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Holonomy groups of connections in vector bundles

Let E → M be a vector bundle over a smooth manifold M,
∇ : Γ(TM)× Γ(E )→ Γ(E ) a connection on E .

γ : [a, b]→ M a curve in M

τγ : Eγ(a) → Eγ(b) the parallel transport along γ
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The holonomy group at the point x :

Holx(∇) := {τγ
∣∣∣γ is a loop at x} ⊂ GL(Ex) ' GL(m,R).

The restricted holonomy group at the point x :

Hol0x(∇) := {τγ
∣∣∣γ is a loop at x , γ ∼ ptx} ⊂ Holx(∇).

Fact: Holx(∇) ⊂ GL(Ex) is a Lie subgroup,
Hol0x(∇) is the identity component of Holx(∇).

The holonomy algebra at the point x :

holx(∇) := LAHolx(∇) = LAHol0x(∇) ⊂ gl(Ex) ' gl(m,R).
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Theorem. (Ambrose, Singer, 1952)

holx(∇) = {(τγ)−1 ◦ Rγ(b)(X ,Y ) ◦ τγ
∣∣∣γ(a) = x , X ,Y ∈ Tγ(b)M}.
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The fundamental principle:

{ parallel sections X ∈ Γ(E )} ←→ {Xx ∈ Ex |HolxXx = Xx}

(X ∈ Γ(E ) is parallel if ∇X = 0, or for any γ : [a, b]→ M,
τγXγ(a) = Xγ(b))
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The fundamental principle:

Let ∇ be a connection on TM

{ parallel tensor fields P of type (p, q) }
←→ {Px ∈ ⊗p

qTxM |HolxPx = Px}

Example: (Mn, g), ∇g = 0 ⇒ Hol ⊂ O(n);
(M2m, g) is Kählerian (∃ J, ∇J = 0) ⇔ Hol ⊂ U(m).
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∇ is flat if locally there exist m point-wise independent parallel
sections of E .

Theorem. ∇ is flat ⇔ R = 0 ⇔ hol(∇) = 0.
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Holonomy of supermanifolds

Let (M,OM) be a supermanifold.
Let E be a locally free sheaf of supermodules over OM of rank p|q.

For x ∈ M consider the fiber at x : Ex := E(U)/(OM(U))xE(U),

where x ∈ U and (OM(U))x ⊂ OM(U) are functions vanishing
at x .

For X ∈ E(U) consider the value Xx ∈ Ex

Example. E = TM ⇒ (TM)x = TxM and (TxM)0̄ = TxM
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Let E be a locally free sheaf of supermodules over OM of rank p|q.

Consider the vector bundle E = ∪x∈MEx → M.

We get the projection ∼: E(U)→ Γ(U,E ), X 7→ X̃ , X̃x = Xx

Let (eA) A = 1, ..., p + q be a basis of E(U)

X ∈ E(U) ⇒ X = XAeA (XA ∈ OM(U)) ⇒ X̃ = X̃AẽA

X ∈ E(U) is not defined by its values!
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Connection on E : ∇ : TM ⊗R E → E |∇ξX | = |ξ|+ |X |,

∇f ξX = f∇ξX and ∇ξfX = (ξf )X + (−1)|ξ||f |f∇ξX

Locally: ∇∂aeB = ΓA
aBeA, ΓA

aB ∈ OM(U)

∇̃ = (∇|Γ(TM)⊗Γ(E))∼ : Γ(TM)⊗ Γ(E )→ Γ(E ) is a connection
on E

Γ̃A
iB are Cristoffel symbols of ∇̃

γ : [a, b] ⊂ R→ M τγ : Eγ(a) → Eγ(b) the parallel displac.

along γ (defined by ∇̃).

τγ : Eγ(a) → Eγ(b) is an isomorphism of vector superspaces.
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Problem: Define holonomy of ∇ (it must give information about
all parallel sections of E!)
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Example: Purely odd supermanifold:

M = ({x},Λ(q)),

TM = vect(0|q) = Λ(q)⊗ Π(Rq), TxM = Π(Rq)

It is easy to construct a connection ∇ : TM × TM → TM with
R 6= 0!

There is only one loop, which is trivial!
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Parallel sections
X ∈ E(M) is called parallel if ∇X = 0.
∇X = 0 ⇒ ∇̃X̃ = 0 (:!!!)
Locally:

∇X = 0⇔

{
∂iX

A + XBΓA
iB = 0,

∂γX
A + (−1)|X

B |XBΓA
γB = 0

⇔

{
(∂γr ...∂γ1(∂iX

A + XBΓA
iB))∼ = 0, (∗)

(∂γr ...∂γ1(∂γX
A + (−1)|X

B |XBΓA
γB))∼ = 0 (∗∗) r = 0, ...,m

∇̃X̃ = 0⇔ ∂i X̃
A + X̃B Γ̃A

iB = 0
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Proposition. A parallel section X ∈ E(M) is uniquely defined by
its value at any point x ∈ M.

Proof. ∇X = 0 ⇒ ∇̃X̃ = 0; X̃x = Xx uniquely determine X̃ , i.e.
we know the functions X̃A.

Further, use (∗∗): XA
γ = −X̃B Γ̃A

γB ,

XA
γγ1

= −X̃BΓA
γBγ1

+ XB
γ1

Γ̃A
γB ... ⇒ we know the functions XA. �
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Definition (holonomy algebra)

hol(∇)x :=

〈
τ−1
γ ◦ ∇̄r

Yr ,...,Y1
Ry (Y ,Z ) ◦ τγ

∣∣∣∣r ≥ 0, Y ,Z ,Yi ∈ TyM
∇̄: connect on TM|U

〉
⊂ gl(Ex)

Note: hol(∇̃)x ⊂ (hol(∇)x)0̄ (6= !)
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Lie supergroup G = (G ,OG) is a group object in the category of
supermanifolds; G is uniquely given by the Harish-Chandra pair
(G , g), where g = g0̄ ⊕ g1̄ is a Lie superalgebra, g0̄ is the Lie
algebra of G .

Denote by Hol(∇)0
x the connected Lie subgroup of

GL((Ex)0̄)×GL((Ex)1̄) corresponding to
(hol(∇)x)0̄ ⊂ gl((Ex)0̄)⊕ gl((Ex)1̄) ⊂ gl(Ex);

Hol(∇)x := Hol(∇)0
x ·Hol(∇̃)x ⊂ GL((Ex)0̄)×GL((Ex)1̄).

Def. Holonomy group: Hol(∇)x := (Hol(∇)x , hol(∇)x);

the restricted holonomy group: Hol(∇)0
x := (Hol(∇)0

x , hol(∇)x).

Anton Galaev Special holonomy groups in supergeometry



Theorem.

{X ∈ E(M), ∇X = 0} ←→
{
Xx ∈ Ex annihilated by hol(∇)x

and preserved by Hol(∇̃)x

}
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Connection ∇ is flat if E admit local basis of parallel sections.

Corollary ∇ is flat ⇐⇒ R = 0 ⇐⇒ hol(∇) = 0.
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Linear connections

∇ a connection on E = TM,

E = ∪y∈MTyM = TM, E0̄ = TM

hol(∇) ⊂ gl(n|m,R), Hol(∇̃) ⊂ GL(n,R)×GL(m,R)

Theorem.{
Parallel tensor fields
of type (p, q) on M

}
←→

{
Ax ∈ T p,q

x M annihilated by hol(∇)x
and preserved by Hol(∇̃)x

}
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Another approach:

J. Groeger, Super Wilson Loops and Holonomy on Supermanifolds.
Comm. Math. 22 (2014)

J. Groeger, The Twofold Way of Super Holonomy. Forum
Mathematicum 28 (2016)

J. Groeger, On Complex Supermanifolds with Trivial Canonical
Bundle, arXiv:1607.07686
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Riemannian supermanifolds

(M, g), where g is a symmetric even nondegenerate metric on TM.

g defines a pseudo-Riemannian metric g̃ (of signature (p, q)) on
M.

On (M, g) exists a unique Levi-Civita connection ∇

hol(M, g) ⊂ osp(p, q|2k) and Hol(∇̃) ⊂ O(p, q)× Sp(2k,R)
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Special geometries of Riemannian supermanifolds and the
corresponding holonomies

type of (M, g) hol(M, g) is Hol(∇̃) is
contained in contained in

Kählerian u(p0, q0|p1, q1) U(p0, q0)×U(p1, q1)

special Käh. su(p0, q0|p1, q1) U(1)(SU(p0, q0)× SU(p1, q1))
(by def.)

hyper-Käh. hosp(p0, q0|4k) Sp(p0, q0)× SO(k ,H)

quaternion.- sp(1) Sp(1)(Sp(p0, q0)× SO(k,H))
Kählerian ⊕hosp(p0, q0|4k)
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Ric(Y ,Z ) := str
(
X 7→ (−1)|X ||Z |R(Y ,X )Z

)
,

str
(
A B
C D

)
= trA− trD

Proposition. Let (M, g) be a Kählerian supermanifold, then
Ric = 0 if and only if hol(M, g) ⊂ su(p0, q0|p1, q1). In particular,
if (M, g) is special Kählerian, then Ric = 0; if M is simply
connected, (M, g) is Kählerian and Ric = 0, then (M, g) is
special Kählerian.
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Purely odd case
M = ({x},Λ(q)), TM = vect(0|q), TxM = Π(Rq)

g ⊂ osp(0|2m) ' sp(2m,R), Λ2Π(R2m) = �2R2m

The space of skew-symmetric algebraic curvature tensors of type g:

R̄(g) =

{
R ∈ �2(R2m)∗ ⊗ g

∣∣∣∣R(X ,Y )Z + R(Y ,Z )X + R(Z ,X )Y = 0
for all X ,Y ,Z ∈ R2m

}
g ⊂ sp(2m,R) is a skew Berger algebra if

span{R(X ,Y )|R ∈ R̄(g), X ,Y ∈ R2m} = g
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Irreducible skew Berger subalgebras g ⊂ sp(2m,C) = sp(V )

g V restriction

sp(2m,C) C2m n ≥ 1

sl(2,C)⊕ so(m,C) C2 ⊗ Cm m ≥ 3

spin(12,C) ∆+
12 = C32

sl(6,C) Λ3C6 = C20

sp(6,C) Vπ3 = C14

so(n,C)⊕ sp(2q,C) Cn ⊗ C2q n ≥ 3, q ≥ 2

GC
2 ⊕ sl(2,C) C7 ⊗ C2

so(7,C)⊕ sl(2,C) C8 ⊗ C2
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Possible irreducible holonomy algebras g ⊂ sp(2m,R) = sp(V ) of
not symmetric odd Riemannian supermanifolds.
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g V restriction

sp(2m,R) R2m m ≥ 1

u(p, q), su(p, q) Cp,q p + q ≥ 2

so(n,H) Hn n ≥ 2

sp(1)⊕ so(n,H) Hn n ≥ 2

sl(2,R)⊕ so(p, q) R2 ⊗ Rp,q p + q ≥ 3

spin(2, 10) ∆+
2,10 = R32

spin(6, 6) ∆+
6,6 = R32

so(6,H) ∆H
6 = H8

sl(6,R) Λ3R6 = R20

su(1, 5), su(3, 3) {ω ∈ Λ3C6| ∗ w = w}
sp(6,R) R14 ⊂ Λ3R6

sp(2m,C) C2m m ≥ 1

sl(2,C)⊕ so(m,C) C2 ⊗ Cm m ≥ 3

spin(12,C) ∆+
12 = C32

sl(6,C) Λ3C6 = C20

sp(6,C) Vπ3 = C14
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Classification of irreducible holonomy algebras

g ⊂ osp(p, q|2m)

of the form

g = (⊕igi )⊕ z

of not locally symmetric Riemannian supermanifolds :

osp(p, q|2m),
osp(r |2k,C),
u(p0, q0|p1, q1),
su(p0, q0|p1, q1),
hosp(r , s|k),
hosp(r , s|k)⊕ sp(1),
ospsk(2k|r , s)⊕ sl(2,R),
ospsk(2k|r)⊕ sl(2,C).
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Joint work with Andrea Santi in progress

What about generalization of the exceptional holonomy groups
G2 ⊂ SO(7) and Spin(7) ⊂ SO(8)?

Candidates are exceptional Lie supergroups G3 and F4.

(g3)0̄ = g2 ⊕ sl(2,R), (g3)1̄ = R7 ⊗ R2

(f4)0̄ = so(7)⊕ sl(2,R), (f4)1̄ = R8 ⊗ R2

We should consider a proper representation!
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Adjoin representation g ⊂ gl(g) is the holonomy of the symmetric
superspace G .

Consider the representation g ⊂ gl(Πg), where Π is the parity
changing functor.
The first prolongation: g(1) = RΠ is non-trivial!
Let ∇ be a flat connection on Rdim Πg and

∇̂ = ∇+ f Π,

where f is an odd function. Then ∇̂ is torsion-free, not locally
symmetric, and its holonomy algebra is g ⊂ gl(Πg).
(the idea is taken from Čap, A. AHS-structures and affine
holonomies. Proc. Amer. Math. Soc. 137 (2008), no. 3,
1073–1080.)
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