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Holonomy groups of connections in vector bundles

Let E — M be a vector bundle over a smooth manifold M,
V:T(TM) x T(E) — I'(E) a connection on E.

v :[a,b] = M a curve in M

Ty © Ey(a) = Ey(p) the parallel transport along
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The holonomy group at the point x:
Hol, (V) = {Tﬂ,”y is a loop at x} C GL(Ex) ~ GL(m,R).
The restricted holonomy group at the point x:
Hol(V) := {7'7‘7 is a loop at x,y ~ pt,} C Hol,(V).

Fact: Hol, (V) C GL(E,) is a Lie subgroup,
Hol%(V) is the identity component of Hol, (V).

The holonomy algebra at the point x:

hol (V) := LA Hol,(V) = LA Hol%(V) C gl(Ex) ~ gl(m, R).
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Theorem. (Ambrose, Singer, 1952)

10L(V) = {(73) " o Rye)(X. Y) o 75 7(a) = x. X, Y € T )M},
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The fundamental principle:

{ parallel sections X € [(E)} «— {Xx € Ex| Hol, Xy = X}

(X € T(E) is parallel if VX =0, or for any v : [a, b] = M,
7% (a) = Xy(6))
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The fundamental principle:
Let V be a connection on TM

{ parallel tensor fields P of type (p,q) }
+— {Px € @5 TxM|Hol, Py = Py}

Example: (M",g), Vg =0 = Hol C O(n);
(M?m_g) is Kahlerian (3 J, VJ = 0) < Hol C U(m).
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V is flat if locally there exist m point-wise independent parallel
sections of E.

Theorem. V is flat & R =0 < hol(V) = 0.
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Holonomy of supermanifolds

Let (M, On) be a supermanifold.
Let £ be a locally free sheaf of supermodules over O of rank p|q.

For x € M consider the fiber at x: & := E(U)/(Om(U))xE(U),

where x € U and (Opm(U))x € Oaq(U) are functions vanishing
at x.

For X € £(U) consider the value X, € &
Example. £ = Ty = (Tm)x = TeM and (TeM)g = TeM
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Let £ be a locally free sheaf of supermodules over O, of rank plgq.
Consider the vector bundle E = UycyEx — M.

We get the projection ~: E(U) = (U, E), X — X, X=X,
Let (ea) A=1,...,p+ g be a basis of £(U)

X € E(U) = X = XPeq (XA € Op(U)) = X = XAé4

X € E(U) is not defined by its values!
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Connection on & : V:TmerE—E |VeX| = €]+ [X],
VieX = fVeX and  VefX = (€)X + (—1)EIFlFvex
Locally: Vy,eg = F?BeA, I_’;‘B € Om(U)

V= (Vircrmyere))™ : T(TM) @ T(E) — T'(E) is a connection
on E

I:f,‘g are Cristoffel symbols of \V/

v:[a,b] CR— M 7, : E,, — E,@) the parallel displac.
along ~ (defined by V).

Ty + Ey(a) = &;(b) is an isomorphism of vector superspaces.
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Problem: Define holonomy of V (it must give information about
all parallel sections of £!)
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Example: Purely odd supermanifold:

M = ({x},\9)),
T = vect(0]q) = A(q) @ (RY),  T.M = T(R9)

It is easy to construct a connection V : Ta X Ty — T with
R # 0!

There is only one loop, which is trivial!
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Parallel sections
X € E(M) is called parallel if VX = 0.
VX=0=VX=0 (<!l

Locally:
OXA+ XBra =0
VX =0« iB )
{OWXAJF(—U'XB'XBFQ‘B —0
(8y, .05, (DX + XBT )~ =0, (%) -
@{(6 .04, (04 XA 4+ (- 1)|XB\XBFA N =0 (x%) r=0,...m

TX =0 XA+ KB4 = 0
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Proposition. A parallel section X € £(M) is uniquely defined by
its value at any point x € M.

Proof. VX =0 = @;(N: 0; )N(X = Xx uniquely determine )N(, i.e.
we know the functions X*.
Further, use (sx): X' = —)?BF%,

XwAw = _)?Br;‘Bw + ngfy‘B ... = we know the functions X4. O
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Definition (holonomy algebra)

hol(V)y :=

r>0,Y,Z,Y;, e T,M
V: connect on Ty

<T;1 o ?fymyl R,(Y,Z)or, > C gl(&x)

Note: hol(V), C (hol(V)x)g  (#!)
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Lie supergroup G = (G, Og) is a group object in the category of
supermanifolds; G is uniquely given by the Harish-Chandra pair
(G,g), where g = g5 @ g7 is a Lie superalgebra, g is the Lie
algebra of G.

Denote by Hol(V)? the connected Lie subgroup of
GL((Ex)g) x GL((Ex)z) corresponding to
(hol(V)x)s C al((Ex)a) @ al((Ex)1) C gl(Ex);

Hol(V)x := Hol(V)? - Hol(V)x C GL((£x)5) x GL((Ex)1)-
Def. Holonomy group: Hol(V)x := (Hol(V)x, hol(V)x);
the restricted holonomy group: Hol(V)? := (Hol(V)?, hol(V)).

Anton Galaev Special holonomy groups in supergeometry



Theorem. )
B Xx € Ex annihilated by hol(V)x
(X e&(M), VX =0} «— { and preserved by Hol(@)x }
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Connection V is flat if £ admit local basis of parallel sections.

Corollary V is flat <= R =0 <= hol(V) = 0.
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Linear connections

V a connection on £ = Ty,

E=UepmTyM=TM, E=TM

hol(V) C gl(n|m,R),  Hol(V) C GL(n,R) x GL(m,R)
Theorem.

{ Parallel tensor fields } {AX € T£9M annihilated by bo[(V)X}

of type (p, g) on M and preserved by Hol(V)y
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Another approach:

J. Groeger, Super Wilson Loops and Holonomy on Supermanifolds.
Comm. Math. 22 (2014)

J. Groeger, The Twofold Way of Super Holonomy. Forum
Mathematicum 28 (2016)

J. Groeger, On Complex Supermanifolds with Trivial Canonical
Bundle, arXiv:1607.07636
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Riemannian supermanifolds
(M, g), where g is a symmetric even nondegenerate metric on 7.

g defines a pseudo-Riemannian metric g (of signature (p, q)) on
M.

On (M, g) exists a unique Levi-Civita connection V

hol(M, g) C osp(p, q2k) and Hol(V) C O(p, q) x Sp(2k, R)
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Special geometries of Riemannian supermanifolds and the
corresponding holonomies

type of (M, g) hol(M, g) is Hol(V) is
contained in contained in
Kahlerian u(p07 QO|P17 CI1) U(p07 qO) X U(Ph ql)
special Kah. su(po, qolp1,g1) | U(1)(SU(po, q0) x SU(p1,q1))
(by def.)
hyper-Kah. hosp(po, gol4k) Sp(po, qo) x SO(k, H)
quaternion.- sp(1) Sp(1)(Sp(po, q0) x SO(k, H))
Kahlerian ®hosp(po, qo|4k)
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Ric(Y, Z) = str (X — (-1)XIIZIR(Y, X)Z),

str(’é B) =trA—trD

Proposition. Let (M, g) be a K&hlerian supermanifold, then

Ric = 0 if and only if hol(M, g) C su(po, qo|p1,g1). In particular,
if (M, g) is special Kahlerian, then Ric = 0; if M is simply

connected, (M, g) is Kahlerian and Ric = 0, then (M, g) is
special Kahlerian.
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Purely odd case
M = ({x},\(q)), T = vect(0|q), TxM = N(R)

g C osp(02m) ~ sp(2m, R), A2M(R2?™M) = ©2R2m
The space of skew-symmetric algebraic curvature tensors of type g:

— s R(X,Y)Z+R(Y,Z)X+R(Z,X)Y =0
R(g):{R€®2(R2 )y @g ( )foraII(X Y)ZER(2"’ ) }

g C sp(2m,R) is a skew Berger algebra if

span{R(X, Y)|R € R(g), X,Y e R®™} =g¢g
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Irreducible skew Berger subalgebras g C sp(2m,C) = sp(V)

g 4 restriction
sp(2m, C) c2m n>1
5[(2,C) @ so(m,C) | CP’C™ m>3
spin(12, C) AL, =C®
51(6,C) A3CS = C
sp(6,C) V,, =C!#
s0(n,C) ®sp(2q,C)| C"®C?7 [n>3,qg>2
Gs @ sl(2,C) C"®C?
50(7,C)@sl(2,C) | C¥®wC?

Anton Galaev Special holonomy groups in supergeometry



Possible irreducible holonomy algebras g C sp(2m,R) = sp(V) of
not symmetric odd Riemannian supermanifolds.
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g 4 restriction
sp(2m, R) R2™ m>1
u(p, q), su(p, q) CPa p+q=>2
so(n, H) H" n>?2
sp(1) @ so(n, H) H" n>?2
s[(2,R) @ so(p, q) R? @ RP9 p+q>3
spin(2,10) A, =R*
spin(6,6) Ags =R*
50(6, H) Af =H®
sl(6,R) ASR® = R?0
su(1,5), su(3,3) | {w € A3C®xw = w}
sp(6,R) R% C ASR®
sp(2m, C) c2m m>1
5((2,C) @ so(m, C) C’Cm m>3
spin(12,C) Al =C32
sl(6,C) A3C® = C?°
sp(6,C) Ve, = CH
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Classification of irreducible holonomy algebras

g C osp(p, g]2m)

of the form

g=(Digi) D3

of not locally symmetric Riemannian supermanifolds :

osp(p, q[2m),
osp(r|2k, C),

u(po, qolp1, q1),

su(po, qolp1, q1),

bosp(r, 5|).

bosp(r. s|K) & sp(1),
0spk(2k|r, s) @ sl(2, R),
ospk(2k|r) @ sl(2, C).
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Joint work with Andrea Santi in progress

What about generalization of the exceptional holonomy groups
G, € SO(7) and Spin(7) C SO(8)?

Candidates are exceptional Lie supergroups Gz and Fy.

(93)5 = 02 D sl(2,R), (g3); = R’ ® R

(fa)o = s0(7) @sl(2,R), (fa); =R° @ R?

We should consider a proper representation!
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Table 3.

74: Dimensions of G(3) irreducible representations.

labels | type | dimR | dim Ry | dim Ry | decomposition under si(2) @ G(2)
0:00 | atp-1 1 1 0 (L, )7

2,0:0 | atp-3 31 17 14

3:0,0 | atp-4 95 46 49

1:0.0 typ 192 96 96

20,1 | atp-3 289 147 142

5:0,0 atp-6 321 160 161

6:0.0 typ 148 224 224

3;1,0 typ 448 224 224

700 | typ | 576 288 288
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Table 3.73: Dimensions of F(4) irreducible representations.

labels type dim R | dim Ry | dim Ry | decomposition under sl(2) & so(7)

0:0,0,0 | atp-1 1 1 0

2:0,0.0 | atp-3 10 24 16

1:0,0,0 | atp-6 206 152 144

2:0,1,0 | atp-3 507 267 240

5:0,0.0 typ 512 256 256 y /
(3,48)~ (3,8)~ / (
(2,7)7F /(1,48)

3:1,0.0 | atp-4,5 | 756 368 364 | (4,8)7 /(3.35)7 (3,21)” /(2,112)F
(2,48)% (2,8)% / (1,189)~ (1,7)~

6:0,0,0 | atp-8 769 385 384 | (7,17 /(6,8) B
(4,48)” (4,8)~
(3,1 3,17/ (_). 15,\ (-.a)‘ /
(1,21)* (1.7)*

4;0,0,1 | atp-5 1036 508 528 (5,7)F / (4.48)7 / (3,105)F (3,27)" /
(2,168)~ / (1,77)"

1:1,0,0 typ 2048 | 1024 1024 | (5,8)7 /(4,35)7 (4,21)” (4,.7)~
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Adjoin representation g C gl(g) is the holonomy of the symmetric
superspace G.

Consider the representation g C gl(INg), where I is the parity
changing functor.

The first prolongation: g!) = RI is non-trivial!

Let V be a flat connection on R4m M8 3nd

V=V+£N,

where f is an odd function. Then V is torsion-free, not locally
symmetric, and its holonomy algebra is g C gl(Mg).

(the idea is taken from Cap, A. AHS-structures and affine
holonomies. Proc. Amer. Math. Soc. 137 (2008), no. 3,
1073-1080.)
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