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Maxwell-Einstein-Scalar Theories | st

- 1 . 1 L IE
L= ) + 5 Yii (p) Qup' O’ + iirﬁz () Fﬁqum + Wane Rys () PUFi;szg
D=4 Maxwell-Einstein-scalar system (with no potential
H = (F*"jGﬁ)T; y ( P )

[ may be the bosonic sector of D=4 (ungauged) sugra ]
X : aL : :
Gl = gﬁpﬁlw - Abelian 2-form field strengths

static, spherically symmetric, asympt. flat, extremal BH

2 (1) 342 —2U(T) dr” 1 2, o .2
ds” = —e dt® +e T+ (dﬂ +51n9d-t;;)
T T
T:=—1/r
. _ (A T,
Q _/52 H=("an) ; dyonic vector of e.m. fluxes

1‘” 1 (BH charges)




AT i 1j - d
Sp=1 = f[([_;:) + gij" 0" + eV Vau(o (1), Q)ldr o
reduction D=4 ->D=1 .effective 1-dimensional (radial) Lagrangian

) 1 BH effective potential
Ver (9. Q) = —EQTM (») Q. p

Ferrara,Gibbons,Kallosh

1 ; ,
% — 2U Viea: in N=2 ungauged sugra,
hyper mults. decouple, and we thus
SOl S 5 disregard them : scalar fields
d”¢' _ gijeﬁff?W_BH belong to vector mults.
L dr? Ol -

Attractor Mechanism : 9,Ver =0 & lim,_ ¢ (1) = ¢} (Q)

formally flat geometry AdSs x S% near the horiz : . M3
coniormally Hat geometry 2 X near the horizon .SEB = 1;; dtg B BQ_R (d-rg n ngﬂ)
ik B—R T
near the horizon, the scalar fields are stabilized purely in terms of charges
Ag T
_ _ 7 _ T

Bekenstein-Hawking entropy-area formula for extremal dyonic BH



Symmetric Scalar Manifolds
A remarkable class of Einstein-Maxwell-scalar theories is endowed with scalar

manifolds which are symmetric cosets G/H
[in presence of local SUSY :N>2 : general, N=2 : particular, N=1 : special cases ]

H = isotropy group = linearly realized; scalar fields sit in an H-repr.
G = (global) electric-magnetic duality group, on-shell symmetry

General Features in D=4

The 2-form field strengths (F,G) vector and the BH e.m.
charges sit in a G-repr. R which is symplectic :

ICny =1 € Rx,R; (Q1, Qo) = 0V QY Cyy = — (Q9., Qy)
) symplectic product

In physics : Gaillard-Zumino embedding

G C Sp(2n,R);
p(2n.R) (generally maximal, but not symmetric)

R = 2n application of a Th. of Dynkin; more on this later...




Let’s reconsider the starting Maxwell-Einstein-scalar Lagrangian density

R 1 N iau i 1 , A Y| pr 1 v A X
L = —5 T 5% () Oup* 0’ + ifmz (p) £ 71 + Ware Ras (p) 7 F Fop
...and introduce the following real 2n x 2n matrix :
I —R I 0 I 0 [+ RI'R —RI!
M — e
0 I 0 I —R 1 —I 'R !

M = M(R.I) = M(Re(N),Im (N)).
ML =M MCM =C

M=—(LL")" =L TL,

L = element of the Sp(2n,R)-bundle over the scalar manifold
( = coset representative for homogeneous spaces G/H)



By virtue of this matrix, one can introduce a (scalar-dependent) anti-involution
In any Maxwell-Einstein-scalar gravity theory in D=4

Slp) + =CM(yp)
S*(p) = CM(p)CM(p)=C" =L,

Ferrara,AM,Yeranyan; Borsten,Duff,Ferrara,AM

In turn, this allows to define an anti-involution on the dyonic charge vector Q,
which has been named (scalar-dependent) Freudenthal duality (F-duality)

§(Q) =-S5(p)(Q).
3 = —1d.

. 1
By recalling Vi (. Q) := —§QTM (¢) Q,

F-duality is the symplectic gradient of the effective BH potential :




All this enjoys a nice physical interpretation when evaluated at the BH horizon :

Attractor Mechanism 9 Vpy =0 < lim,,_ 0" (1) = ¢%(Q)

Bekenstein-Hawking Ap ) L
S = — = WT{BH|5¢1IH”=G — —

T
entropy 4 S MnuQ

ro| =

By evaluating the matrix M at the horizon: lim M (¢ (7)) = My (Q)

T—r—00
one can define the horizon F-duality as:

| _ 1 oS .
lim,—,o§ (Q) =t § (Q) = ~CMpQ =—C aZH - Q,

»-.;2 P -
Su(Q)=3u(Q)=-9Q
It is a non-linear (scalar-independent) anti-involutive map on Q (hom of degree 1)
Bek.-Haw. entropy is invariant under its own non-linear symplectic gradient (i.e., F-duality) :

S(Q) =5 (@u(Q) =5 (%ng) = 5(Q)

This can be extended to include at least all quantum corrections
with homogeneity 2 or 0 in the BH charges Q




Brown (1967);
Garibaldi; Krutelevich;
Borsten,Duff et al.

: : : Ferrara,Kallosh,AM;
< the (ir)repr. R is symplectic : AM Orazi Riccioni

_ AM AN

AC N =1 e RxR; (Q1.Q2) = Q7 Qy Cyun = —(Q2,Q1) :
symplectic product

¢ the (inrepr. admits a completely symmetric invariant rank-4 tensor

Lie groups of type E- : (G,R)

1 Kunerg = Kunveg) =1 € (R xR X R x R), (K-tensor)

l, G-invariant quartic polynomial

Iy = KMNPQQMQNQPQQ =:€|Iy|, = Spr = ™/ |14]

¢ defining a triple map in R as
T:RxRxR =R (T(Q1,95,93), ) = KynproQX oY ol of

it holds (T(Q1,Q1,Q2),T(Qa, Q2,Q2)) = (Q1, Q2) Knnpo Q' QY 0F QF

this third property makes a group of type E, amenable to a description
as automorphism group of a Freudenthal triple system (FTS)




Evidence : all electric-magnetic duality groups of D=4 ME(S)GT's with

symmetric scalar manifolds (and at least 8 supersymmetries) are of type E
N =2

N G R
G R

G ] ]
2,R) x|S (2.2+n) 4 /?/(Q,]E}XSO(G,HJ (2,6 +n)

/1
SL(2,R) 4 /
5 SU(1,5)
Sp(6|R) 14/ /
E-, 912 - embedding tensor N=8/N=2 exc, D=4
SU(3,3) 20 / (E7 g )

satisfies the first two Brown’s axioms,
I |
50*(12) / but not the third one!

20

8 H ET{T} ‘ 515
Er(_{os) 56

“degenerate” groups of type E,

Is(p,q) = (I2(p, q))° Spu = mV/ |11(p, )| = 7 |I2(p, )| -




In D=4 sugras with the previous electric-magnetic duality group of type E-,
the G-invariant K-tensor determining the
extremal BH Bekenstein-Hawking entropy

Spr = T/ |14] I = KunpoQV QN QP Q% = e |1,

can generally be expressed as adjoint-trace of the product of G-generators
(dim R = 2n, and dim Adj = d)

n(2n+1) | d
tyntalPo — CrrCon
6d MNZAlPQ ™ (o 4 1) MIEON

.
Kynpo = —

The horizon F-duality can be expressed in terms of the K-tensor

OvIa(Q)| _ . 2
QM Vv [ 14(Q)|

Borsten,Dahanayake,Duff,Rubens
and the invariance of the BH entropy under horizon F-duality can be recast as

1,(Q) = 1,(CQ) =I, ({C@ g;(@ﬂ)

Fr(Q)ar = Qur = KunpoQV QY o“




Are there other relevant symplectic matrices at the horizon ? YES!
(M¥(Q))" CM*(Q) = €C .= I,(Q) /|L(Q)
(M"(Q))" =M"(Q) Q"M (Q)Q = —2/[[,(Q)]

1
]fwh]j\,,ﬂ\r — _aﬂ-faN\/ |I4(Q)| - _;aﬂf@N‘S’BH

This matrix is nothing but (the opposite) of the Hessian matrix of the BH entropy

rmation property under horizon F-duality reads §x (Mf{ (Q)) = eM"

Analogous to the transformation property of the matrix defining the horizon F-duality :
S (Mg (Q)) = eMpy (Q)

This matrix is the (opposite of) the metric of a non-compact, pseudo-Riemannian,
rigid special Kaehler manifold related to the e.m. duality orbit of BH e.m. charges,
Which in turn is an example of pre-homogeneous vector space (PVS)




1st example : “large” BPS e.m. dualiy orbit in maximal N=8, D=4 sugra

E
Uy, . dimgp =70, rank =7

N =8,D = 4: scalar manifold My_g = SU(8)

1 o _ Er e
Iy >0: g—BPS Erzy—orbit in 56 repr.space : Op,~0 =

Eg2)

E
MH = _92\/I, : metric of Or,50 x Rt = E"—[“ « RY: (ns.n_) = (30,26)
6(2)




2nd example : “large” non-BPS e.m. duality orbit in maximal N=8, D=4 sugra

Ern
E(6)

Iy <0:non — BPS E;py—orbit in 56 repr.space : O, o =

E
MY = —9*\/—I, : metric of Or,co x RT = E?—m x RY: (ne,n_)=(28,28)
6(6)

zero character (holding for all 1,<0 U-orbits)




Er7 Er77 E7
kiCURNG '35 and 10 Rt are non-compact, real forms of f x GL(1)
i

Ee(2) Ees)

Regular Pre-Homogeneous Vector Space (PVS) of type (29) in the classification
by Sato and Kimura (77) :

(29) (GLQ) X E,, O® 4, V(1) ® V(56)).
() H ~ E;, (i) degf =4, (i) f(X) = T(",y") — EN(@®) — yN(¥)

— 1(T(x,y) — &n)* (see (1.16), or Proposition in §95).

A PVS is a finite-dimensional vector space V_together with a subgroup G of GL(V)
such that G has an open, dense orbit | [Sato,Kimura; Knapp]

Manifestly Eg-invariant expression of the quartic invariant 1, of the 56 of E-:

much before (77 = almost contemporary to sugra) the expression introduced by

Ferrara & Gunaydin ( ‘97) ! | . al; (p) 0I5 (q)
L (00 @0.4) = — (00 + p'as) +4 |qo T3 (p) — p°I3 (q) +{ ' ;}fﬂ ' ji,f H







