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Introduction

» Supersymmetric solutions of a particular supergravity have to
solve two sets of equations:

» Killing spinor equations: “Supersymmetric”
» Equations of motion of the theory: “Solution”

» Killing spinor identities relate components of equations of
motion to each other for supersymmetric configurations in
supergravity theories

» Tell us which equations of motion are automatically solved by
the supersymmetric geometries

> If the supersymmetry in a theory is realised off-shell then we
don't even need to know the action, i.e. the specific theory
under consideration.

» Can prove all orders results in effective supergravity
description of string theory.

> Apply equally to any higher derivative supergravity.



Introduction

» Normally horrible to try and supersymmetrize higher derivate
(string correction or not) actions on-shell, as we need to
change the susy transformations and the action.

» Move to off-shell formulation: We will use the superconformal
formalism.

>

Superconformal group biggest possible for S-matrix,
supersymmetry is realized off-shell.

» Matter couplings easier to find.
» Contains super-Poincaré, so the super-Poincaré theories can

always be obtained by a suitable gauge fixing.
Supersymmetric completions of most curvature squared terms
are known.



Off-shell Killing spinor identities

> In work of Ortin & Kallosh and Ortin & Bellorin the Killing
spinor identities were derived.

» The derivation does not require that the supersymmetric
action is known, just that the action is supersymmetric under
the given supersymmetry variations of the fields.

> In work of Meessen (2007) the Killing spinor identities were
used in the off-shell ' =2 d = 5 superconformal theory to
show that the maximally supersymmetric vacuua of the two
derivative theory are the vacua of arbitrarily higher derivative
corrected theories, up to a generalization of the very special
geometry condition. However an on-shell compensator was
used.

» Here we will be interested in what they have to say about
solutions with less supersymmetry and later with an off-shell
compensator.



Off-shell Killing spinor identities

Lets derive the Killing spinor identities. Let S[¢p, ¢¢] be any
supergravity action, constructed in terms of bosonic fields ¢, and
fermionic fields ¢¢. Let us further assume S[¢p, ¢¢] is the
spacetime integral of a Lagrangian density:

Slow ] = / dx/ELlbb: b1]

The invariance under supersymmetry transformations of the action
can be written

0QS[¢b, or] = /ddX\/E{£b[¢b>¢f]5Q¢b[¢ba¢f]
+Ls[bp, drl0Qor[db, ¢l =0,

where dg denotes a local supersymmetry transformation of
arbitrary parameter, L, Lr, denote functional derivative of the
Lagrangian with respect to ¢y, ¢r respectively, and a sum over
fields is understood.



Off-shell Killing spinor identities
Next consider a second variation of the action functional by
varying 6oS[¢sb, ¢r] with respect to fermionic fields only. Since
dQS[dp, ¢¢] is identically zero for arbitrary ¢y, ¢, we have

0QS[db, ¢r + dFdr] =0

and we set the fermions to zero after the variation. Hence we get
— [ d*xVlgl (e Lo) 60ss)

+ Lp(5rdQdn) + (66 Lr)(d@dr) + Lr(0FQer)
¢r=0

Since dg¢p and Lf are odd in fermions we are left with

[ dx VIl (£alordan) + (5rLr)(Gaor)], o =0



Off-shell Killing spinor identities

Calculating (0FLf)g,—0 requires knowledge of the entire
Lagrangian, not only its bosonic truncation. However if we restrict
ourselves to supersymmetry transformations having Killing spinors
as parameters, dx, we have

(Okf)pe=0 =0 .

Note that
1 6S[pp,¢r] 1 6Sglds] | 1 6SF[op, of]

= + ,
Vgl 9o Vgl %b Vgl 99

where the last term vanishes if ¢ = 0.

Lp:=




Off-shell Killing spinor identities

We are thus led to define

£, = 1 Sg[¢s]

Vgl b

so that bosonic equations of motion take the form

Ep=0.

Thus the Killing spinor identities may be written as

/ A% x/Tg] Eb(0F Ok d)sy—0 = 0.



N =2, d =5 off-shell KSls

To derive the Ksis we need the off-shell variations of the fields
under supersymmetry. We shall make use of the Standard Weyl
multiplet (3,1, Vab, D, Vi, by, x'), Abelian vector multiplets
(Aus Yi Qi M) and a linear multiplet (LU, ¢!, N, E;) which we use
to break the superconformal invariance. After gauge fixing the
superconformal theory to super-Poincaré these are for the Weyl
multiplet

de a = —2i€73¢u )
5Vab = le'yabx +-
oD = /e'y’“’xv /efy“VMX + i@ Vi
— §3(Es + N)Lipd + 5877 V/sid + -+
SVI = —iliy D



N =2, d =5 off-shell KSls

for the vector multiplet and linear multiplet we have

SAl, = —2iey,Q + - |

oM = 2ieQ!
Y = 2iliyav Qi) — 2jeliyay B ok _ 20\/Kig o, qi) _ izl abqil
6Py =,



N =2, d =5 off-shell KSls

> We ignored terms involving the gravitino in the variations,
apart from in the veilbein variation.

» This is because we shall choose to solve the Einstein equation
last. - It is usually the most involved in any case.

> In particular, if we assume that when we look to solve the
Einstein equation that all other eoms have been solved first,
we can ignore the ... terms above.

So if we set
_ 1 éS
Ele)e = aroet
we get
E(e)tyae =0



N =2, d =5 off-shell KSls

To proceed we will need one more ingredient, the gravitino
variation which reads

5"/’;; = V,uei + %'Y,uabVabfi - %’Vu’YabVab

+V:Ljej + 1y, (v7 P + N) g — 17,77 V'0e =0,
where VJ V, L+ V’IJ so that V'l aLij=0.

Let us now write the KSI associated to a variation of gauginos. We
obtain

0= / ®x+/|g] [5(A)7 (—2/Eivu>+€(M)/(2iEi)
+E(Y) ik (2id)y? VE

LYY VG, — E)H(557™van) | 64
+E(Y)I(2igy?) Va0



N =2, d =5 off-shell KSls

Integrating by parts and using the fact that the gravitino Killing
spinor equation implies

YV, = 2(v- 7)e —~? VaLijej + %V'aij'yaej —2(v*Pa+ N)Lijej ,

we obtain
= [E(AY) 3 — E(M),
+1%5(Y)( (P, +2V,) + N)] ¢
(20 2B 200

—E(Y), ij abvab] 6 -



N =2, d =5 off-shell KSls
Finally we consider the KSI associated with the auxiliary fermion.
0 = [ /gl [~ s — E(DIL VAL — 4E(D)PEas
+LE(D)B( P, + N)LE — E(D)HBV y + LE(V) L,
+ie(v)dm! — gg(N)Lj} Sxi + [—iE€(D)AM] V0 -

Integrating the last term by parts, discarding the total derivative
and making use of the gravitino Killing spinor equation we obtain

0 = %S(V)ab + %g(D)vab] Yab€ + Vacf’(D)%e — 75(V)gvaej
—Le(V)im! g + 26(D) V' Iy2e + LE(N) Lig

—E(D)(7°Ps + N))Lig .



Spinorial Geometry and classifying supersymmetric
configurations

» Supersymmetric configurations solve the Killing spinor
equations, i.e. the vanishing of the supersymmetry variations
of the fermions on purely bosonic backgrounds.

> We shall truncate the fields V,J, Y/ N and P, for now, so we
are sure we stay in an ungauged theory, as was done in the
work of Castro et al.

> We shall have more to say about this later.



Spinorial Geometry and classifying supersymmetric
configurations

» Demanding the vanishing of the gravitino variation for a
bosonic background implies

. 1 1 .
61% = [VM + Evab’y“ab - 3v"b'yufyab} e€=0.
» From the vanishing of the gaugino variation for a bosonic

background one has

. 1 PR Lo s i
5Q" = [_4Falb7 b E’Y“%MI - §MIV b’Yab] € =0.

> the vanishing of the auxilary fermion variation for a bosonic
background we get

. 4 .
5XI = |:D - 27C’}/abvavbc - 27353bcdeVbCVde + §(V : ’7)2:| €



Spinorial Geometry and classifying supersymmetric
configurations

> In order to solve these equations, one may use the bilinears
method. Form a bilinear out of spinors, then demand that the
equations above hold - restricts the form of the spin
connection and matter fields.

» Sometimes awkward to solve explicitly for the spinors e.

» Gillard Gran & Papadopoulos introduced the spinorial
geometry techniques:

» Use Clifford isomorphim to write the space of spinors in terms
of an exterior algebra and the action of the gamma matrices as
a combination of wedge and interior products.

» Choose a particular basis of gamma matrices so they act as
creation or anihilation matrices - wedge or interior product.

» Use the Spin(1,4) gauge freedom in the above equations to
write representatives for the spinors - up to local lorentz
transformations on the bosonic fields



Spinorial Geometry and classifying supersymmetric
configurations

» Now we have explicit representatives for the spinors. Can solve
the equations “easily”, and more importantly systematically.

> If we leave in all the auxiliary fields the result will be true to
all orders - but some may not occur due to the imposition of
the equations of motion. Eoms imply less general geometry.
Supersymmetric configurations are often more general than
supersymmetric solutions to a given theory.

> Lets see an example.



Weyl squared corrected N' =2, D = 5 supergravity
coupled to Abelian vector multiplets

As discussed by Castro et al. We consistently truncate the fields
Vi, YIi N and P,. We take the Lagrangian

L=Lry+Ly.
where at two derivative level we have
Lo=Ly+Ly=3iDN —1)— RN +3) + V(3N +1)
+ 2NVl + Ny (3P F = 3V,M'v7 1)

1 —1 _abcde pl £J £K
+ 5zClUKe "€ AsFbcFde -



Weyl squared corrected N' =2, D = 5 supergravity
coupled to Abelian vector multiplets

As far as the four derivative Lagrangian is concerned we will take
£4 — g {116 e—leabcdeA/ Cbcfg Cde fg + M CadeC bed+
+ H5M'D? + LDvPFl, 4+ M Capegv®ve + 3 Capea FPv9+
+ %M/ Vabvbvcvac o %GM/ VabeCRaC . %MI V2R+
+ %M'Vavbcvavbc + %M’Vavbcvbvca—i—
_ gMI -1 abcde Vachdvaef + ge—leabcdel_-;bvcfvade_‘_
+ "deeF’bvc,chv 4,_— bV Vchdb _ %FaleachdVCd"i‘

bc

+aM v pvPvgv® — M vpvPygved } ,



EOMs

Vel 6D
. 55

Vgl sMT

1 9%
Vel 6A

FN=-1), 1 0% _ 2(NGF!™ 4 (BN + 1)v™),

\/ﬁévw,

(AD — IR+ 3V)N) + cu(AF! - FK - Ivm? - v mK)

A (RF ™ + )

cuk (5P Fop PG + FHV M5 + 4NV vie

+N 8V M + v, FIr2)



EOMs

Vielsgh 2N +3)Ew — 3DV — 1)guw

+2(1 4 3N)(vapv?, — %vzg,w)
I Ja I v

+NU(3Fa, F2, +4F) Vo — 3VuM'V, M)
I J I

~NuyGGF' - F +Fl v = 3VM" - VMg,

+ 1V VN = VN g,) .



EOMs

oS

1 4 ! :

Jap = (DM +v )

0Sy

ﬁmzf{ CadeCabcd+12D + = Cabcdv VCd
+8VapVOVev® — vy, — 2V2R
§(V3Vbc)(va bc) §(vaVbC)(vbvca)

B % —1 abcde Vabvcdvaef —|—4vabvbcvcdvda -

(v2)? }



EOMs

(554
1 C 1 luv / v b 1 4 lab
T VV_A{,DFM 2MC ve cH Fla

+Em! vy, 8glly,m! v
+2plvl R Ml Ry

— 8V MIvAv — 8y, My

. ﬂMIGw/abCVabvchd + 2eabcd[uvu]MIVabVCd
+ 2€abcd[,u,/_—l vy o — 2 abc;wvdl_—l Ved

+ Eabcd[ul_-l Vv vl 4 eabcd[uv ,_-/ LVd v

!
+%F[uavu] b &Fl yanyvb 1, 2plmw

—% (F' . V) v —16M vabva“v”b = 4/\/IIV2VW}



EOMs

4S.
1 4 1 bed - c e _1
[5]] { 16 elta C abef Coy e §va Dva,u,

ﬁm 24

_vacap,bcvbc + %Euabcdvavbevevcd

+26“adeVavbeVCvde + %Vavabvbcvc“ + %Vava“vz}



EOMs

m@_ﬂ

1 I abc 4 ab bcd
+ 2 [M (*Cabc(,u|R [v) + §Rabcp v T 2C# Cbed

1 48, &) { B % [Eade(MvGFalecdeW)]
18 C Copea) + 2V,V,M' €3,
~ 3 |8 M D% + 3 | DV(F), — dgu DV FL|
+ 3 M (Rabe( = 4Cae) V%) + 3Rapvu v = SRV, v
+ RV Vab — 38w CabchabVCd>
+ 2V, Vv v P M + 3V, V(v v M
2V vaM' + 38,V Vv v M!
+ 1 (guV? = V,uV)) vabvabl\/ll}



EOMs

+3VaV(F P’ + 3V2FR (),
— 28 VaVpV FP + 2R, F2 VP,
+ le (R/w - V.V, + gNsz) VapF '
+ %RF’a(uV,,)a — (F’a(uvbc + V(a'uFle> C\u)abc

(o a a b a
|3 Rabe(ui) “F + VaVv(, F) + 392V vy F '

_%g,uuFlabVCdCabcd]
+ % [MI (Va(ﬂvu)vbvab + Vabva(MVa,,) + v(MaVavah,)b
—%ngabvbvcv“) + vaV(MavbMIVh,)b

— V(le,)avbl\/l’v"’b + %gﬂyvav"bVCMlvbc - vaMIVabV(NVV)b}

- 1@6 |:MI (VaqubRab - 2VabVa(,uRu)b - %g/u/ VabeCRac>



EOMs

+3VEM v Vap)
+ 38 VoM v vt — T,V M vy, |
— % {I\/I’ (2vu"vyaR + vabv"bR,w — %gWRvabvab)
— (VuVy — guV2) M vabvab]
4 (M ((Vvae) (v + 2(Tav ) (V7VE) = 3 (Tavee) (V2vE<)
+ 2V M (Vv )iy + 2V M (Vv Ve
_2vaMI(v(,u|Vb|y)))Vab}
4 (M (2V v ) (Taviin)) + (V) (TV,))
—~38u(Vavsc)(VPV))
Vo (Mo V) VB2 - M v 2P ) = MIEV v ) |



EOMs

- -

|
WS /— WwIN

/T W=

+
_l’_

wIN
r

MI 6abcde 6abcdev

/
Vachdv(u|Ve|V) - (N|M VabVed Ve|v)

bcd I 1 bcd. faql
€ (e |veM VachdV\u)e + jg/wea “ev'Mm VachdVef}

abcdeFlbvc( \V4 v)Vde — 2Eade(M|v ch Valw ):|

abcde I_—I

€ VC(MVdVe‘,/) + e (N|V Fbvc Vd|v )}

i b 1 1 db
2F (V) bypev® — 2F 35V2 (Vi) V™S — 58uFapV®Veav }

2F (Y )vbcvbc + 2F’abvabvcuvcy — %gw,F'abvavadvcd}
16M' v,pv (“vl,)cvCa — 2gu,jl\/llvabvbcvcdvda}

4Mlvabv"’bvcﬂvl,c + %gw,l\/llvabvabvcdv‘:d} }



Conditions for timelike supersymmetry

» For a timelike orbit we can take € = (¢!, €?) = (e?1, —ie®e'?)
The Killing spinor equations imply

> ds? = e*(dt + Q)% — e 2% pndxMdx"

» g is metric for Hyper-Kahler “base space”.

» Fl=e 20 Nd(M'e??) — MG+ FItH) = —d(M'e%) 40!

©! harmonic.

v

v

v completely determined.
D = 3640 6().6 1)+ 14 (). 6(H 4320829 1862 (V)2

v



EOMs and KSls

Normally to solve the eoms we plug this data into the equations
then try and simplify. However for our representative we obtain for

the Killing spinor identities

EAN —EM) =0,  E(A)

(€(v) + (D)V)a VOE(D)
(L&(v) + E(DW) " = ViE(D
(z€(v) +£(D ) ) =0, E(e)

9

9

9

0
0
0
0

off-shell KSI are valid for all higher order corrections that can be
added to the theory with the same field content, i.e. for any similar
consistent truncation. In particular for any such corrected action it

is sufficient to impose the equations of motion

EMD)=0, EW)HPi=0,

M), =0 .



Simplified eoms

The equation of motion for D is
0=L(N—1)+%e {1 200! <%@(+> L) 4L ). @H)
+ L6 6N L M2+ Vg TM — aMIV g - %} :
The M' equation is more involved, but we find
0=e* [ cux @ L OHIK _ 2 (e‘z‘bj\/'/)] +
+ et {92 (390 Vo — G2 — 162 C2 ) + RyuRM}
This computation has been checked in Mathematica using the

package xAct, and the two equations above are in agreement with
[Castro et all.



Simplified eoms

Finally, after a very long calculation and making extensive use of
duality identities we find the equation of motion for v yeilds
0= —4e%? @-(-+) + 2e2¢/\f/(:){-(+)
c 1.6 A+
v {36 (368 + &)
— ¥ (MG +20)7) R
& - 26 Al
L eto%r2 [M’(G,-E- ) _ lGiJ('Jr))} Lo 2¢v2[e6¢@ij(+)]

— 4 Tpvim 6



Ricci scalar squared invariant

Now let us consider adding the Ricci scalar squared invariant
constructed by Ozkan and Yi Pang to the theory above. After
gauge fixing this invariant reads

e 'L =E[N* (D — iR+ 3v?) +2Nv - (dP — 2dV) + (dP — 2dV)?
—3(dN)? — (PP +4V - P—N?—2v> + D +6V'2V'i + 3R)?
rovav'iy, v’ﬂ
T [N2F’ v+ NF . (dP — 2dV) — NdN - dM’

—INY!(P2 44V . P - N2 - 202+ D+ 6V Vg + 2R)
! i ik

—anygor v

+ie 1AL (dP — 2dV)pe(dP — 2dV)ge| |



Ricci scalar squared invariant

After trunacting the auxiliary fields this leads to the following
additions to the eoms

#65’?52
Vel 6D
LéSRSQ
Vel 6M!
0S
N S = —RE(3D — VP + RV
uv

#65R52
Vil GAL

1 55R52 2 4 2 8 a
NERr {250 = 3v* + R)(Ruw — 3vuaw”)

~28w(30 = 3v* + R)*}
+2(VuVy — g V)EBED — 3v2 + R)? .

=4ED(3D - V2 +R),

=e(3D -3+ R)?,

=0,




Ricci scalar squared invariant - timelike case

However for our time-like representative the gaugino Killing spinor

identity yields
E(A)p=EM), .

This implies

(2D—-%v*+R)=0

which can be checked using the explicit form of D and v and
calculating R, using the fact that the base is Ricci flat. This
implies that all of the contributions to the equations of motion for
this invariant vanish for supersymmetric backgrounds in the
time-like class.



Ricci scalar squared invariant - Null case

In the null case our representative has first component € = 1 + el.
Using a suitable “null” basis we obtain a linear system for the KSls
which imply

EM); =0

This can onIy be true if the coupling €; vanishes, or again

R = 3v? — 2D. Since the KSls are off- sheII they do not know the
value of e, so we may conclude that R = 3v — 2D = 0 also for
the null cases, and this invariant therefore does not contribute to

any equation of motion for any supersymmetric background.



Maximally supersymmetric solutions in the general case

» We made a consitent truncation of some auxiliary fields in
order to ensure we were discussing an ungauged supergravity,
but what is the story in the general case?

> Let us consider maximal supersymmetry and generalize the
work of Meessen to the case of an off-shell compensating
multiplet.

» As we are off-shell, we do not (and cannot) make any
distinction between the (U(1)) gauged and ungauged
supergravities. i.e. we do not know whether the coupling to
the cosmological constant density (0-derivative) is non-zero.



Maximally supersymmetric solutions in the general case

>

As expected we find only the known solutions of the ungauged
case and AdSs.

In the case of Minkowski and AdSs the equation of motion of
Y'Y remains to be solved, but corrections to it are always
constant.

The eom of D always remains to be solved, but corrections to
it are always constant. The very special geometry condition is
just renormalized.

However each solution has different components of the P,
equation that remain to be solved, generating constraints.

The simplest example is already very well known. Solving the
P, equation of motion at 2 derivative level where we demand
the coupling to the cosmological constant density is non-zero
in the case of Minkowski space leads to a contradiction -
Minkowski space is not a maximally supersymmetric solution
of the gauged supergravity.



Outlook

Wish list

» Riemann tensor squared or Ricci tensor squared invariants in a
form we can use.

» Understand the freedom to make field redefinitions in string
theory to choose the cooeffients of the invariants - can we
simplify things all the way to the truncated case order by
order? Do we want to?

> If not, progress on the full untruncated spectrum- related to
the classification of the two derivative general matter coupled
case.

» Cases in 3-6d where we have the superconformal off-shell
formalism (and matter to perform the gauge fixing).

» Non-Abelian case.



Outlook

Applications

» Generalize classification of order o’ near horizon geometries
given in “Small Horizons" [Gutowksi,Klemm, P.S., Sabra]

» Make progress on more general order o’ full black hole
solutions, and black rings (and things).

» Stringy corrections to ADS/CFT calculations in the gauged
case.
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