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Introduction

I Supersymmetric solutions of a particular supergravity have to
solve two sets of equations:

I Killing spinor equations: “Supersymmetric”
I Equations of motion of the theory: “Solution”

I Killing spinor identities relate components of equations of
motion to each other for supersymmetric configurations in
supergravity theories

I Tell us which equations of motion are automatically solved by
the supersymmetric geometries

I If the supersymmetry in a theory is realised off-shell then we
don’t even need to know the action, i.e. the specific theory
under consideration.

I Can prove all orders results in effective supergravity
description of string theory.

I Apply equally to any higher derivative supergravity.
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Introduction

I Normally horrible to try and supersymmetrize higher derivate
(string correction or not) actions on-shell, as we need to
change the susy transformations and the action.

I Move to off-shell formulation: We will use the superconformal
formalism.

I Superconformal group biggest possible for S-matrix,
supersymmetry is realized off-shell.

I Matter couplings easier to find.
I Contains super-Poincaré, so the super-Poincaré theories can

always be obtained by a suitable gauge fixing.
I Supersymmetric completions of most curvature squared terms

are known.



Off-shell Killing spinor identities

I In work of Ortin & Kallosh and Ortin & Bellorin the Killing
spinor identities were derived.

I The derivation does not require that the supersymmetric
action is known, just that the action is supersymmetric under
the given supersymmetry variations of the fields.

I In work of Meessen (2007) the Killing spinor identities were
used in the off-shell N = 2 d = 5 superconformal theory to
show that the maximally supersymmetric vacuua of the two
derivative theory are the vacua of arbitrarily higher derivative
corrected theories, up to a generalization of the very special
geometry condition. However an on-shell compensator was
used.

I Here we will be interested in what they have to say about
solutions with less supersymmetry and later with an off-shell
compensator.



Off-shell Killing spinor identities
Lets derive the Killing spinor identities. Let S [φb, φf ] be any
supergravity action, constructed in terms of bosonic fields φb and
fermionic fields φf . Let us further assume S [φb, φf ] is the
spacetime integral of a Lagrangian density:

S [φb, φf ] =

∫
ddx
√
gL[φb, φf ] .

The invariance under supersymmetry transformations of the action
can be written

δQS [φb, φf ] =

∫
ddx
√
g {Lb[φb, φf ]δQφb[φb, φf ]

+Lf [φb, φf ]δQφf [φb, φf ]} = 0 ,

where δQ denotes a local supersymmetry transformation of
arbitrary parameter, Lb,Lf , denote functional derivative of the
Lagrangian with respect to φb, φf respectively, and a sum over
fields is understood.



Off-shell Killing spinor identities
Next consider a second variation of the action functional by
varying δQS [φb, φf ] with respect to fermionic fields only. Since
δQS [φb, φf ] is identically zero for arbitrary φb, φf , we have

δQS [φb, φf + δFφf ] = 0

and we set the fermions to zero after the variation. Hence we get

δF δQS |φf =0 = 0

=

∫
ddx

√
|g | [(δFLb)(δQφb)

+ Lb(δF δQφb) + (δFLf )(δQφf ) + Lf (δF δQφf )

]
φf =0

.

Since δQφb and Lf are odd in fermions we are left with∫
ddx

√
|g | [(Lb(δF δQφb) + (δFLf )(δQφf )]φf =0 = 0 .



Off-shell Killing spinor identities

Calculating (δFLf )φf =0 requires knowledge of the entire
Lagrangian, not only its bosonic truncation. However if we restrict
ourselves to supersymmetry transformations having Killing spinors
as parameters, δK , we have

(δKφf )φf =0 = 0 .

Note that

Lb :=
1√
|g |

δS [φb, φf ]

δφb
=

1√
|g |

δSB [φb]

δφb
+

1√
|g |

δSF [φb, φf ]

δφb
,

where the last term vanishes if φf = 0.



Off-shell Killing spinor identities

We are thus led to define

Eb :=
1√
|g |

δSB [φb]

δφb
,

so that bosonic equations of motion take the form

Eb = 0 .

Thus the Killing spinor identities may be written as∫
ddx

√
|g | Eb(δF δKφb)φf =0 = 0 .



N = 2, d = 5 off-shell KSIs

To derive the Ksis we need the off-shell variations of the fields
under supersymmetry. We shall make use of the Standard Weyl
multiplet (eaµ, ψ

i
µ, vab,D,V

ij
µ , bµ, χ

i), Abelian vector multiplets

(Aµ,Y
ij,Ωi,M) and a linear multiplet (Lij, ϕi,N,Ea) which we use

to break the superconformal invariance. After gauge fixing the
superconformal theory to super-Poincaré these are for the Weyl
multiplet

δeaµ = −2i ε̄γaψµ ,

δvab = −1
8 i ε̄γabχ+ · · · ,

δD = −1
3 i ε̄γ

µνχvµν − i ε̄γµ∇µχ+ i ε̄iγµVijµχ
j

− i
6 ε̄

i(γaEa + N)Lijχ
j + i

3 ε̄
iγaV ′aijχ

j + · · · ,
δV ij

µ = − i
4 ε̄

(iγµχ
j) + · · · ,



N = 2, d = 5 off-shell KSIs

for the vector multiplet and linear multiplet we have

δAI
µ = −2i ε̄γµΩI + · · · ,

δM I = 2i ε̄ΩI ,

δY I ij = 2i ε̄(iγa∇aΩj)I − 2i ε̄(iγaV
j)

a kΩkI − 2i
3 V

k(i
a ε̄kγaΩj) − i

3 ε̄
(iγabv

abΩj)I − i
4 ε̄

(iχj)M I ,

δPa = · · · ,
δN = i

2Lijε̄
iχj .



N = 2, d = 5 off-shell KSIs

I We ignored terms involving the gravitino in the variations,
apart from in the veilbein variation.

I This is because we shall choose to solve the Einstein equation
last. - It is usually the most involved in any case.

I In particular, if we assume that when we look to solve the
Einstein equation that all other eoms have been solved first,
we can ignore the ... terms above.

So if we set
E(e)µa := 1√

|g |
δS
δeaµ

we get

E(e)µaγ
aεi
∣∣∣
other bosons on-shell

= 0 .



N = 2, d = 5 off-shell KSIs

To proceed we will need one more ingredient, the gravitino
variation which reads

δψi
µ = ∇µε

i + 1
2γµabv

abεi − 1
3γµγabv

ab

+V ij
µ εj + 1

6γµ(γaPa + N)Lijεj − 1
3γµγ

aV ′
ij
aεj = 0 ,

where V ij
µ = VµL

ij + V ′ijµ so that V ′ijµLij = 0.
Let us now write the KSI associated to a variation of gauginos. We
obtain

0 =

∫
d5x

√
|g |
[
E(A)µI

(
−2i ε̄iγµ

)
+ E(M)I (2i ε̄i)

+E(Y )I jk(2i ε̄j)γaV ki
a

+2i
3 E(Y )iIkV

jk
a ε̄jγa − E(Y )ijI ( i

3 ε̄jγ
abvab)

]
δΩI

i

+E(Y )ijI (2i ε̄jγ
a)∇aδΩI

i .



N = 2, d = 5 off-shell KSIs

Integrating by parts and using the fact that the gravitino Killing
spinor equation implies

γa∇aε
i = 5

6(v · γ)εi − γaVaL
ijεj + 2

3V
′aijγaεj − 5

6(γaPa + N)Lijεj ,

we obtain

0 =
[
E(A)µI γµ − E(M)I

+ 5
12E(Y )(γa(Pa + 2Va) + N)

]
εi

+
[(
∇aE(Y )I

ij
)
γa − 5

6E(Y ′)ikI (γa(Pa + 2Va) + N)Ljk

−E(Y )I
ijγabvab

]
εj .



N = 2, d = 5 off-shell KSIs

Finally we consider the KSI associated with the auxiliary fermion.

0 =

∫
d5x

√
|g |
[
− i

8E(v)ab ε̄iγab − iE(D)ε̄jγaV
aLij − i

3E(D)vab ε̄iγab

+ i
6E(D)ε̄j(γaPa + N)Lij − E(D)4i3 ε̄

jV ′
i
ajγ

a + i
4E(V )µijε̄

jγµ

+ i
4E(Y )iI jε̄

jM I − i
2E(N)Lij

]
δχi + [−i ε̄E(D)γµ]∇µδχ .

Integrating the last term by parts, discarding the total derivative
and making use of the gravitino Killing spinor equation we obtain

0 =
[
1
8E(v)ab + 1

2E(D)vab
]
γabε

i +∇aE(D)γaε
i − 1

4E(V )ijaγ
aεj

−1
4E(Y )ijI M

I εj + 2E(D)V ′
ij
aγ

aεj + 1
2E(N)Lijεj

−E(D)(γaPa + N))Lijεj .



Spinorial Geometry and classifying supersymmetric
configurations

I Supersymmetric configurations solve the Killing spinor
equations, i.e. the vanishing of the supersymmetry variations
of the fermions on purely bosonic backgrounds.

I We shall truncate the fields V ij
µ , Y I ij, N and Pa for now, so we

are sure we stay in an ungauged theory, as was done in the
work of Castro et al.

I We shall have more to say about this later.



Spinorial Geometry and classifying supersymmetric
configurations

I Demanding the vanishing of the gravitino variation for a
bosonic background implies

δψi
µ =

[
∇µ +

1

2
vabγµab −

1

3
vabγµγab

]
εi = 0 .

I From the vanishing of the gaugino variation for a bosonic
background one has

δΩIi =

[
−1

4
F I
abγ

ab − 1

2
γµ∂µM

I − 1

3
M I vabγab

]
εi = 0 .

I the vanishing of the auxilary fermion variation for a bosonic
background we get

δχi =

[
D − 2γcγab∇avbc − 2γaεabcdev

bcvde +
4

3
(v · γ)2

]
εi = 0 .



Spinorial Geometry and classifying supersymmetric
configurations

I In order to solve these equations, one may use the bilinears
method. Form a bilinear out of spinors, then demand that the
equations above hold - restricts the form of the spin
connection and matter fields.

I Sometimes awkward to solve explicitly for the spinors ε.
I Gillard Gran & Papadopoulos introduced the spinorial

geometry techniques:
I Use Clifford isomorphim to write the space of spinors in terms

of an exterior algebra and the action of the gamma matrices as
a combination of wedge and interior products.

I Choose a particular basis of gamma matrices so they act as
creation or anihilation matrices - wedge or interior product.

I Use the Spin(1,4) gauge freedom in the above equations to
write representatives for the spinors - up to local lorentz
transformations on the bosonic fields



Spinorial Geometry and classifying supersymmetric
configurations

I Now we have explicit representatives for the spinors. Can solve
the equations “easily”, and more importantly systematically.

I If we leave in all the auxiliary fields the result will be true to
all orders - but some may not occur due to the imposition of
the equations of motion. Eoms imply less general geometry.
Supersymmetric configurations are often more general than
supersymmetric solutions to a given theory.

I Lets see an example.



Weyl squared corrected N = 2, D = 5 supergravity
coupled to Abelian vector multiplets

As discussed by Castro et al. We consistently truncate the fields
V ij
µ ,Y I ij,N and Pa. We take the Lagrangian

L = L2 + L4 .

where at two derivative level we have

L2 = LV + LH = 1
2D(N − 1)− 1

4R(N + 3) + v2(3N + 1)

+ 2NI v
abF I

ab +NIJ

(
1
4F

I
abF

Iab − 1
2∇aM

I∇aMJ
)

+ 1
24cIJKe

−1εabcdeAI
aF

J
bcF

K
de .



Weyl squared corrected N = 2, D = 5 supergravity
coupled to Abelian vector multiplets

As far as the four derivative Lagrangian is concerned we will take

L4 = c2I
24

{
1
16e
−1εabcdeAI

aCbcfgC
fg

de + 1
8M

IC abcdCabcd+

+ 1
12M

ID2 + 1
6Dv

abF I
ab + 1

3M
ICabcdv

abv cd + 1
2CabcdF

Iabv cd+

+ 8
3M

I vab∇b∇cv
ac − 16

9 M
I vabvbcR

c
a − 2

9M
I v2R+

+ 4
3M

I∇avbc∇avbc + 4
3M

I∇avbc∇bv ca+

− 2
3M

I e−1εabcdevabvcd∇f vef + 2
3e
−1εabcdeF I

abvcf∇f vde+

+ εabcdeF I
abvcf∇dv

f
e − 4

3F
I
abv

acvcdv
db − 1

3F
I
abv

abvcdv
cd+

+4M I vabv
bcvcdv

da −M I vabv
abvcdv

cd
}
,



EOMs

1√
|g |

δS2
δD

= 1
2 (N − 1) , 1√

|g |

δS2
δvµν

= 2(NIF
Iµν + (3N + 1)vµν),

1√
|g |

δS2
δM I

= (12D −
1
4R + 3v2)NI + cIJK (14F

J · FK + 1
2∇M

J · ∇MK )

+NIJ(2F J
abv

ab +∇2MJ)

1√
|g |

δS2
δAI

µ

= cIJK (18ε
µabcdF J

abF
K
cd + F Jµa∇aM

K ) + 4NI∇av
µa

+NIJ(4vµa∇aM
J +∇aF

Jµa)



EOMs

1√
|g |

δS2
δgµν

= −1
4(N + 3)Eµν − 1

4D(N − 1)gµν

+2(1 + 3N )(vaµv
a
ν − 1

4v
2gµν)

+NIJ(12F
I
aµF

Ja
ν + 4F I

a(µv
a
ν) −

1
2∇µM

I∇νM
J)

−NIJ(18F
I · F J + F I · v − 1

4∇M
I · ∇MJ)gµν

+1
4(∇µ∇νN −∇2Ngµν) .



EOMs

1√
|g |

δS4
δD

= c2I
144

{
DM I + v · F I

}
1√
|g |

δS4
δM I

= c2I
24

{
1
8C

abcdCabcd + 1
12D

2 + 1
3Cabcdv

abv cd

+8
3vab∇

b∇cv
ac − 16

9 v
abvbcR

c
a − 2

9v
2R

+ 4
3(∇avbc)(∇avbc) + 4

3(∇avbc)(∇bv ca)

− 2
3e
−1εabcdevabvcd∇f vef +4vabv

bcvcdv
da − (v2)2

}



EOMs

1√
|g |

δS4
δvµν

= c2I
24

{
1
6DF

Iµν + 2
3M

ICµν
abv

ab + 1
2C

µν
abF

Iab

+8
3M

I∇[µ|∇av
|ν]a − 8

3∇
[µ|∇aM

I v |ν]a

+ 32
9 M

I v [µaR
ν]a − 4

9M
IRvµν

− 8
3∇aM

I∇avµν − 8
3∇aM

I∇[µvν]a

− 4
3M

I εµνabcvab∇dvcd + 2
3ε

abcd [µ∇ν]M I vabvcd

+ 2
3ε

abcd [µF I
ab∇ν]vcd − 2

3ε
abcµν∇dF I

abvcd

+ εabcd [µF I
ab∇cvd

ν] + εabcd [µ∇cF
I
abvd

ν]

+ 8
3F

I [µ
av

ν]
bv

ab − 4
3F

I
abv

aµvνb − 1
3v

2F Iµν

−2
3

(
F I · V

)
vµν − 16M I vabv

aµvνb − 4M I v2vµν
}



EOMs

1√
|g |

δS4
δAI

µ

= c2I
24

{
1
16ε

µabcdCabef C
ef

cd − 1
3∇aDv

aµ

−∇aC
aµ
bcv

bc + 4
3ε

µabcd∇avbe∇evcd

+2εµabcd∇avbe∇cv
e

d + 8
3∇av

abvbcv
cµ + 2

3∇av
aµv2

}



EOMs

1√
|g |

δS4
δgµν

=
c2I
24

{
− 1

8

[
εabcd(µ|∇eF

I
abR

e
cd |ν)

]
+ 1

4

[
M I
(
−Cabc(µ|R

abc
|ν) + 4

3RabC
a b

µ ν + 2C bcd
µ Cνbcd

−1
4gµνC

abcdCabcd

)
+ 2∇a∇bM

IC a b
µ ν

]
− 1

24

[
gµνM

ID2
]

+ 1
3

[
Dv(µ

aF I
ν)a −

1
4gµνDv

abF I
ab

]
+ 1

3

[
M I
((

Rabc(µ − 4Cabc(µ

)
vabvν)

c + 4
3Rabvµ

avν
b − 1

3Rvµ
avνa

+1
6Rµνv

abvab − 1
2gµνCabcdv

abv cd
)

+ 2∇a∇bvµ
avν

bM I + 4
3∇a∇(µvν)bv

abM I

−2
3∇

2vµ
avνaM

I + 2
3gµν∇a∇bv

acvc
bM I

+ 1
6

(
gµν∇2 −∇µ∇ν

)
vabvabM

I
]



EOMs

+
[
1
2Rabc(µvν)

cF Iab +∇a∇bv(µ
aF I

ν)

b
+ 1

3∇a∇(µ|v|ν)bF
Iab

+1
3∇a∇(µF

Ib
ν)vb

a + 1
3∇

2F Ia
(µvν)a

− 1
3gµν∇a∇bv

a
cF

Ibc + 2
3RabF

Ia
(µv

b
ν)

+ 1
12

(
Rµν −∇µ∇ν + gµν∇2

)
vabF

Iab

+ 1
6RF

Ia
(µvν)a −

(
F Ia

(µv
bc + va(µF

Ibc
)
C|ν)abc

−1
4gµνF

Iabv cdCabcd

]
+ 8

3

[
M I
(
va(µ∇ν)∇bv

ab + vab∇b∇(µv
a
ν) + v(µ|

a∇a∇bv|ν)
b

−1
2gµνvab∇

b∇cv
ac
)

+∇av(µ|
a∇bM

I v|ν)
b

−∇(µvν)a∇bM
I vab + 1

2gµν∇av
a
b∇cM

I vbc −∇aM
I vab∇(µvν)b

]
− 16

9

[
M I
(
vaµvν

bRab − 2vabva(µRν)b − 1
2gµνv

abvb
cRac

)



EOMs

+1
2∇

2M I v(µ|
ava|ν)

+ 1
2gµν∇a∇bM

I vacvc
b −∇a∇(µ|M

I vabvb|ν)

]
− 2

9

[
M I
(

2vµ
avνaR + vabv

abRµν − 1
2gµνRvabv

ab
)

−
(
∇µ∇ν − gµν∇2

)
M I vabv

ab
]

+ 4
3

[
M I
(

(∇µvab)(∇νv
ab) + 2(∇avbµ)(∇avbν)− 1

2gµν(∇avbc)(∇avbc)
)

+ 2∇aM
I (∇av(µ|

b)vb|ν) + 2∇aM
I (∇(µ|v

ab)vb|ν)

−2∇aM
I (∇(µ|vb|ν)))vab

]
+ 4

3

[
M I
(

2(∇(µ|v
ab)(∇avb|ν)) + (∇avb(µ|)(∇bv|ν)

a)

−1
2gµν(∇avbc)(∇bv ca)

)
+∇a

(
M I vb(µ∇ν)v

ba + M I vb(µ∇avbν) −M I vba∇(µ|vb|ν)

)]



EOMs

− 2
3

[
M I εabcdevabvcd∇(µ|ve|ν) − εabcde∇(µ|M

I vabvcdve|ν)

− εabcd (µ|∇eM
I vabvcdv|ν)

e + 1
2gµνε

abcde∇fM I vabvcdvef

]
+ 2

3

[
εabcdeF I

abvc(µ∇ν)vde − 2εabcd (µ|∇eF
I
abvc

evd |ν)

]
+
[
εabcdeF I

abvc(µ|∇dve|ν) + εabcd (µ|∇eF
I
abvc

evd |ν)

]
− 4

3

[
2F I

a(µvν)
bvbcv

ac − 2F I
abv

a
(µvν)cv

bc − 1
2gµνF

I
abv

acvcdv
db
]

− 1
3

[
2F I

a(µv
a
ν)vbcv

bc + 2F Iabvabvcµv
c
ν − 1

2gµνF
Iabvabv

cdvcd

]
+
[
16M I vabv

b
(µvν)cv

ca − 2gµνM
I vabv

bcvcdv
da
]

+
[
4M I vabv

abvcµvν
c + 1

2gµνM
I vabv

abvcdv
cd
]}



Conditions for timelike supersymmetry

I For a timelike orbit we can take ε = (ε1, ε2) = (eφ1,−ieφe12)

The Killing spinor equations imply

I ds2 = e4φ(dt + Ω)2 − e−2φĝmndx
mdxn

I ĝ is metric for Hyper-Kahler “base space”.

I F I = e−2φe0∧d(M I e2φ)−M IG (−) +F I (+) = −d(M I e0) + ΘI

I ΘI harmonic.

I vµν completely determined.

I D = 3
2e

4φĜ (−)·Ĝ (−)+1
2e

4φĜ (+)·Ĝ (+)+3e2φ∇̂2φ−18e2φ(∇̂φ)2



EOMs and KSIs

Normally to solve the eoms we plug this data into the equations
then try and simplify. However for our representative we obtain for
the Killing spinor identities

E(A)0I − E(M)I = 0 , E(A)iI = 0 ,(
1
4E(v) + E(D)v

)α
α

+∇0E(D) = 0 ,(
1
4E(v) + E(D)v

)0i −∇iE(D) = 0 ,(
1
4E(v) + E(D)v

)12
= 0 , E(e)µa = 0 .

off-shell KSI are valid for all higher order corrections that can be
added to the theory with the same field content, i.e. for any similar
consistent truncation. In particular for any such corrected action it
is sufficient to impose the equations of motion

E(D) = 0 , E(v)(+)ij = 0 , E(M)I = 0 .



Simplified eoms

The equation of motion for D is

0 = 1
2(N − 1) + c2I

48 e
2φ
[
1
4e

2φM I
(
1
3 Ĝ

(+) · Ĝ (+) + Ĝ (−) · Ĝ (−)
)

+ 1
12e

2φĜ (+) · Θ̂(+)I + M I ∇̂2φ+ ∇̂φ · ∇̂M I − 4M I ∇̂φ · ∇̂φ
]
,

The M I equation is more involved, but we find

0 = e4φ
[
1
4cIJK Θ̂(+)J · Θ̂(+)K − ∇̂2

(
e−2φNI

)]
+

+ c2I
24 e

4φ
{
∇̂2
(

3∇̂φ · ∇̂φ− 1
12e

2φĜ 2
(+) −

1
4e

2φĜ 2
(−)

)
+ 1

8 R̂ijkl R̂
ijkl
}
,

This computation has been checked in Mathematica using the
package xAct, and the two equations above are in agreement with
[Castro et al].



Simplified eoms

Finally, after a very long calculation and making extensive use of
duality identities we find the equation of motion for v yeilds

0 = −4e2φĜ
(+)
ij + 2e2φNI Θ̂

I (+)
ij

+ c2I
24

{
1
2e

6φ
(
1
3 Ĝ

2
(+) + Ĝ 2

(−)

)
Θ̂

(+)I
ij

− 1
3e

4φ
(
M I Ĝ

(+)
kl + 2Θ̂

I (+)
kl

)
R̂ kl
ij

+e4φ∇̂2
[
M I (G

(−)
ij − 1

3G
(+)
ij )

]
− 1

6e
−2φ∇̂2[e6φΘ̂

I (+)
ij ]

− 4e4φ∇̂[i∇̂k [M IG
(−)k

j]]
}
,



Ricci scalar squared invariant

Now let us consider adding the Ricci scalar squared invariant
constructed by Ozkan and Yi Pang to the theory above. After
gauge fixing this invariant reads

e−1L =E
[
N2(14D −

1
8R + 3

2v
2) + 2Nv · (dP − 2dV ) + 1

4(dP − 2dV )2

−1
2(dN)2 − 1

16(P2 + 4V · P − N2 − 2v2 + D + 6V ′
ij
aV
′a
ij + 3

2R)2

+2∇aV ′
ij
a∇bV

′b
ij

]
+ eI

[
N2F I · v + N

2 F
I · (dP − 2dV )− NdN · dM I

−1
2NY

I (P2 + 4V · P − N2 − 2v2 + D + 6V ′
kl
a V
′a
kl + 3

2R)

−4NY ′
I
ij∇µV ′

(i
µkL

j)k

+1
8e
−1εabcdeAI

a(dP − 2dV )bc(dP − 2dV )de

]
,



Ricci scalar squared invariant

After trunacting the auxiliary fields this leads to the following
additions to the eoms

1√
|g |

δSRs2

δD
= 4

3ED(23D −
4
3v

2 + R) ,

1√
|g |

δSRs2

δM I
= eI (

2
3D −

4
3v

2 + R)2 ,

1√
|g |

δSRs2

δvµν
= −16

3 E(23D −
4
3v

2 + R)vµν ,

1√
|g |

δSRs2

δAI
µ

= 0 ,

1√
|g |

δSRs2

δgµν
= E

{
2(23D −

4
3v

2 + R)(Rµν − 8
3vµavν

a)

−1
2gµν(23D −

4
3v

2 + R)2
}

+ 2(∇µ∇ν − gµν∇2)E(23D −
4
3v

2 + R)2 .



Ricci scalar squared invariant - timelike case

However for our time-like representative the gaugino Killing spinor
identity yields

E(A)I0 = E(M)I .

This implies
(23D −

4
3v

2 + R) = 0

which can be checked using the explicit form of D and v and
calculating R, using the fact that the base is Ricci flat. This
implies that all of the contributions to the equations of motion for
this invariant vanish for supersymmetric backgrounds in the
time-like class.



Ricci scalar squared invariant - Null case

In the null case our representative has first component ε = 1 + e1.
Using a suitable “null” basis we obtain a linear system for the KSIs
which imply

E(M)I = 0

This can only be true if the coupling eI vanishes, or again
R = 4

3v
2 − 2

3D. Since the KSIs are off-shell they do not know the
value of eI , so we may conclude that R = 4

3v
2 − 2

3D = 0 also for
the null cases, and this invariant therefore does not contribute to
any equation of motion for any supersymmetric background.



Maximally supersymmetric solutions in the general case

I We made a consitent truncation of some auxiliary fields in
order to ensure we were discussing an ungauged supergravity,
but what is the story in the general case?

I Let us consider maximal supersymmetry and generalize the
work of Meessen to the case of an off-shell compensating
multiplet.

I As we are off-shell, we do not (and cannot) make any
distinction between the (U(1)) gauged and ungauged
supergravities. i.e. we do not know whether the coupling to
the cosmological constant density (0-derivative) is non-zero.



Maximally supersymmetric solutions in the general case

I As expected we find only the known solutions of the ungauged
case and AdS5.

I In the case of Minkowski and AdS5 the equation of motion of
Y ij remains to be solved, but corrections to it are always
constant.

I The eom of D always remains to be solved, but corrections to
it are always constant. The very special geometry condition is
just renormalized.

I However each solution has different components of the Pa

equation that remain to be solved, generating constraints.

I The simplest example is already very well known. Solving the
Pa equation of motion at 2 derivative level where we demand
the coupling to the cosmological constant density is non-zero
in the case of Minkowski space leads to a contradiction -
Minkowski space is not a maximally supersymmetric solution
of the gauged supergravity.



Outlook

Wish list

I Riemann tensor squared or Ricci tensor squared invariants in a
form we can use.

I Understand the freedom to make field redefinitions in string
theory to choose the cooeffients of the invariants - can we
simplify things all the way to the truncated case order by
order? Do we want to?

I If not, progress on the full untruncated spectrum- related to
the classification of the two derivative general matter coupled
case.

I Cases in 3-6d where we have the superconformal off-shell
formalism (and matter to perform the gauge fixing).

I Non-Abelian case.



Outlook

Applications

I Generalize classification of order α′ near horizon geometries
given in “Small Horizons” [Gutowksi,Klemm, P.S., Sabra]

I Make progress on more general order α′ full black hole
solutions, and black rings (and things).

I Stringy corrections to ADS/CFT calculations in the gauged
case.
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