the number $2^{\sqrt{2}}$ or e^{π} , always represents a transcendental or at least an irrational number."

Gelfond-Schneider Theorem (1935)

Let $\alpha \in \mathbb{C} \setminus \{0, 1\}$ and let $\beta \in \mathbb{C}$ be irrational. Then at least one of α , β and α^{β} is transcendental.

Schanuel's Conjecture states:

Let $\alpha_1, \ldots, \alpha_d$ be complex numbers, linearly independent over Q. Then

$$\operatorname{trdeg}_{\mathbb{Q}}\mathbb{Q}(\alpha_1,\ldots,\alpha_d,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_d}) \geq d.$$

Use the Gelfond-Schneider Theorem in the search for lattices.

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let X be a matrix in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \setminus \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\operatorname{Re}(\zeta_1)^2 + \ldots + 2\operatorname{Re}(\zeta_m)^2 - 2\operatorname{Im}(\zeta_1)^2 - \ldots - 2\operatorname{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then there is no $t \in \mathbb{R}$ such that $\exp(tX)$ is conjugate to a matrix in $SL(n, \mathbb{Z})$.

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let X be a matrix in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \setminus \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\operatorname{Re}(\zeta_1)^2 + \ldots + 2\operatorname{Re}(\zeta_m)^2 - 2\operatorname{Im}(\zeta_1)^2 - \ldots - 2\operatorname{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then there is no $t \in \mathbb{R}$ such that $\exp(tX)$ is conjugate to a matrix in $SL(n, \mathbb{Z})$.

Proof

To satisfy the given equation, X has at least one non-real eigenvalue pair ζ, ξ.
 If n ≤ 5, then n = 4 or n = 5.

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let X be a matrix in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \setminus \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\operatorname{Re}(\zeta_1)^2 + \ldots + 2\operatorname{Re}(\zeta_m)^2 - 2\operatorname{Im}(\zeta_1)^2 - \ldots - 2\operatorname{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then there is no $t \in \mathbb{R}$ such that $\exp(tX)$ is conjugate to a matrix in $SL(n, \mathbb{Z})$.

- To satisfy the given equation, X has at least one non-real eigenvalue pair ζ, ξ.
 If n ≤ 5, then n = 4 or n = 5.
- One can show that there always exists a pair of eigenvalues ξ, ξⁱ for exp(tX) (need n ≤ 5).

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let X be a matrix in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \setminus \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\operatorname{Re}(\zeta_1)^2 + \ldots + 2\operatorname{Re}(\zeta_m)^2 - 2\operatorname{Im}(\zeta_1)^2 - \ldots - 2\operatorname{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then there is no $t \in \mathbb{R}$ such that $\exp(tX)$ is conjugate to a matrix in $SL(n, \mathbb{Z})$.

- To satisfy the given equation, X has at least one non-real eigenvalue pair ζ, ξ.
 If n ≤ 5, then n = 4 or n = 5.
- One can show that there always exists a pair of eigenvalues ξ, ξⁱ for exp(tX) (need n ≤ 5).
- By Gelfond-Schneider Theorem:
 One of \$\xi\$ or \$\xi\$ⁱ is transcendental, so exp(tX) is not conjugate to a matrix in SL(n, Z). □

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let X be a matrix in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \setminus \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\operatorname{Re}(\zeta_1)^2 + \ldots + 2\operatorname{Re}(\zeta_m)^2 - 2\operatorname{Im}(\zeta_1)^2 - \ldots - 2\operatorname{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then there is no $t \in \mathbb{R}$ such that $\exp(tX)$ is conjugate to a matrix in $SL(n, \mathbb{Z})$.

Proof

- To satisfy the given equation, X has at least one non-real eigenvalue pair ζ, ξ.
 If n ≤ 5, then n = 4 or n = 5.
- One can show that there always exists a pair of eigenvalues ξ, ξⁱ for exp(tX) (need n ≤ 5).
- By Gelfond-Schneider Theorem:

One of ξ or ξ^i is transcendental, so $\exp(tX)$ is not conjugate to a matrix in $SL(n, \mathbb{Z})$.

Conjecture

If Schanuel's Conjecture is true, then the Algebraic Lemma holds without " $n \leq 5$ ".

Theorem C Let M be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then M is a nilmanifold.

Theorem C

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \leq 7$. Then *M* is a nilmanifold.

Proof

• $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.

Theorem C

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then *M* is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem A: May assume $6 \le \dim M \le 7$.

Theorem C

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \leq 7$. Then *M* is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem A: May assume $6 \le \dim M \le 7$.
- Consider g = a ⊕ n as before. For a ∈ a, ad(a) is not nilpotent.
 By Auslander's criterion, exp(tad(a)) is conjugate to a matrix in SL(n, Z) for some t.

Theorem C

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then *M* is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem A: May assume $6 \le \dim M \le 7$.
- Consider g = a ⊕ n as before. For a ∈ a, ad(a) is not nilpotent.
 By Auslander's criterion, exp(tad(a)) is conjugate to a matrix in SL(n, Z) for some t.
- Let $W = \operatorname{im} \operatorname{ad}(a)$. Then dim $W \leq 5$ (from structure theory).

Theorem C

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \leq 7$. Then *M* is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem A: May assume $6 \le \dim M \le 7$.
- Consider g = a ⊕ n as before. For a ∈ a, ad(a) is not nilpotent.
 By Auslander's criterion, exp(tad(a)) is conjugate to a matrix in SL(n, Z) for some t.
- Let $W = \operatorname{im} \operatorname{ad}(a)$. Then dim $W \leq 5$ (from structure theory).
- Apply Algebraic Lemma to ad(a)|_W:
 exp(tad(a)) is not conjugate to a matrix in SL(n, ℤ) for any t.

$Solv \Rightarrow Nil$

Theorem C

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \leq 7$. Then *M* is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem A: May assume $6 \le \dim M \le 7$.
- Consider g = a ⊕ n as before. For a ∈ a, ad(a) is not nilpotent.
 By Auslander's criterion, exp(tad(a)) is conjugate to a matrix in SL(n, Z) for some t.
- Let $W = \operatorname{im} \operatorname{ad}(a)$. Then dim $W \leq 5$ (from structure theory).
- Apply Algebraic Lemma to ad(a)|W:
 exp(tad(a)) is not conjugate to a matrix in SL(n, Z) for any t.
- Contradiction, so G must be nilpotent.

Theorem C

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \leq 7$. Then *M* is a nilmanifold.

Proof

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem A: May assume $6 \le \dim M \le 7$.
- Consider g = a ⊕ n as before. For a ∈ a, ad(a) is not nilpotent.
 By Auslander's criterion, exp(tad(a)) is conjugate to a matrix in SL(n, Z) for some t.
- Let $W = \operatorname{im} \operatorname{ad}(a)$. Then dim $W \leq 5$ (from structure theory).
- Apply Algebraic Lemma to ad(a)|W:
 exp(tad(a)) is not conjugate to a matrix in SL(n, Z) for any t.
- Contradiction, so G must be nilpotent.

Conjecture

Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

References

• O. Baues, W. Globke,

Rigidity of compact pseudo-Riemannian homogeneous spaces for solvable Lie groups, to appear in International Mathematical Research Notices, arXiv:1507.02575

• O. Baues, W. Globke, A. Zeghib,

The structure of compact homogeneous spaces with indefinite metric of low metric index, in preparation

• W. Globke, Y. Nikolayevsky,

Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension, arXiv:1611.08662