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Problem: Construct complete quaternionic Kähler manifolds.

Motivation: Quaternionic Kähler manifolds are target spaces for
sigma models in N = 2 supersymmetric theories of gravity.

Definition
A 4n-dimensional Riemannian manifold (M, g) is quaternionic
Kähler if the holonomy group, up to conjugacy, is contained in
Sp(n) · Sp(1), but not in Sp(n).

Subproblem 1: Construct quaternionic Kähler manifolds.

Subproblem 2: When are these manifolds geodesically complete?
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Problem 1 (Means to construct quaternionic Kähler manifolds)

Ferarra-Sabharwal’90:

supergravity c-map: {PSK manifolds} → {QK manifolds}

(“PSK”= projective special Kähler and “QK”= quaternionic
Kähler)

deWit-Van Proyen’92:

supergravity r -map: {PSR manifolds} → {PSK manifolds}

(“PSR”= projective special real)
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Local special Kähler geometry

A conical special Kähler domain (M, g ,F ) is a C∗-invariant
domain M ⊂ Cn+1 \ {0} endowed with a holomorphic function
F : M → C such that

(i) F is homogeneous of degree 2,

(ii) the real matrix (NIJ(z) := 2Im ∂2F
∂z I∂zJ

(z))I ,J=0,...n is of
signature (1, n) for all z ∈ M,

(iii) f (z) :=
∑

NIJ(z)z I z̄J > 0 for all z ∈ M.

and the pseudo-Riemannian metric

g =
∑

NIJdz
Idz̄J .

Definition
A projective special Kähler domain (M, ḡ) is the quotient M of
a conical special Kähler domain M by the natural C∗-action,
endowed with its canonical Kähler metric ḡ .
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The supergravity c-map

(M, ḡ) 7→ (N = M × R>0 × R2n+3, gN)

with

gN = ḡ + gG ,

gG =
1

4ρ2
dρ2 +

1

4ρ2

(
d φ̃+

∑(
ζ Id ζ̃I − ζ̃Idζ I

))2
+

1

2ρ

∑
IIJdζ IdζJ

+
1

2ρ

∑
I IJ(d ζ̃I +RIKdζ

K )(d ζ̃J +RJLdζ
L),

where (ρ, φ̃, ζ̃I , ζ
I ) ∈ R>0 × R2n+3, I = 0, 1, . . . , n, and

RIJ + iIIJ :=
∂2F

∂z I∂zJ
+ i

∑
K NIK z

K
∑

LNJLz
L∑

IJ NIJz I zJ
.
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Special real geometry

Let U ⊂ Rn be an open cone (i.e. R>0 · U ⊂ U) and h : Rn → R
be a homogeneous cubic polynomial with h|U > 0. Denote with
H := {h|U ≡ 1}. Assume that gH := ι∗(−∂2h) > 0 for the
inclusion ι : H → U.

Definition
The smooth Riemannian manifold (H, gH) is a projective special
real manifold.
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The supergravity r-map

(H, gH) 7→ (M := Rn ×
√
−1 · U, ḡ)

with ḡ = −1
4

∑
i ,j

∂2

∂x i∂x j
(log h)(dy idy j + dx idx j).
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Problem 2 (Means to determine completeness)

Theorem (Cortés/Han/Mohaupt’12)

The supergravity r -map and the supergravity c-map preserve
geodesic completeness.

 Subproblem 2.5: When are projective special real and
projective special Kähler manifolds complete?
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The projective special real case

Theorem (Cortés/Nardmann/.’16)

The projective special real manifold (H, gH) is geodesically
complete if, and only if H ⊂ Rn is closed.

Corollary

Let h : Rn → R be a cubic polynomial and H a locally strictly
convex component (⇔ ι∗∂2h < 0) of {h ≡ 1}. Then the complete
projective special real manifold (H, gH) defines a complete
quaternionic Kähler manifold of dimension 4n + 4 (via the r - and
the c-map).
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Question: Is the theorem true for every homogeneous polynomial
of any degree?

True for

I polynomials of degree 2 or 3.

I polynomials h : R2 → R of any degree.

I generic polynomials in any number of variables and of any
degree.

Not true in general for

I for rational functions, e.g.

h : R2 → R, (x , y) 7→
(

xy

x + y

)k

,

(k > 1).
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The projective special Kähler case

Definition
The conical affine special Kähler domain (M, g ,F ) has regular
boundary behaviour if the affine Kähler potential

f =
∑

NIJ(z)z I z̄J

extends to a smooth function (denoted again by f ) on some
neighborhood of cl(M) \ {0} ⊂ Cn+1 with

I f (p) = 0, dfp 6= 0 and

I gp ≤ 0 on Tp∂M ∩ J(Tp∂M) with kernel Cp ⊂ TpCn+1

for all boundary points p ∈ ∂M \ {0}.

Definition
The projective special Kähler domain (M, ḡ) has regular
boundary behaviour if the underlying conical special Kähler
domain (M, g ,F ) has regular boundary behaviour.
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Theorem (Cortés/Dyckmanns/-’17)

Every projective special Kähler domain with regular boundary
behaviour is geodesically complete.

Theorem (Cortés/Dyckmanns/-’17)

Let (M, ḡ) be a projective special Kähler domain with regular
boundary behaviour and (N, g c

FS) the one-loop deformed
Ferrara-Sabharwal (quaternionic Kähler) manifold associated to
(M, ḡ). Then (N, g c

FS) is complete for all c ≥ 0.
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