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I Properties of compact pseudo-Riemannian homogeneous spaces
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The objects of interest

.M; g/ is a connected pseudo-Riemannian homogeneous manifold of finite volume.

The metric tensor g is non-degenerate but can be indefinite.

A proper subspace U � TpM can be totally isotropic, that is, gp jU D 0.
The Witt index s of .M; g/ is the maximal dimension of a totally isotropic
subspace U � TpM .

Riemannian s D 0 (positive definite).
Lorentzian s D 1 (“lightlike lines”).

By homogeneity of .M; g/:

M D G=H for a connected Lie group G and a closed subgroup H ,

G acts transitively and by isometries (in particular volume-preserving),

G acts almost effectively (H has no connected normal subgroups).

Question:
When is a space of this type an Einstein manifold (Ric D �g)?

3



The objects of interest

.M; g/ is a connected pseudo-Riemannian homogeneous manifold of finite volume.

The metric tensor g is non-degenerate but can be indefinite.

A proper subspace U � TpM can be totally isotropic, that is, gp jU D 0.
The Witt index s of .M; g/ is the maximal dimension of a totally isotropic
subspace U � TpM .

Riemannian s D 0 (positive definite).
Lorentzian s D 1 (“lightlike lines”).

By homogeneity of .M; g/:

M D G=H for a connected Lie group G and a closed subgroup H ,

G acts transitively and by isometries (in particular volume-preserving),

G acts almost effectively (H has no connected normal subgroups).

Question:
When is a space of this type an Einstein manifold (Ric D �g)?

3



The objects of interest

.M; g/ is a connected pseudo-Riemannian homogeneous manifold of finite volume.

The metric tensor g is non-degenerate but can be indefinite.

A proper subspace U � TpM can be totally isotropic, that is, gp jU D 0.

The Witt index s of .M; g/ is the maximal dimension of a totally isotropic
subspace U � TpM .

Riemannian s D 0 (positive definite).
Lorentzian s D 1 (“lightlike lines”).

By homogeneity of .M; g/:

M D G=H for a connected Lie group G and a closed subgroup H ,

G acts transitively and by isometries (in particular volume-preserving),

G acts almost effectively (H has no connected normal subgroups).

Question:
When is a space of this type an Einstein manifold (Ric D �g)?

3



The objects of interest

.M; g/ is a connected pseudo-Riemannian homogeneous manifold of finite volume.

The metric tensor g is non-degenerate but can be indefinite.

A proper subspace U � TpM can be totally isotropic, that is, gp jU D 0.
The Witt index s of .M; g/ is the maximal dimension of a totally isotropic
subspace U � TpM .

Riemannian s D 0 (positive definite).
Lorentzian s D 1 (“lightlike lines”).

By homogeneity of .M; g/:

M D G=H for a connected Lie group G and a closed subgroup H ,

G acts transitively and by isometries (in particular volume-preserving),

G acts almost effectively (H has no connected normal subgroups).

Question:
When is a space of this type an Einstein manifold (Ric D �g)?

3



The objects of interest

.M; g/ is a connected pseudo-Riemannian homogeneous manifold of finite volume.

The metric tensor g is non-degenerate but can be indefinite.

A proper subspace U � TpM can be totally isotropic, that is, gp jU D 0.
The Witt index s of .M; g/ is the maximal dimension of a totally isotropic
subspace U � TpM .

Riemannian s D 0 (positive definite).
Lorentzian s D 1 (“lightlike lines”).

By homogeneity of .M; g/:

M D G=H for a connected Lie group G and a closed subgroup H ,

G acts transitively and by isometries (in particular volume-preserving),

G acts almost effectively (H has no connected normal subgroups).

Question:
When is a space of this type an Einstein manifold (Ric D �g)?

3



The objects of interest

.M; g/ is a connected pseudo-Riemannian homogeneous manifold of finite volume.

The metric tensor g is non-degenerate but can be indefinite.

A proper subspace U � TpM can be totally isotropic, that is, gp jU D 0.
The Witt index s of .M; g/ is the maximal dimension of a totally isotropic
subspace U � TpM .

Riemannian s D 0 (positive definite).
Lorentzian s D 1 (“lightlike lines”).

By homogeneity of .M; g/:

M D G=H for a connected Lie group G and a closed subgroup H ,

G acts transitively and by isometries (in particular volume-preserving),

G acts almost effectively (H has no connected normal subgroups).

Question:
When is a space of this type an Einstein manifold (Ric D �g)?

3



The objects of interest

.M; g/ is a connected pseudo-Riemannian homogeneous manifold of finite volume.

The metric tensor g is non-degenerate but can be indefinite.

A proper subspace U � TpM can be totally isotropic, that is, gp jU D 0.
The Witt index s of .M; g/ is the maximal dimension of a totally isotropic
subspace U � TpM .

Riemannian s D 0 (positive definite).
Lorentzian s D 1 (“lightlike lines”).

By homogeneity of .M; g/:

M D G=H for a connected Lie group G and a closed subgroup H ,

G acts transitively and by isometries (in particular volume-preserving),

G acts almost effectively (H has no connected normal subgroups).

Question:
When is a space of this type an Einstein manifold (Ric D �g)?

3



Induced scalar product

The Levi decomposition of G (simply connected) is G D .K � S/ ËR, with

K compact semsimple,

S semisimple without compact normal subgroups,

R the solvable radical of G.

Their Lie algebras are g, k, s and r.

The metric g on M induces a symmetric bilinear form h�; �i on g. Then:

h�; �i is Adg.H/-invariant (that is, hAdg.h/x;Adg.h/yi D hx; yi).

The kernel g? D fx 2 g j hx; �i D 0g is precisely h.

Since h�; �i is a quadratic function on g, a density theorem by Mostow (1971) implies:
Corollary

1 h�; �i is Adg.H/
z
-invariant.

2 h�; �i is invariant under Adg.S/ and Adg.R/trig.

In particular, h�; �i is invariant under all nilpotent elements in of Lie.Adg.H/
z
/.

We say h�; �i is nil-invariant (generalizes (bi-)invariance).
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Properties of nil-invariant metrics (Baues, Globke, Zeghib)

The Lie algebra
g D .k � s/ Ë r

has a nil-invariant symmetric bilinear form h�; �i.

Algebraic Theorem
1 h�; �i is invariant under adg.s Ë r/.
2 The restriction h�; �isËr to s Ë r is invariant under adg.g/.
3 k ? s.
4 h � k Ë r.

Geometric Theorem
Suppose G D S ËR, and M D G=H is a pseudo-Riemannian homogeneous space
of finite volume on which G acts almost effectively and isometrically. Then:

1 H is a lattice in G.
2 The pseudo-Riemannian metric g on M pulls back to a bi-invariant metric on G.
3 M is a locally symmetric space.
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II Nil-invariant pseudo-Riemannian Einstein metrics
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Einstein metrics

.M; g/ is called Einstein manifold if

Ric D �g

for some constant � 2 R.

For a bi-invariant metric g on G,

Ric D �
1

4
�

where �.x; y/ D tr.ad.x/ad.y// is the Killing form of g.
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Einstein Lie algebras

Consider the product h�; �i on g D .k � s/ Ë r induced by an Einstein metric on G.

Proposition
If h�; �i is invariant on g, then

either g is semisimple and h�; �i is a non-zero multiple of the Killing form �,

or g is solvable and � D 0.

Remark

This holds in particular if the Levi subgroup of G has no compact semisimple
factors.

Unclear for nil-invariant h�; �i on g with k ¤ 0.
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III Semisimple isometry group
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Semisimple splitting
Theorem A
Let

M be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,
G D K � S a semisimple, connected and simply connected Lie group acting
transitively and almost effectively by isometries on M ,
K compact semisimple and S semisimple without compact factors.

Then M is a pseudo-Riemannian product of Einstein manifolds

M DMK �MS ;

where
MK D K=.H \K/ for a closed subgroup H � G, and H ı � H \K,
MS D S=� and a lattice � � S , and the Einstein metric on MS is induced by
a multiple of the Killing form on S .

Proof
For the stabilizerH , we haveHı �H \K. ThenMK is theK-orbit through o D eH .

k ? s, andK, S commute. Hence S -orbits andMK are orthogonal everywhere.

�S .H/ D � is a lattice in S , soMS D S=� .
The metric gS is Einstein and bi-invariant, hence gS � �S .

10



Semisimple splitting
Theorem A
Let

M be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,
G D K � S a semisimple, connected and simply connected Lie group acting
transitively and almost effectively by isometries on M ,
K compact semisimple and S semisimple without compact factors.

Then M is a pseudo-Riemannian product of Einstein manifolds

M DMK �MS ;

where
MK D K=.H \K/ for a closed subgroup H � G, and H ı � H \K,
MS D S=� and a lattice � � S , and the Einstein metric on MS is induced by
a multiple of the Killing form on S .

Proof
For the stabilizerH , we haveHı �H \K. ThenMK is theK-orbit through o D eH .

k ? s, andK, S commute. Hence S -orbits andMK are orthogonal everywhere.

�S .H/ D � is a lattice in S , soMS D S=� .
The metric gS is Einstein and bi-invariant, hence gS � �S .

10



Semisimple splitting
Theorem A
Let

M be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,
G D K � S a semisimple, connected and simply connected Lie group acting
transitively and almost effectively by isometries on M ,
K compact semisimple and S semisimple without compact factors.

Then M is a pseudo-Riemannian product of Einstein manifolds

M DMK �MS ;

where
MK D K=.H \K/ for a closed subgroup H � G, and H ı � H \K,
MS D S=� and a lattice � � S , and the Einstein metric on MS is induced by
a multiple of the Killing form on S .

Proof
For the stabilizerH , we haveHı �H \K. ThenMK is theK-orbit through o D eH .

k ? s, andK, S commute. Hence S -orbits andMK are orthogonal everywhere.

�S .H/ D � is a lattice in S , soMS D S=� .
The metric gS is Einstein and bi-invariant, hence gS � �S .

10



Semisimple splitting
Theorem A
Let

M be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,
G D K � S a semisimple, connected and simply connected Lie group acting
transitively and almost effectively by isometries on M ,
K compact semisimple and S semisimple without compact factors.

Then M is a pseudo-Riemannian product of Einstein manifolds

M DMK �MS ;

where
MK D K=.H \K/ for a closed subgroup H � G, and H ı � H \K,
MS D S=� and a lattice � � S , and the Einstein metric on MS is induced by
a multiple of the Killing form on S .

Proof
For the stabilizerH , we haveHı �H \K. ThenMK is theK-orbit through o D eH .

k ? s, andK, S commute. Hence S -orbits andMK are orthogonal everywhere.

�S .H/ D � is a lattice in S , soMS D S=� .
The metric gS is Einstein and bi-invariant, hence gS � �S .

10



Semisimple splitting
Theorem A
Let

M be a pseudo-Riemannian homogeneous Einstein manifold of finite volume,
G D K � S a semisimple, connected and simply connected Lie group acting
transitively and almost effectively by isometries on M ,
K compact semisimple and S semisimple without compact factors.

Then M is a pseudo-Riemannian product of Einstein manifolds

M DMK �MS ;

where
MK D K=.H \K/ for a closed subgroup H � G, and H ı � H \K,
MS D S=� and a lattice � � S , and the Einstein metric on MS is induced by
a multiple of the Killing form on S .

Proof
For the stabilizerH , we haveHı �H \K. ThenMK is theK-orbit through o D eH .

k ? s, andK, S commute. Hence S -orbits andMK are orthogonal everywhere.

�S .H/ D � is a lattice in S , soMS D S=� .
The metric gS is Einstein and bi-invariant, hence gS � �S .

10



IV Einstein solvmanifolds
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Compact Einstein solvmanifolds

Let .M; gM / be a compact pseudo-Riemannian solvmanifold.

Recall:

M D G=� for a lattice � � G.

gM pulls back to bi-invariant gG .

h�; �i on g is non-degenerate and invariant.

If .M; gM / is Einstein,
Ric D 0 D �:
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Solvable, but not nilpotent?

If g is nilpotent, then � D 0.

Question:
Are there solvable g, not nilpotent, with

1 � D 0

2 and invariant scalar product h�; �i?

Yes!
Construct examples of dimension 6 and index 2 using Medina’s double extension.
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Einstein scalar products

g solvable with nilradical n, then g D a˚ n.

ad.x/ for x 2 n is nilpotent, so �.x; x/ D 0.

For a 2 a, the Einstein condition (Ricci-flat, � D 0) becomes

�21 C : : :C �
2
k C 2˛

2
1 C : : :C 2˛

2
m � 2ˇ

2
1 � : : : � 2ˇ

2
m D 0;

where �i 2 R and �j D ˛j C iˇj 2 CnR are the eigenvalues of ad.a/.

Theorem B
Let .g; h�; �i/ be a solvable Lie algebra with invariant Einstein scalar product.
If g is not nilpotent, then dim g � 6 and the index of h�; �i is � 2.

Corollary
Every Lorentzian Einstein Lie algebra .g; h�; �i/ is abelian.

This follows from the Theorem B and the classification of invariant Lorentzian scalar
products (Medina 1985, Hilgert & Hofmann 1985).
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Lattices

Solvable non-nilpotent Lie groups G with Einstein metrics exist.

For the existence of a compact quotient M of G, there must be a lattice � � G.

Necessary conditions for the existence of a lattice (Auslander 1973):
1 Q-structure on n,
2 adjoint action of a on n can be represented by integer matrices.

The characteristic polynomial of exp.ad.a// has coefficients in Z for all a 2 a. . .
which means that all eigenvalues e�i , e�j of exp.ad.a// are algebraic numbers.
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Digression: Hilbert’s 7th Problem

Hilbert’s 7th Problem
“The expression ˛ˇ , for an algebraic base ˛ and an irrational algebraic exponent ˇ,
e.g., the number 2

p
2 or e� , always represents a transcendental or at least an

irrational number.”

Gelfond-Schneider Theorem (1935)
Let ˛ 2 Cnf0; 1g and let ˇ 2 C be irrational.
Then at least one of ˛, ˇ and ˛ˇ is transcendental.

Schanuel’s Conjecture states:
Let ˛1; : : : ; ˛d be complex numbers, linearly independent over Q. Then

trdegQQ.˛1; : : : ; ˛d ; e
˛1 ; : : : ; e˛d / � d:
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Algebraic lemma
Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma
Let X be a matrix in the normal form of ad.a/ with eigenvalues �1; : : : ; �k 2 R and
�1; : : : ; �m; �1; : : : ; �m 2 CnR. Suppose the eigenvalues satisfy

�21 C : : :C �
2
k C 2Re.�1/2 C : : :C 2Re.�m/2 � 2Im.�1/2 � : : : � 2Im.�m/2 D 0:

If n � 5, then there is no t 2 R such that exp.tX/ is conjugate to a matrix in
SL.n;Z/.

Proof
To satisfy the given equation,X has at least one non-real eigenvalue pair � , � .
If n � 5, then n D 4 or n D 5.

One can show that there always exists a pair of eigenvalues � , � i for exp.tX/
(need n � 5).

By Gelfond-Schneider Theorem:
One of � or � i is transcendental, so exp.tX/ is not conjugate to a matrix in SL.n;Z/.

Conjecture
If Schanuel’s Conjecture is true, then the Algebraic Lemma holds without “n � 5”.
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Solv) Nil

Theorem C
Let M be a compact pseudo-Riemannian Einstein solvmanifold and dimM � 7.
Then M is a nilmanifold.

Proof
M D G=� , with � � G a lattice andG solvable, but not nilpotent.

By Theorem A: May assume 6 � dimM � 7.

Consider g D a˚ n as before. For a 2 a, ad.a/ is not nilpotent.
By Auslander’s criterion, exp.tad.a// is conjugate to a matrix in SL.n;Z/ for some t .

LetW D im ad.a/. Then dimW � 5 (from structure theory).

Apply Algebraic Lemma to ad.a/jW :
exp.tad.a// is not conjugate to a matrix in SL.n;Z/ for any t .

Contradiction, soG must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.
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