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|. Introduction & motivation: NATD in AdS/CFT

Non-Abelian T-duality (NATD) has proved to be very useful
as a solution generating technique in AdS/CFT

Its realization in the CFT remains however quite unknown

Interestingly, some examples suggest that, contrary to its
Abelian counterpart, NATD may change the CFT:

NATD of AdSs; x S° : Gaiotto & Maldacena geometry
(dual to N=2 SCFTs (Gaiotto theories))

NATD of AdSs x T! : Bah, Beem, Bobev,Wecht geometry
(dual to N=1I SCFTs (Sicilian quivers))



Indeed, contrary to its Abelian counterpart, NATD has not
been proven to be a symmetry of string theory

Applying NATD to an AdS/CFT pair; a new AdS background is
generated which may have associated a different CFT dual,
which, moreover, may only exist in the strong coupling regime

This will be the focus of this talk

Based on: -Y.L, Carlos Nunez, Salomon Zacarias, | 703.00417
-Y.L., Carlos Nunez, 1603.04440
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2. Basics of NATD: i) NATD vs Abelian T-duality

Using the string sigma-model Rocek and Verlinde proved that Abelian
T-duality is a symmetry to all orders in gs; and o'
(Buscher’88; Rocek, Verlinde’92)

The extension to arbitrary wordsheets determines the global
properties of the dual variable:

~

T
0cl0,2r] — 0€]0,27]

In the non-Abelian case neither proof works

Variables living in a group manifold are substituted by variables
living in its Lie algebra
NAT
geSU(2) — xeR?
In the absence of global information the new variables remain non-
compact



i) NATD as a solution generating technique

Need to know how the RR fields transform

Sfetsos and Thompson (2010) extended Hassan’s derivation in the

Abelian case:
Implement the relative twist between left and right movers in the

bispinor formed by the RR fields



3.The ST AdSs x S* background

AdSs x S°

|

N=4 SYM

<

NATD »

N=2 AdSs x S* € GM

|

N=2 SCFT

(Sfetsos, Thompson’|0)

- Gaiotto-Maldacena geometries encode the information

about the dual CFT

- Useful example to study the CFT realization of NATD




*Take the AdSs x S° background

ds® = d3,24ds5 + L? (da2 + sin® ad8? + cos”

Fy = 8L*sin acos® ada A dfS A Vol(S?’) + Hodge dual

*Dualize it w.r.t. one of the SU(2) symmetries

In spherical coordinates adapted to the remaining SU(2):

dp? L? cos? ap?
2 7.2 2( 7.2 | 2 2 2/ a2
ds® = dsygg, + L (da + sin” adf ) + [P + e +L4cos4ad8 (57)
3
By = P Vol(S?), e 2% = L? cos® a(L* cos a + p?)

p? + L4 cos? o

Fy, = L*sin v cos® adar A dps, F, = By A\ F5



* New Gaiotto-Maldacena geometry

*VWhat about p?

*Background perfectly smooth for all p € RT
*No global properties inferred from the NATD
*How do we interpret the running of p to infinity in the CFT?

oSingular at o = 7/2 where the original S° shrinks (due to
the presence of NS5-branes)

This is the tip of a cone with S* boundary —;

Large gauge transformations B, — By — nmVol(S?)
for pe[(n—1)r, nr]



This modifies the Page charges such that N, = nNg in each

[(n — 1)m, n7| interval

We have also Nj charge, such that every time we cross a 7

interval one unit of NS5 charge is created

This is compatible with a D4/NS5 brane set-up:

D4: RS p
NS5: RY o,
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These D4/NS5 brane set-ups realize 4d N = 2 field theories
with gauge groups connected by bifundamentals (Witten’97)

Having the D4 finite extension in the p direction, the field

theory living in them is 4d at low energies, with effective gauge

coupling: .

— ™~ Pn+1 — Pn
94

For I, D4-branes in [pn,pn+1] the gauge group is SU(I,,)
and there are (I,_1,1,) and (I,,l,+1) hypermultiplets.

The field theory is then described by a quiver



The bifundamentals contribute to the SU(l,,) beta function as
l—1 + 1,1 flavors.

The beta function thus vanishes at each interval if

ZZn — ln—l—l + ln—1

This condition is satisfied by our brane configuration, which has
ln = nN6

It corresponds to an infinite linear quiver:

This is in agreement with Gaiotto-Maldacena



3.1 Short review of GM geometries

Generic backgrounds dual to 4d N=2 SCFTs.
Described in terms of a function V' (o, 7) solving a Laplace eq.
with a given charge density \(n) at ¢ =0

Osl00,V] + 002V =0,  Aln) = 00,V (0, 7)|o0

Regularity and quantization of charges impose strong constraints
on the allowed form of A(7n), which encodes the information of

the dual CFT:

- A SU(n;) gauge group is associated to each integer value of
n=mn; ,with n; given by \(n;) = n;

- A kink in the line profile corresponds to extra k; fundamentals
attached to the gauge group at the node n;



For example:
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Interesting for our work:

Following Reid-Edwards and Stefanski’ 10 (see also Aharony, Berdichevsky,
Berkooz'12), the MN solution can be taken as a building block

for N=2 llA solutions: Any allowed profile of the line charge
density can be viewed as a sum of suitably re-scaled and shifted

>\MN proﬁles

We can use this to complete the NATD solution



3.2.The NATD as a GM geometry

GM geometry with  A(n) =1, n~p, o =sina
A(n) = n = Infinite linear quiver, consistent with the

brane set-up: N

A

>

U

Next, we will complete the quiver and, using holography,
complete the geometry (both for large p and at the
singularity)

Example in which the field theory informs the geometry



A natural way to complete the quiver is by adding fundamentals:

-------------

This completion reproduces correctly the value of the holographic
central charge:

From the geometry:
N, 62 N g (Klebanov, Kutasov,

UL
CNATD ~ Vint ~ f(m)dn =

; 19 Murugan’08)
: — —(2n, (Shapere,
In '.che.ﬁeld theory we can use: ¢ 12( Ny + 1) Tachikawa’08)
This gives
N2 3 1 ) 2 N2 3
c= 67 [1——_ 5 T 2 }N S
12 D p2N6 N6p3 12



In the geometry, the completed quiver corresponds to
A

A

¥ flavor group

This charge density can be obtained as a superposition of MN
solutions:
This superposition completes the

V(n,o) NATD solution, and removes the
singularity

—_ /=1 Thesingularity can be interpreted
as a result of cutting the space
n at 0 =1



Can we find other examples where the NATD solution belongs
to a classification with known field theory dual, to check these
ideas!?

We showed in Y.L, Macpherson, Montero, Ninez, 1609.09061 that the same
idea works in a certain N=4 AdS4 NATD solution

What happens if we dualize on the AdS subspace?



4. The R, x S* x S° example

AdSs x S° R; x §% x §° geometry in LM
I ) NATD ’ I
N=4 SYM BMN vacuum

- Lin-Maldacena geometries encode the information about
the dual CFT

- (Another) useful example to study the CFT realization of
NATD



*Take the AdSs x S° background

ds® = L2 (— cosh? rdt? + dr? + sinh? ds2(55))

*Dualize it w.r.t. one of the SU(2) symmetries

In spherical coordinates adapted to the remaining SU(2):

dp? p% sinh? r

LAsinh?r  p2 + LAsinh*r

ds? = L2 (— cosh? rdt? + dr? + ds?(S2) + d32(55))

3
P 2 —2¢ 2 12 4 . 1.4 2
By = Vol(S5<), € = L7 sinh® r(L" sinh™ r +
. p2 + LAsinh® r (5%) ( 7)

Fy = L*sinh® r cosh rdt A dr Fy =By A Fy



e New LLM geometry with SU(2|4) supergroup
*VWhat about p?

Singular at » =0 where the original S* shrinks (due to the
presence of NS5-branes)

This is the tip of a cone with S* boundary —

Large gauge transformations B, — By — nmVol(S?)
for p € [(n— 1), nr]

This modifies the Page charges such that Ny = nN, in each
[(n — 1)7, n7] interval.

Total number of DO-branes: N = ZnNQ . Na(n) ~n



This is consistent with a brane set-up of concentric spherical
D2-branes with n D0O-charge and radius n«

k DO

The partition of the total number of DO-branes is exactly of
the same form of the partitions that define BMN vacua

This is in agreement with Lin-Maldacena



4.1.Short review of Lin-Maldacena geometries

All gravity solutions with SU(2|4) supergroup were classified
by LLM.

The bosonic symmetries, R, x SO(3) x SO(6), act geometrically
— §2.8°
In IIA they are described in terms of a function V (o, n)

satisfying a Laplace equation 8,[08,V]+ 09;V =0

The difference with the GM geometries is in the boundary
conditions. These were discussed by Lin and Maldacena

Consider in particular the LM geometry dual to a BMN
vacuum:



The BMN Matrix Model:

U(N) QM model obtained by reducing N=4 SYM on
R x S° on the S*

It has R; x SO(3) x SO(6) global symmetries

Its vacua are in one to one correspondence with SU(2)

reps. of dim V:
P N:ZnN(n)

Each choice of partition gives a different vacuum

Each vacuum is dual to a different LM geometry

(Lin, Maldacena’05)



The potential consists on a background potential, common to
all vacua, plus a, vacuum specific, ¢(o,n) contribution

¢(0,1) solves the Laplace eq. with specific boundary conds:

These consist on an infinite conducting plane at n =0 plus a
number of conducting disks at 7; ~ N; with charges Q; ~ N}

where N, N; are the NS5 and D2 brane charges associated

to the background fluxes

For a given electrostatic configuration N satisfies

N = (Y NN

i j<i

which is what we found for the NATD: N =) nNy(n)
n=1



4.2 The NATD as a LM geometry

We seem to be describing the BMN vacuum with N(n) ~ n

But, why is the NATD solution singular?, and,
how can we fix the ever-growing dimension of the irreps!?

Finding explicit solutions to the full electrostatic problem is
very hard.

Instead of a discrete distribution of plates, one can consider
a continuous distribution of point charges sitting at ¢ =0

This gives an exact solution to the Laplace equation which
however only satisfies the boundary conditions partially

— Singular solution  (Bak, Siwach, Yee'05)

Shieh, van Anders,Van Raamsdonk’07; Donos, Simon’10: “Coarse-grained”
LM geometry



The solution to such electrostatic problem is:

i A(2)

o,n) = dz
¢(o,n) /= B

with A(z) ~ z. This gives exactly the potential of the

NATD solution. The NATD arises as the coarse-grained
geometry associated to the N(n) ~n BMN vacuum

On the other hand, regularizing as (Donos, Simon’10)

o0 p L

= dz
0 Voi+(z—n?2 Jo o2+ (z—n)

we obtain a well-behaved solution with the right DO-brane
asymptotics, and a well-behaved dual CFT

> + L +nlog2L



As in other examples, the NATD solution arises as a result
of zooming-in around the small 7 region

Interestingly, in this example, this zooming-in can be made
more precise:

It can be seeing that the NATD solution arises as the result
of taking the Penrose limit on the superstar solution in

AdS7 x S*, describing the back-reaction of giant gravitons in
this geometry (Alishahiha, Yavartanoo’05)

This makes very precise the idea that the NATD solution
focuses on a patch of a more generic manifold



5. Conclusions

We have focused on NATD on AdSs x S°

® On S°:GM geometry dual to an infinite quiver, that
we have completed, and thereof the geometry, resolving
the singularity and defining the background globally

® On AdS5 : Coarse-grained Lin-Maldacena geometry, dual
to a BMN vacuum.Vacuum and geometry defined by
cutting the space at a finite distance. Singularity resolved

Both examples show that NATD changes the dual CFT
In both cases, the NATD solution focuses on a patch of a
globally well-defined manifold.

This is very concrete in the second example
Penrose limit



THANKS!



4. The AdS; x S? x 5% example

Non-Abelian T-duality on a reduction to IIA of AdSs x S7/Z

— 1IB AdS; x S* x S* background, N=4 SUSY, in the
classification of D’Hoker, Estes and Gutperle’07

Analysis of charges: (D3,NS5,D5) brane set-up:

NS5 NS5 NS5 NS5 NS5

D5 D5 D5
IR | IR X R X
D3 7
SEEE I B D3
0 T 2m (n—1)m n

_—
r

Gaiotto and Witten’08:  3d N=4 Tpf’(N) theories



Tf(N) field theories flow to CFTs in the infrared if the partitions
satisfy certain conditions, that are satisfied by our brane set-up

Nps 2Nps 3Nps —@ .........

kO 2]60 3]€0 nko

The holographic duals of these CFTs are known (Assel, Bachas, Estes and
Gomis’| 1)

They belong to the general class of AdS, x S? x S* geometries in
D’Hoker, Estes and Gutperle’07

These are fibrations of AdS; x S* x S* over a Riemann surface
that can be completely determined from two harmonic functions
hl(Z, 2), hg(z, 5)



Assel, Bachas, Estes and Gomis’| | showed how to determine these
functions from the (D3, NS5, D5) brane set-ups associated to
TP(N) theories:

1 <& 12 + 0, — 2
hlz—ZZNngogtaﬂh( 2 ; ) 4 cc
a=1
1 P ~ Z—Sb
hgz—ZZNglogtanh( ) + cc
b=1
5o Oy D
y:W/Q ® ® . ® y
y=0 ° ° ° ' ’
823 5]3_1 2 51

The positions of the D5 and NS5 branes are determined, in turn,
from the linking numbers of the configuration:

. Lol
0p — 0 = logtan(g Nb)




The hi, ho functions computed from our completed brane set-up

agree with those associated to the non-Abelian T-dual geometry
in the region z,y ~ 0 ,far from the location of the branes

The non-Abelian T-dual arises as a result of zooming-in in a
particular region of the completed solution

This completion smoothes out the singularities and defines the
geometry globally

The free energy of the completed solution satisfies the bound
N?%log N found by Assel, Estes, Yamazaki’|2



5. Conclusions

- NATD geometries dual to infinite linear quivers

— Different CFTs after NATD
D3 — (D4,NS5) (D2,D6) — (D3,NS5,D5)

- Quivers completed, and thereof the geometries, to define
the CFTs

- NATD as a zooming-in in a patch of the completed geometry

Penrose limit of superstar solution (in progress)

- General pattern?
AdSg x S*: (D4,D8) system — (D5,NS5,D7)

AdSs x S” 1IB solutions recently classified by D’Hoker, Gutperle,
Karch and Uhlemann’l 6



