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  Non-Abelian T-duality (NATD) has proved to be very useful 
  as a solution generating technique in AdS/CFT 
 

1. Introduction & motivation:    NATD in AdS/CFT

  Its realization in the CFT remains however quite unknown

  Interestingly, some examples suggest that, contrary to its        

:  Gaiotto & Maldacena geometry
  (dual to N=2 SCFTs (Gaiotto theories))

AdS5 ⇥ S5NATD of

 : Bah, Beem, Bobev, Wecht geometry 
 (dual to N=1 SCFTs (Sicilian quivers))
             

AdS5 ⇥ T 1,1NATD of

Abelian counterpart, NATD may change the CFT:



  Indeed, contrary to its Abelian counterpart, NATD has not 
  been proven to be a symmetry of string theory                                                        

Applying NATD to an AdS/CFT pair, a new AdS background is 
generated which may have associated a different CFT dual, 
which, moreover, may only exist in the strong coupling regime

This will be the focus of this talk

Based on:    - Y.L., Carlos Núñez, Salomón Zacarías, 1703.00417
                  - Y.L., Carlos Núñez, 1603.04440
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(Buscher’88; Rocek, Verlinde’92)

2. Basics of NATD:  i) NATD vs Abelian T-duality

Using the string sigma-model Rocek and Verlinde proved that Abelian 
T-duality is a symmetry to all orders in gs and ↵0

The extension to arbitrary wordsheets determines the global
properties of the dual variable:

✓ 2 [0, 2⇡] �! ✓̃ 2 [0, 2⇡]
T

In the non-Abelian case neither proof works

Variables living in a group manifold are substituted by variables 
living in its Lie algebra

NAT

In the absence of global information the new variables remain non-
compact

g 2 SU(2) �! � 2 R3



Need to know how the RR fields transform

 ii) NATD as a solution generating technique

Sfetsos and Thompson (2010) extended Hassan’s derivation in the 
Abelian case:
Implement the relative twist between left and right movers in the 
bispinor formed by the RR fields



           3. The ST   background 

  - Gaiotto-Maldacena geometries encode the information      
 

AdS5 ⇥ S5

N=4 SYM

AdS5 ⇥ S2N=2

N=2 SCFT

NATD

  - Useful example to study the CFT realization of NATD

    about the dual CFT    

2 GM

(Sfetsos, Thompson’10)

AdS5 ⇥ S2



•Dualize it w.r.t. one of the SU(2)

In spherical coordinates adapted to the remaining 

symmetries

SU(2) :
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ds2 = ds2AdS5
+ L2

⇣
d↵2

+ sin

2 ↵d�2
+ cos

2 ↵ds2(S3
)

⌘

F5 = 8L4
sin↵ cos

3 ↵d↵ ^ d� ^Vol(S3
) + Hodge dual

B2 =

⇢3

⇢2 + L4
cos

4 ↵
Vol(S2

) , e�2�
= L2

cos

2 ↵(L4
cos

4 ↵+ ⇢2)

ds2 = ds2AdS5
+ L2

⇣
d↵2

+ sin

2 ↵d�2
⌘
+

d⇢2

L2
cos

2 ↵
+

L2
cos

2 ↵⇢2

⇢2 + L4
cos

4 ↵
ds2(S2

)



•What about ?

•Background perfectly smooth for all 

•No global properties inferred from the NATD

•How do we interpret the running of    to infinity in the CFT?

•                 

•Singular at ↵ = ⇡/2 where the original S3 shrinks (due to  
the presence of NS5-branes)  

This is the tip of a cone with  S2 boundary !

Large gauge transformations B2 ! B2 � n⇡Vol(S2
)

for

New Gaiotto-Maldacena geometry

⇢

⇢ 2 R+

⇢

⇢ 2 [(n� 1)⇡, n⇡]



This modifies the Page charges such that N4 = nN6 in each
interval

We have also N5 charge, such that every time we cross a ⇡
interval one unit of NS5 charge is created

This is compatible with a D4/NS5 brane set-up:

2⇡⇡ n⇡

. . . . . . . . . . . ...
D4

NS5 NS5 NS5

2 D4 n D4

NS5 NS5

D4: 
R1,3,↵,�NS5: 

(n� 1)⇡0

(in units of  )           N6

[(n� 1)⇡, n⇡]

R1,3, ⇢

⇢



These D4/NS5 brane set-ups realize 4d N = 2

with gauge groups connected by bifundamentals 
field theories

(Witten’97)

Having the D4 finite extension in the    direction, the field
theory living in them is 4d at low energies, with effective gauge 
coupling: 

For  ln D4-branes in   the gauge group is  SU(ln)

and there are (ln, ln+1) hypermultiplets.   (ln�1, ln) and  

The field theory is then described by a quiver 

SU(l1) SU(l2) SU(ln)

1

g24
⇠ ⇢n+1 � ⇢n

[⇢n, ⇢n+1]

⇢



SU(ln) beta function as   
ln�1 + ln+1 flavors.  

The beta function thus vanishes at each interval if

2ln = ln+1 + ln�1

The bifundamentals contribute to the 

It corresponds to an infinite linear quiver:  

This condition is satisfied by our brane configuration, which has 

This is in agreement with Gaiotto-Maldacena

SU(N6) SU(2N6) SU(3N6)

ln = nN6



Generic backgrounds dual to 4d N=2 SCFTs. 
Described in terms of a function   V (�, ⌘) solving a Laplace eq.  

@�[�@�V ] + �@2
⌘V = 0, �(⌘) = �@�V (�, ⌘)|�=0

with a given charge density   �(⌘)

  3.1 Short review of GM geometries

at    

Regularity and quantization of charges impose strong constraints 
on the allowed form of   �(⌘), which encodes the information of 
the dual CFT:

� = 0

- A  SU(ni) gauge group is associated to each integer value of  
⌘ = ⌘i , with   ni given by  �(⌘i) = ni

- A kink in the line profile corresponds to extra  ki fundamentals 
attached to the gauge group at the node  ni



For example: 

1 2 3 4
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⌘

�

The Maldacena-Nunez solution:

�

⌘

�MN (⌘) =
N

2
(|⌘ + 1|� |⌘ � 1|)

1

N

N NNTN TN



Following Reid-Edwards and Stefanski’10 (see also Aharony, Berdichevsky, 
Berkooz’12)  , the MN solution can be taken as a building block
for N=2 IIA solutions:  Any allowed profile of the line charge 
density can be viewed as a sum of suitably re-scaled and shifted 

We can use this to complete the NATD solution 

�MN profiles

Interesting for our work:



GM geometry with
 

�(⌘) = ⌘

 Infinite linear quiver, consistent with the  

brane set-up:

,  

3.2. The NATD as a GM geometry

�(⌘) = ⌘ )

Next, we will complete the quiver and, using holography,
complete the geometry (both for large    and at the 
singularity)

Example in which the field theory informs the geometry

, � = sin↵

�

⌘

⌘ ⇠ ⇢

⇢



A natural way to complete the quiver is by adding fundamentals:

SU(N6) SU(2N6) SU((p� 1)N6) SU(pN6)

This completion reproduces correctly the value of the holographic 
central charge:

cNATD ⇠ Vint ⇠
Z ⌘⇤

0
f(⌘)d⌘ =

N2
6N

3
5

12

From the geometry:
(Klebanov, Kutasov,
Murugan’08)

c =
1

12
(2nv + nh) (Shapere, 

Tachikawa’08)
In the field theory we can use:
This gives

c =
N2

6 p
3

12

h
1� 1

p
� 2

p2N2
6

+
2

N2
6 p

3

i
⇡ N2

6 p
3

12



In the geometry, the completed quiver corresponds to 

This charge density can be obtained as a superposition of MN 
solutions:

�(⌘)

N6
=

⇢
⌘ 0  ⌘  p� 1
(1� p)⌘ + (p2 � p) (p� 1)  ⌘  p

�

⌘p� 1 p

flavor group

�

⌘

� = 1

V (⌘,�)

The singularity can be interpreted 
as a result of cutting the space
at   � = 1

This superposition completes the 
NATD solution, and removes the 
singularity  



Can we find other examples where the NATD solution belongs 
to a classification with known field theory dual, to check these
ideas?

What happens if we dualize on the AdS subspace?

We showed in Y.L., Macpherson, Montero, Núñez, 1609.09061 that the same
idea works in a certain N=4 AdS4 NATD solution



AdS5 ⇥ S5

N=4 SYM BMN vacuum

NATD
Rt ⇥ S2 ⇥ S5 geometry in LM

  - Lin-Maldacena geometries encode the information about      
 

  - (Another) useful example to study the CFT realization of    
    NATD

    the dual CFT    

           4.  The  Rt ⇥ S2 ⇥ S5 example



•Dualize it w.r.t. one of the SU(2)

In spherical coordinates adapted to the remaining 

symmetries

SU(2) :

•Take the backgroundAdS5 ⇥ S5
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d⇢2

L4
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⇢2 + L4
sinh
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⌘
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⇣
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)

⌘

F2 = L4
sinh
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⇢3

⇢2 + L4
sinh

4 r
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) , e�2�
= L2

sinh

2 r(L4
sinh

4 r + ⇢2)



•What about ?

•                 

•Singular at where the original S3 shrinks (due to the  
presence of NS5-branes)  

This is the tip of a cone with  S2 boundary !

Large gauge transformations B2 ! B2 � n⇡Vol(S2
)

for

New LLM geometry with 

⇢

r = 0

This modifies the Page charges such that in each
interval. [(n� 1)⇡, n⇡]

Total number of D0-branes:

SU(2|4) supergroup

N =
1X

n=1

nN2(n) , N2(n) ⇠ n

⇢ 2 [(n� 1)⇡, n⇡]

N0 = nN2



….

1 D0

2 D0

k D0

2⇡⇡ k⇡

This is consistent with a brane set-up of concentric spherical
D2-branes with    D0-charge and radius 

The partition of the total number of D0-branes is exactly of
the same form of the partitions that define BMN vacua

This is in agreement with Lin-Maldacena

n n⇡



  4.1. Short review of Lin-Maldacena geometries

All gravity solutions with  SU(2|4) supergroup were classified
by LLM. 

The bosonic symmetries, , act geometrically

In IIA they are described in terms of a function V (�, ⌘)

satisfying a Laplace equation @�[�@�V ] + �@2
⌘V = 0

The difference with the GM geometries is in the boundary 
conditions. These were discussed by Lin and Maldacena

Rt ⇥ SO(3)⇥ SO(6)

! S2, S5

Consider in particular the LM geometry dual to a BMN
vacuum: 



 The BMN Matrix Model:

U(N) QM model obtained by reducing N=4 SYM on  
R⇥ S3 on the S3

It has                              global symmetriesRt ⇥ SO(3)⇥ SO(6)

Its vacua are in one to one correspondence with SU(2) 
reps. of dim    :

N =
X

n

nN(n)
N

Each choice of partition gives a different vacuum

Each vacuum is dual to a different LM geometry
(Lin, Maldacena’05)



The potential consists on a background potential, common to
all vacua, plus a, vacuum specific,           contribution�(�, ⌘)

�(�, ⌘) solves the Laplace eq. with specific boundary conds:

These consist on an infinite conducting plane at ⌘ = 0 plus a 

number of conducting disks at ⌘i ⇠ N i
5 with charges Qi ⇠ N i

2

N i
5, N

i
2 are the NS5 and D2 brane charges associated  

to the background fluxes

For a given electrostatic configuration N satisfies

N =
X

i

⇣X

j<i

N j
5

⌘
N i

2

where

which is what we found for the NATD: N =
1X

n=1

nN2(n)



But, why is the NATD solution singular?, and,

4.2 The NATD as a LM geometry 

Finding explicit solutions to the full electrostatic problem is
very hard.

� = 0a continuous distribution of point charges sitting at

Shieh, van Anders, Van Raamsdonk’07; Donos, Simon’10:

This gives an exact solution to the Laplace equation which 
however only satisfies the boundary conditions partially  
! Singular solution

“Coarse-grained” 
  LM geometry 

Instead of a discrete distribution of plates,  one can consider

(Bak, Siwach, Yee’05)

We seem to be describing the BMN vacuum with N(n) ⇠ n

how can we fix the ever-growing dimension of the irreps? 



The solution to such electrostatic problem is:

�(�, ⌘) =

Z 1

0
dz

�(z)p
�2 + (z � ⌘)2

with �(z) ⇠ z

On the other hand, regularizing as (Donos, Simon’10)

. This gives exactly the potential of the 
NATD solution. The NATD arises as the coarse-grained 
geometry associated to the N(n) ⇠ n BMN vacuum

Z 1

0
dz

zp
�2

+ (z � ⌘)2
=

Z L

0
dz

zp
�2

+ (z � ⌘)2
+ L+ ⌘ log 2L

we obtain a well-behaved solution with the right D0-brane
asymptotics, and a well-behaved dual CFT



Interestingly, in this example, this zooming-in can be made 
more precise:

It can be seeing that the NATD solution arises as the result
of taking the Penrose limit on the superstar solution in 
AdS7 ⇥ S4 , describing the back-reaction of giant gravitons in 
this geometry

This makes very precise the idea that the NATD solution 
focuses on a patch of a more generic manifold

As in other examples, the NATD solution arises as a result
of zooming-in around the small    region 

(Alishahiha, Yavartanoo’05)

⌘



 5. Conclusions

This is very concrete in the second example  

We have focused on NATD on 

• On S5 : GM geometry dual to an infinite quiver, that  
we have completed, and thereof the geometry, resolving  
the singularity and defining the background globally

• On AdS5 : Coarse-grained Lin-Maldacena geometry, dual   
to a BMN vacuum. Vacuum and geometry defined by 
cutting the space at a finite distance. Singularity resolved

Both examples show that NATD changes the dual CFT
In both cases, the NATD solution focuses on a patch of a
globally well-defined manifold.

$

AdS5 ⇥ S5 :

Penrose limit



THANKS!



  4. The                         exampleAdS4 ⇥ S2 ⇥ S2

Non-Abelian T-duality on a reduction to IIA of AdS4 ⇥ S7/Zk

background, N=4 SUSY, in the

Analysis of charges:         (D3,NS5,D5) brane set-up:

2⇡⇡ n⇡

. . . . . . . . ...

r

NS5 NS5 NS5 NS5 NS5

D5 D5 D5

Gaiotto and Witten’08:

D3

D3

D3

3d N=4  T ⇢̂
⇢ (N) theories  

IIB AdS4 ⇥ S2 ⇥ S2!
classification of D’Hoker, Estes and Gutperle’07

(n� 1)⇡0



           field theories flow to CFTs in the infrared if the partitions
satisfy certain conditions, that are satisfied by our brane set-up

ND5 nND53ND52ND5

The holographic duals of these CFTs are known (Assel, Bachas, Estes and

These are fibrations of AdS4 ⇥ S2 ⇥ S2 over a Riemann surface
that can be completely determined from two harmonic functions 
h1(z, z̄), h2(z, z̄)

They belong to the general class of AdS4 ⇥ S2 ⇥ S2 geometries in
D’Hoker, Estes and Gutperle’07

T ⇢̂
⇢ (N)

Gomis’11)

k0 nk02k0 3k0



functions from the (D3, NS5, D5) brane set-ups associated to  
T ⇢̂
⇢ (N) theories:

 Assel, Bachas, Estes and Gomis’11 showed how to determine these 

h1 = �1

4

pX

a=1

Na
5 log tanh (

i⇡2 + �a � z

2

) + cc

h2 = �1

4

p̂X

b=1

ˆN b
5 log tanh (

z � ˆ�b
2

) + cc

The positions of the D5 and NS5 branes are determined, in turn, 
from the linking numbers of the configuration:

ˆ�b � �a = log tan (

⇡

2

laˆlb
N

)

x

y



The h1, h2 functions computed from our completed brane set-up
agree with those associated to the non-Abelian T-dual geometry
in the region x, y ⇠ 0

This completion smoothes out the singularities and defines the
geometry globally

, far from the location of the branes

The non-Abelian T-dual arises as a result of zooming-in in a 
particular region of the completed solution

The free energy of the completed solution satisfies the bound 
N2

logN found by Assel, Estes, Yamazaki’12



 5. Conclusions

- NATD geometries dual to infinite linear quivers

        Different CFTs after NATD!

D3 ! (D4,NS5) (D2,D6) ! (D3,NS5,D5)

- Quivers completed, and thereof the geometries, to define
  the CFTs

- NATD as a zooming-in in a patch of the completed geometry 

Penrose limit of superstar solution (in progress)

AdS6 ⇥ S4 : (D4,D8) system      (D5,NS5,D7)

- General pattern? 

!

D’Hoker, Gutperle,AdS6 ⇥ S2 IIB solutions recently classified by 
Karch and Uhlemann’16


