Decomposable (4,7) solutions in 11-dimensional supergravity

Dmitri Alekseevsky

Institute for Information Transmission Problems, Moscow, Russia joint work with loannis Chrysikos and Arman Taghavi-Chabert

27 April 2017

Outline

- 1. Introduction.
- 2. SUGRA equation in (4,7) decomposable case.
- 3. Special 3-form ϕ and special (generalized) Einstein manifolds.
- 4. Case A): Zero 3- form ϕ .
- 5. Case B). Non zero harmonic 3-form ϕ . Examples of solutions.
- 6. Case C). Non harmonic 3-form ϕ .
- 7. Homogeneous generalized special Einstein manifolds. List of homogeneous 7-manifolds.
- 8. Solutions of type A) with homogeneous internal space M^7 .
- 9. Compact homogeneous weakly G_2 manifolds and associated SUGRA background.
- 10. Compact homogeneous 7-manifolds with a special 3-form.

Equations of 11D supergravity

The (bosonic) 11-dimensional supergravity background is defined as an 11-dimensional Lorentzian spin manifold $(\mathcal{M}, g_{\mathcal{M}})$ which admits a 4-form \mathcal{F} satisfying the following system of equations

$$\begin{cases} d\mathcal{F} = 0, \\ d\star\mathcal{F} = (1/2)\mathcal{F}\wedge\mathcal{F}, \\ \operatorname{Ric}^{g_{\mathcal{M}}}(X,Y) = (1/2)\langle X \lrcorner \mathcal{F}, Y \lrcorner \mathcal{F} \rangle_{\mathcal{M}} - (1/6)g_{\mathcal{M}}(X,Y) \|\mathcal{F}\|_{\mathcal{M}}^{2}. \end{cases}$$

Here

$$\langle X \sqcup \mathcal{F}, Y \sqcup \mathcal{F} \rangle_{\mathcal{M}} = \frac{1}{3!} g_{\mathcal{M}}(X \sqcup \mathcal{F}, Y \sqcup \mathcal{F}),$$

 $\|\mathcal{F}\|_{\mathcal{M}}^2 = \frac{1}{4!} g_{\mathcal{M}}(\mathcal{F}, \mathcal{F}).$

Remind that: $\langle vol^g, vol^g \rangle = (-1)^q$ where (p, q) is the signature of a metric g.

Two types of assumptions: homogeneity and decomposability. Homogeneity: $G \subset \operatorname{Aut}(\mathcal{M}^{11}, g_{\mathcal{M}}, \mathcal{F})$ acts transitively. Then $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$ and $(g_{\mathcal{M}}, \mathcal{F})$ is defined by $g_{\mathfrak{m}} \in S^2(\mathfrak{m}^*)$ and $F_{\mathfrak{m}} \in \Lambda^4(\mathfrak{m}^*)$ (d, 11 - d) decomposability: $(\mathcal{M}^{11} = \tilde{M}^d \times M^{11-d}, g_{\mathcal{M}} = \tilde{g} \oplus g)$. In case d = 4, $\mathcal{F}^4 = \tilde{F} \oplus F$ (complete decompoability).

SUGRA equations for (4,7) (completely) decomposable case

Our aim is describe some solutions of SUGRA equations in (4,7) (completely) decomposable case:

$$(\mathcal{M}^{11} = \widetilde{M}^4 \times M^7, g_{\mathcal{M}} = \widetilde{g} + g, \mathcal{F} = \widetilde{F} + F = \lambda \widetilde{\mathrm{vol}} + F),$$

in particular, under assumption that the internal manifold (M^7, g, F) is compact and homogeneous.

The SUGRA equations are

$$dF = 0, \lambda = const$$
(C)

$$d * F = \lambda F,$$
(M)

$$\operatorname{Ric}^{\widetilde{g}} = -\frac{1}{3}(\lambda^{2} + |F|^{2})\widetilde{g}$$
(E₁)

$$\operatorname{Ric}^{g}(X, Y) = \frac{1}{6}(\lambda^{2} - |F|^{2})g(X, Y) + \frac{1}{2}\langle X \lrcorner F, Y \lrcorner F \rangle$$
(E₂)

We set

$$\phi := \star_7 F.$$

Since $\star_7^2|_{\Omega^p(M^7)} = (-1)^{p(7-p)} \operatorname{Id}_{\Omega^p(M^7)}$, and $\star_7 \phi = F^4$. Moreover, $|F|^2 = |\phi|^2$ and a computation shows that

$$\langle X \lrcorner F, \lrcorner YF \rangle = |\phi|^2 g(X, Y) - \langle X \lrcorner \phi, \lrcorner Y\phi \rangle.$$

The Einstein equation becomes

$$\operatorname{Ric} := \operatorname{Ric}^{g} = \frac{1}{6} (\lambda^{2} + 2|\phi|^{2})g - \frac{1}{2}q_{\phi}$$
 (ES)

with $q(X, Y) \equiv q_{\phi}(X, Y) := \langle X \lrcorner \phi, \lrcorner Y \phi \rangle.$

Definition. α) A 3-form $\phi(= \star F) \in \Omega^3(M)$ on a Riemannian 7-manifold (M, g)) is called **special** if it is co-closed $(d \star \phi = 0)$ and satisfy the following Maxwell equation

$$d\phi=\lambda*\phi$$
 (Main equation)

 β) The Riemannian 7- manifold (M, g, ϕ) with a **special** 3-form ϕ is called a **(generalized) special Einstein manifold** if (g, ϕ) is a solution of the (generalized) Einstein equation

$$\operatorname{Ric} = \frac{1}{6}(\lambda^2 + 2|\phi|^2)g - \frac{1}{2}q_{\phi}.$$
 (ES)

The following result show that any (4,7) decomposable background is a direct product of a Lorentz Einstein 4-manifold of negative type and a generalized Einstein manifold (M^7, g, ϕ) with special 3-form ϕ .

Theorem. Any (4,7)-decomposable SUGRA solution $(\mathcal{M}^{11}, g_{\mathcal{M}}, \mathcal{F})$ is a product of Lorentzian Einstein manifold $(\widetilde{M}, \widetilde{g})$ with negative Einstein constant and a (Riemannian) (generalized) Einstein 7-manifold (M^7, g) with special 3-form $\phi \in \Omega^3(M^7)$. The flux 4-form is given by

$$\mathcal{F} = \lambda \operatorname{vol}_{\widetilde{M}} + \star_7 \phi = \lambda \operatorname{vol}_{\widetilde{M}} + F^4,$$

Three classes of Riemannian 7-manifolds with a special 3-form ϕ

We consider three classes of special 3-forms on a Riemannian 7-manifolds and discuss the problem of solution of (generalized) Einstein equation (ES) for such manifolds.

A) Zero form
$$\phi = F = 0$$
.

- B) Non zero harmonic form $\phi \neq 0, \lambda = 0$.
- C) Non harmonic form $\phi \neq 0, \lambda \neq 0$.

(Note that in symmetric case any invariant form is parallel and case C) is impossible)

Case A) The Einstein equation **(ES)** reduces to the standard Einstein equation

$$\operatorname{Ric} = \frac{\lambda^2}{6}g$$

and a SUGRA background is a product of a Lorentz Einstein 4-manifold (\tilde{M}^4, \tilde{g}) and a Riemannian Einstein 7-manifold (M^7, g) with Einstein constant $\frac{\lambda^2}{6}$ and the flux 4-form $\mathcal{F} = \lambda \tilde{\text{vol}}$. Case B) The Einstein equation (ES) for a special harmonic 3-form $\phi \neq 0$ on M^7 reduces to the equation

$$\operatorname{Ric} = \frac{1}{3} |\phi|^2 g - \frac{1}{2} q_{\phi}, \ q_{\phi}(X, X) = ||X \lrcorner \phi||^2.$$
(1)

An example. Let $(M^7 = Q^3 \times P^4, g = g_Q + g_P)$ be a Riemannian product and $\phi = \operatorname{vol}_Q$ is the closed (and even parallel) volume 3-form of the first factor. Then $q_{\phi} = g_Q$ and the Einstein equation becomes

$$\operatorname{Ric} = \frac{1}{3}(g_P + g_Q) - \frac{1}{2}g_Q = \frac{1}{3}g_P - \frac{1}{6}g_Q.$$

or $\operatorname{Ric}^{g_Q} = -\frac{1}{6}g_Q$, $\operatorname{Ric}^{g_P} = \frac{1}{3}g_P$ Assume that the metric g is complete. Then Q is a complete space of constant negative curvature (i.e. a quotient $\mathbb{R}H^3/\Gamma$ of Lobachevski space $\mathbb{R}H^3$ by a lattice) and P is a compact Einstein 4-manifold. In particular, we get background of type B), with compact internal space.

Case C) The Einstein equation (ES) for a manifold (M^7, g, ϕ) , where ϕ is a special non harmonic 3-form is

$$\operatorname{Ric} = \frac{1}{6} (\lambda^2 + 2|\phi|^2) g - \frac{1}{2} q_{\phi}, \ q_{\phi}(X, X) = \langle X \lrcorner \phi, X \lrcorner \phi \rangle \ge 0.$$
 (2)

C1 Case when (M = G/H, g) is a weakly G_2 manifold

Some basic facts about G₂ structure

- G_2 -structure on M^7 is a principal G_2 -subbundle of the bundle Fr(M) of frames.
- A manifold M^7 admits a G_2 structure if and only if it is orientable and spin.

 G_{2} - structures defines a Riemannian metric $g = g_{\phi}$ and a 3-form ϕ which is **generic**.

Conversely, any generic 3-form $\phi \in \Lambda^3 V^*$ has the stability subgroup G_2 and determines G_2 -structure as the set of frames where ϕ_x has a canonical form.

3-form ϕ and the associated G_2 -structure are $\nabla^{g_{\phi}}$ - parallel, if and only if ϕ is harmonic, Then (M^7, g_{ϕ}) is called a G_2 -manifold. A generic 3-form ϕ which satisfies the main equation

$$d\phi = \lambda * \phi, \lambda = const \neq 0$$

is called weak G_2 -form and the Riemannian manifold (M, g_{ϕ}) is called weak G_2 -manifold

(4,7)-decomposable SUGRA solutions associated to weak G2-structures

Any weak G₂-structure admits real Killing spinor, hence is an Einstein manifold (Friedrich and Kath). This implies **Theorem**. Assume that the product $(\mathcal{M}^{11} = \widetilde{M}^{3,1} \times M^7, g_{\mathcal{M}} = \widetilde{g} + g)$ is endowed with the 4-form

$$\mathcal{F}^4 := \lambda \cdot \operatorname{vol}_{\widetilde{M}^4} + \mathcal{F}^4,$$

where F is a closed 4-form $F^4 \in \Omega^4_{cl}(M^7)$ on M^7 , such that the special 3-form $\phi := \star_7 F^4$ is a generic 3-form on M^7 Then, $(\mathcal{M}^{11}, g_{\mathcal{M}}, \mathcal{F}^4)$ gives rise to a supergravity background, if and only if, $(M^7, g, \phi := \star_7 F^4)$ is a weak G₂-manifold and $\lambda = 2$.

Corollary. If $\lambda = 0$ and $\phi := \star_7 F^4$ is a generic 3-form on M^7 , where $F^4 \in \Omega^4_{cl}(M^7)$, then the Maxwell equation for flux form

$$\mathcal{F}^4 := F^4,$$

implies that ϕ is ∇^{g} -parallel, i.e. ϕ induces a parallel G₂-structure on M^{7} . In this case, the product

$$(\mathcal{M}^{11} = \widetilde{M}^{3,1} \times M^7, g_{\mathcal{M}} = \widetilde{g} + g, F^4)$$

is not a (4,7)-decomposable supergravity background.

SUGRA (4,7)-decomposable background with compact homogeneous inner space (M^7, g, ϕ)

The description of such manifolds is divided into 3 steps.

- 1. Description of homogeneous 7-manifolds M = G/H of compact group G.
- 2. Description of invariant special 3-forms ϕ of type A), B), C).
- 3. Solution of the Einstein equation (ES) for (g, ϕ) for an invariant metric g.

Step 1.

The description of simply connected homogeneous 7-manifolds M = G/H manifold with almost effective action of G reduces to description of

- 1) (closed) subalgebras \mathfrak{h} of the orthogonal Lie algebra $\mathit{B}_3 = \mathfrak{so}_7$
- 2) enumeration of compact Lie algebras \mathfrak{g} of dimension dim $\mathfrak{h}+7$ and determination of all imbeddings of $\mathfrak{h}\to\mathfrak{g}.$

In **Table 1**, we describe all subalgebras of \mathfrak{so}_7 algebra up to a conjugation and calculate the dimension dim $\mathfrak{g} = \dim \mathfrak{h} + 7$ of possible Lie algebras we may contains \mathfrak{h} .

Using description of all compact Lie algebras of appropriate dimension, we get a **Table 2**, which give a list of all effective pairs $(\mathfrak{h} \subset \mathfrak{g})$ and hance a description of all homogeneous 7-manifolds of compact Lie groups.

r	h	$ \mathfrak{g}^{d+7}$	\mathfrak{h} -decomposition of V
0	$\mathfrak{h} = \{0\}$	\mathfrak{g}^7	$7\mathbb{R}$
1	\$0 ₂	\mathfrak{g}^8	$V^2 + 5\mathbb{R}$
	\$0 ₂	\mathfrak{g}^8	$2V^2+3\mathbb{R}$
	\$0 ₂	\mathfrak{g}^8	$3V^2 + \mathbb{R}$
	\mathfrak{su}_2	\mathfrak{g}^{10}	$V^4 + 3\mathbb{R}$
	\mathfrak{su}_2^s	\mathfrak{g}^{10}	$V^4 + 3\mathbb{R}$
	$\mathfrak{so}_3^{3,3}$	\mathfrak{g}^{10}	$V^3 + V^3 + \mathbb{R}$
	$\mathfrak{so}_3^{(5)}$	\mathfrak{g}^{10}	$V^5 + 2\mathbb{R}$
	so ^{irr} ,	\mathfrak{g}^{10}	V^7
2	$(\mathfrak{so}_2 + \mathfrak{so}_2)^{diag} + \mathfrak{so}_2$	\mathfrak{g}^9	$3V^2 + \mathbb{R}$
	\mathfrak{u}_2	\mathfrak{g}^{11}	$V^4 + 3\mathbb{R}$
	\mathfrak{u}_2^s	\mathfrak{g}^{11}	$V^4 + +3\mathbb{R}$
	$\mathfrak{so}_4 + \mathfrak{so}_2$	\mathfrak{g}^{13}	$V^4 + V^2 + \mathbb{R}$
	su3	\mathfrak{g}^{15}	$V^6 + \mathbb{R}$
	\$0 ₅	\mathfrak{g}^{17}	$V^5 + 2\mathbb{R}$
	\mathfrak{g}_2	\mathfrak{g}^{21}	V^7

Table 1. Lie subalgebras \mathfrak{h} of rank r of $\mathfrak{so}(7) = \mathfrak{b}_3$ and decomposition of \mathfrak{h} -module $V = \mathbb{R}^7$.

... continuation of Table 1.

r	h	\mathfrak{g}^{d+7}	\mathfrak{h} -decomposition of V
3	3\$0 ₂	\mathfrak{g}^{10}	$3V^2 + \mathbb{R}$
	$\mathfrak{so}_4 + \mathfrak{so}(2)$	\mathfrak{g}^{16}	$V^4 + V^2 + \mathbb{R}$
	$\mathfrak{so}_4 + \mathfrak{so}(3)$	\mathfrak{g}^{16}	$V^{4} + V^{3}$
	\$0 ₆	\mathfrak{g}^{22}	$V^6 + \mathbb{R}$
	\$0 ₇	$\mathfrak{g}^{28}=\mathfrak{d}_4$	V^7

$$\begin{array}{ll} 1) \ S^{7} \cong \frac{SO_{8}}{SO_{7}} \cong \frac{SU_{4}}{SU_{3}} \cong \frac{Spin_{7}}{G_{2}} \cong \frac{Sp_{2}}{Sp_{1}} \\ \cong \frac{Sp_{2} \times U_{1}}{Sp_{1} \times U_{1}} \cong \frac{Sp_{2} \times Sp_{1}}{Sp_{1} \times Sp_{1}} \\ 2) \ S^{3} \times T^{4} \\ 3) \ S^{3} \times S^{3} \times S^{1} \\ 4) \ S^{3} \times S^{4} \\ 5) \ S^{4} \times T^{3} \\ 6) \ S^{5} \times T^{2}, \\ 7) \ S^{6} \times S^{1} \\ 8) \ S^{2} \times S^{2} \times S^{2} \times S^{1} \\ 9) \ S^{3} \times S^{2} \times T^{2} \\ 10) \ W_{k,l} := \frac{SU_{3}}{T_{k,l}^{1}} \\ 11) \ S^{3} \times \mathbb{C}P^{2} \end{array}$$

$$\begin{array}{l} 12) \ \mathbb{C}P^{1} \times T^{5} \\ 13) \ \mathbb{C}P^{3} \times S^{1} \\ 14) \ \mathbb{C}P^{2} \times T^{3} \\ 15) \ \mathbb{V}_{5,2} := \frac{SO_{5}}{SO_{3}} \cong T^{1} S^{3}, \\ 16) \ N_{a,b,c} := \frac{(SU_{2} \times SU_{3})}{(SU_{2} \times S^{1})}, \\ 16) \ N_{a,b,c} := \frac{(SU_{2} \times SU_{3})}{(SU_{2} \times SU_{2})} \times T^{2} \\ 19) \ B_{a,b} := \frac{(SU_{2} \times SU_{2})}{T^{2}} \times T^{3} \\ 20) \ \mathbb{F}_{1,2} \times S^{1} \\ 21) \ B^{7} := \frac{Sp_{2}}{SU_{2}^{1r}} = \frac{SO_{5}}{SO_{3}^{1r}} \\ 22) \ T^{7} \end{array}$$

Special homogeneous Einstein manifolds $M^7 = G/H$ of type A)

- ► Homogeneous special Einstein manifolds of type A) are homogeneous Einstein 7-manifold (M⁷ = G/H, g)) of positive type and we may assume that the group G is semisimple and compact.
- ► The direct product $\mathcal{M}^{11} = \tilde{M}^4 \times M^7$ of such manifold $(M^7 = G/H, g)$ with a Lorentz Einstein 4-manifold (\tilde{M}, \tilde{g}) give a solution of SUGRA.
- ► The simplest example of such Einstein manifold *M* is the anti-de Sitter space AdS₄ and simplest examples of homogeneous Einstein 7-manifolds are symmetric spaces of compact type. There are 6 such spaces:

 $S^7, S^5 \times S^2, S^4 \times S^3, S^3 \times S^2 \times S^2, SU_3/SO_3 \times S^2, \mathbb{C}P^2 \times S^2.$

The product of such manifolds with (symmetric) anti-de Sitter space AdS_4 , give SUGRA solutions. These were found by J. Figueroa-O'Farrill in his classification of symmetric solutions of SUGRA. The sphere S^7 gives the famous Freund-Rubin solution.

The list of simply connected non-symmetric homogeneous Einstein 7-manifolds of positive type (Yu. Nikonorov (2004))

Table 3. List of homogeneous 7-manifolds $M^7 = G/H$ with invariant Einstein non-symmetric metric of positive type

	M ⁷	number of metrics
1.	$B^7 = \operatorname{Sp}_2 / \operatorname{SU}_2 \simeq \operatorname{SO}_5 / \operatorname{SO}_3^{\operatorname{irr}}$	1 isotropy irreducible case
2.	$\mathbb{V}_{3,5} = \mathrm{SO}_5 / \mathrm{SO}_3$	1
3.	$S^7 = Sp_2 / Sp_1$	1 (Jensen metric)
4.	$N_{k,\ell} = (\mathrm{SU}_3 \times \mathrm{SU}_2)/(\mathrm{SU}_2 \times \mathrm{S}^1)$	1 for any k,ℓ
5.	$M_{k,\ell,m} = (\mathrm{SU}_2 \times \mathrm{SU}_2 \times \mathrm{SU}_2)/(\mathrm{S}^1 \times \mathrm{S}^1)$	1 for any $k \geq \ell \geq m \geq 0, \ell > 0$
6.	$W_{k,\ell} = \operatorname{SU}_3 / \operatorname{S}^1_{k,l}$	2 for any $k \ge \ell \ge 0, a > 0$.

A class of special homogeneous manifolds of Type C1) homogeneous weak G₂- manifolds.

The Lie algebra $\mathfrak{g}_2 \subset \mathfrak{so}_7$ has three maximal subalgebras:

$$\mathfrak{su}_3, \, \mathfrak{so}_3^{\mathrm{irr}}, \, \mathfrak{so}(V^3) \oplus \mathfrak{so}((V')^3) \simeq 2\mathfrak{so}_3,$$

where $V^7 = V^3 \oplus (V')^3 \oplus \mathbb{R}.$

Proposition. A homogeneous manifold M = G/H has an invariant weak G_2 -structure ϕ if and only if it belongs to the list on the right or is one of homogeneous representation of the sphere indicated below.

0	L
Invariant (non-weak) G ₂ -structures	weak G ₂ -structures
T^7	$W_{k,l} = \frac{\mathrm{SU}_3}{\mathrm{S}_{k,l}^1}$
$S^3 \times T^4$	$\mathbb{V}_{5,2} = \frac{SO_5}{SO_3}$
$S^3 \times S^3 \times S^1 = \frac{SU_2 \times SU_2 \times S^1}{\{e\}}$	$S^7 = \frac{Sp_2}{Sp_1}$
$S^3 \times S^3 \times S^1 = \frac{(SU_2 \times SU_2)}{\Delta SU_2} \times \frac{(SU_2 \times SU_2)}{\Delta SU_2} \times S^1$	$B^{7} = \frac{\dot{S}\dot{O}_{5}}{SO_{3}^{irr}}$
$S^6 \times S^1$	$M_{k,l,m} := \frac{(S^3 \times S^3 \times S^3)}{(S^1 \times S^1)}$
$\mathbb{V}^{4,2}\times \mathrm{T}^2$	$N_{k,l} = \frac{(\mathrm{SU}_3 \times \mathrm{SU}_2)}{(\mathrm{SU}_2 \times \mathrm{S}^1)}$
$S^5 \times T^2$	
$\mathbb{F}_{1,2} imes S^1$	
$\mathbb{C}P^3 \times S^1$	

Table 4. Compact homogeneous G₂-manifolds vs weak G₂-manifolds

7-sphere as a homogeneous weak G_2 manifold.

$$S^7 = \frac{Sp_2 \times U_1}{Sp_1 \times U_1}, \quad S^7 = \frac{Sp_2 \times Sp_1}{Sp_1 \times Sp_1}, \quad S^7 = \frac{SU_4}{SU_3}, \quad S^7 = \frac{Spin_7}{G_2}.$$

List of homogeneous 7-manifolds M = G/H of a semisimple group G with $\Omega^3(M)^H \neq 0$

1.
$$W_{k,\ell} = SU_3/T_{k,\ell}^1$$
 (Aloff-Wallach space)
2. $M_{k,\ell,m} = (SU_2 \times SU_2 \times SU_2)/T^2$
3. $B^5 = SO_5/SO_3^{irr}$, $\Omega^3(B^5)^H = \mathbb{R}\phi \phi$ is a weak G_2 form.
4. $\mathbb{C}P^2 \times S^3 = SU_3/U_2 \times SU_2$,
5. $S^5 \times S^2 = Su_3/SU_2 \times SO_3/SO_2$,
6. $S^4 \times S^3 = SO_5/SO_4 \times SU_2$,
7. $S^7 = SO_7/G_2$, $\Omega^3(S^7)^H = \mathbb{R}\phi$, ϕ is a weak G_2 form.
8. $S^7 = SP_2/Sp_1 = Sp_1 \times Sp_2/(Sp_1 \times Sp_1)$. It is sufficient to consider the first case.
9. $S^7 = SU_4/SU_3$