Andrea Santi

Killing superalgebras and high supersymmetry

(joint works with J. Figueroa-O'Farrill)

MITP Workshop "Geometry, Gravity and Supersymmetry"

Mainz, 24–28 April 2017

Eleven-dimensional supergravity

Let (M,g,F) be Lorentzian mnfd (M,g), $\dim M=11$, with closed $F\in\Omega^4(M)$ and endowed with spin bundle $S(M)\longrightarrow M$ (the fiber $S(M)_x\simeq S=\mathbb{R}^{32}$). The bosonic eqs of supergravity are two coupled PDE [Cremmer-Julia-Scherk '78]:

$$\operatorname{Ric}(X,Y) = -\frac{1}{2}g(i_X F, i_Y F) + \frac{1}{6}g(X,Y) \|F\|^2$$

$$d * F = \frac{1}{2}F \wedge F$$
(*)

Supersym. transf. $\delta_{\epsilon}\Psi=D\epsilon+O(\Psi)$ of gravitino Ψ gives superconnection on S(M):

$$D_X \epsilon = \nabla_X \epsilon - \frac{1}{24} [X \cdot F - 3F \cdot X] \cdot \epsilon$$

where $X \in \mathfrak{X}(M)$ and $\epsilon \in \Gamma(S(M))$.

Eleven-dimensional supergravity

Let (M,g,F) be Lorentzian mnfd (M,g), $\dim M=11$, with closed $F\in\Omega^4(M)$ and endowed with spin bundle $S(M)\longrightarrow M$ (the fiber $S(M)_x\simeq S=\mathbb{R}^{32}$). The bosonic eqs of supergravity are two coupled PDE [Cremmer-Julia-Scherk '78]:

$$\operatorname{Ric}(X,Y) = -\frac{1}{2}g(i_X F, i_Y F) + \frac{1}{6}g(X,Y)||F||^2$$

$$d * F = \frac{1}{2}F \wedge F$$
(*)

Supersym. transf. $\delta_{\epsilon}\Psi=D\epsilon+O(\Psi)$ of gravitino Ψ gives superconnection on S(M):

$$D_X \epsilon = \nabla_X \epsilon - \frac{1}{24} [X \cdot F - 3F \cdot X] \cdot \epsilon$$

where $X \in \mathfrak{X}(M)$ and $\epsilon \in \Gamma(S(M))$.

Def. A symmetry of a solution of (*) is pair (ξ, ε) given by

- (i) a Killing vector field for (g, F), i.e. a v.f. ξ s.t $\mathcal{L}_{\xi}g = \mathcal{L}_{\xi}F = 0$;
- (ii) a Killing spinor, i.e. a section ε of S(M) s.t. $D\varepsilon = 0$.

Killing superalgebras

Thm[Figueroa-O'Farrill, Meessen, Philip '05] The v.s. $\mathfrak{k}=\mathfrak{k}_{\bar{0}}\oplus\mathfrak{k}_{\bar{1}}$ of symmetries of (M,g,F) has natural structure of Lie superalgebra, called Killing superalgebra.

The Flat Model. (M,g) Minkowski, F=0. In this case $D=\nabla$, $\mathfrak{k}_{\bar{1}}\simeq S$, $\mathfrak{k}_{\bar{0}}\simeq\mathfrak{so}(V)\oplus V$ and \mathfrak{k} is the Poincaré superalgebra $\mathfrak{p}=(\mathfrak{so}(V)\oplus V)\oplus S$.

Killing superalgebras

Thm[Figueroa-O'Farrill, Meessen, Philip '05] The v.s. $\mathfrak{k} = \mathfrak{k}_{\bar{0}} \oplus \mathfrak{k}_{\bar{1}}$ of symmetries of (M,g,F) has natural structure of Lie superalgebra, called Killing superalgebra.

The Flat Model. (M,g) Minkowski, F=0. In this case $D=\nabla$, $\mathfrak{k}_{\bar{1}}\simeq S$, $\mathfrak{k}_{\bar{0}}\simeq\mathfrak{so}(V)\oplus V$ and \mathfrak{k} is the Poincaré superalgebra $\mathfrak{p}=(\mathfrak{so}(V)\oplus V)\oplus S$.

The Killing superalgebra is useful invariant of a supergravity bkgd:

- late '90s: first general check of AdS/CFT correspondence;
- early 2000s: it contracts under Penrose limit;
- mid 2000s: homogeneity conjecture by Meessen, i.e. if

$$\dim(\mathfrak{k}_{\bar{1}}) > \frac{1}{2}\dim S = 16$$

then bkgd is locally homogeneous;

- it is useful to constructing bkgds with prescribed infinit. automorphisms.

Supergravity solutions

- Local expressions for metric and 4-form of low supersymmetric bkgds
 have been derived solving the Killing spinor eqs: the G-structure method
 [Gauntlett, Gutowski, Pakis '03] and the spinorial geometry method
 [Gillard, Gran, Papadopoulos '05].
- There are (M,g) with parallel spinors that are not Ricci flat [Bryant '00].
- Other approaches like exceptional generalized geometry that apply for special compactifications [Coimbra, Strickland-Constable, Waldram '14].

Supergravity solutions

- Local expressions for metric and 4-form of low supersymmetric bkgds
 have been derived solving the Killing spinor eqs: the G-structure method
 [Gauntlett, Gutowski, Pakis '03] and the spinorial geometry method
 [Gillard, Gran, Papadopoulos '05].
- There are (M,g) with parallel spinors that are not Ricci flat [Bryant '00].
- Other approaches like exceptional generalized geometry that apply for special compactifications [Coimbra, Strickland-Constable, Waldram '14].
- The classification of highly supersymmetric bkgds is largely open. There is classification of maximally supersymmetric bkgds [Figueroa-O'Farrill, Papadopoulos '03] and non-existence results for 31 and 30 Killing spinors [Gran, Gutowski, Papadopoulos, Roest '07 & '10].
- There is one bkgd with 26 Killing spinors [Michelson '02] and also bkgds with 24, 22, 20, 18 [Gauntlett, Hull '02].

Structural results for highly supersymmetric solutions

The homogeneity thm[Figueroa-O'Farrill, Hustler '12] If $\dim(\mathfrak{k}_{\bar{1}}) > 16$ then bkgd is locally homogeneous.

On S there is $\mathfrak{so}(V)$ -invariant symplectic form $\langle -, - \rangle$ and transpose of Clifford multiplication $V \otimes S \to S$ gives a way to square spinors: the Dirac current

$$k:\odot^2S\to V$$
 ,
$$\eta(k(s,s),v)=\langle s,v\cdot s\rangle \qquad \qquad v\in V\,,\ s\in S\;.$$

It turns out that $k|_{\odot^2S'}:\odot^2S'\to V$ is surjective for all subspaces $S'\subset S$ with $\dim S'>16$ so that v.f. $\xi\in\mathfrak{k}_{ar{0}}$ already span T_xM at all $x\in M$.

Structural results for highly supersymmetric solutions

The homogeneity thm[Figueroa-O'Farrill, Hustler '12] If $\dim(\mathfrak{k}_{\bar{1}}) > 16$ then bkgd is locally homogeneous.

On S there is $\mathfrak{so}(V)$ -invariant symplectic form $\langle -,- \rangle$ and transpose of Clifford multiplication $V\otimes S\to S$ gives a way to square spinors: the Dirac current

$$\begin{split} k:\odot^2S \to V\ ,\\ \eta(k(s,s),v) = \langle s,v\cdot s\rangle & v\in V\ ,\ s\in S\ . \end{split}$$

It turns out that $k|_{\odot^2S'}:\odot^2S'\to V$ is surjective for all subspaces $S'\subset S$ with $\dim S'>16$ so that v.f. $\xi\in\mathfrak{k}_{\bar{0}}$ already span T_xM at all $x\in M$.

Rem. Supergravity eqs for homogeneous bkgds are algebraic and simpler than PDEs. Checking supersymmetry is additional problem — there exist homog. bkgds which are not (highly) supersymmetric.

Thm[Figueroa-O'Farrill, A.S.] Any Killing superalgebra \mathfrak{k} is a filtered subdeformation of the Poincaré superalgebra \mathfrak{p} .

Thm[Figueroa-O'Farrill, A.S.] Any Killing superalgebra \mathfrak{k} is a filtered subdeformation of the Poincaré superalgebra \mathfrak{p} .

The nonzero Lie brackets of $\mathfrak{p}=\mathfrak{p}_{\bar{0}}\oplus\mathfrak{p}_{\bar{1}}=(\mathfrak{so}(V)\oplus V)\oplus S$ are

$$[A,B] = AB - BA$$
, $[A,s] = As$, $[A,v] = Av$, $[s,s] = k(s,s)$,

for all $A,B\in\mathfrak{so}(V)$, $s\in S,\ v\in V$. There exists a compatible \mathbb{Z} -grading

$$\mathfrak{p}=\mathfrak{p}_{-2}\oplus\mathfrak{p}_{-1}\oplus\mathfrak{p}_0$$

where $\mathfrak{p}_{-2}=V$, $\mathfrak{p}_{-1}=S$ and $\mathfrak{p}_0=\mathfrak{so}(V)$. Compatibility means that

- (i) $[\mathfrak{p}_i,\mathfrak{p}_j] \subset \mathfrak{p}_{i+j}$ for all $i,j \in \mathbb{Z}$;
- (ii) $\mathfrak{p}_{\bar{0}} = \mathfrak{p}_{-2} \oplus \mathfrak{p}_0$ and $\mathfrak{p}_{\bar{1}} = \mathfrak{p}_{-1}$.

We shall be interested in graded subalgebras $\mathfrak{a} \subset \mathfrak{p}$, i.e.

$$\mathfrak{a} = \mathfrak{a}_{-2} \oplus \mathfrak{a}_{-1} \oplus \mathfrak{a}_0 = V' \oplus S' \oplus \mathfrak{h} ,$$

where $V' \subset V$, $S' \subset S$ and $\mathfrak{h} \subset \mathfrak{so}(V)$. If $\dim S' > 16$ then V' = V (this is the algebraic fact underlying homogeneity thm). The Lie brackets of \mathfrak{a} are:

$$[A, B] = AB - BA$$

$$[A, v] = Av$$

$$[A, s] = As$$

$$[s, s] = \kappa(s, s)$$

$$[v, s] = 0$$

$$[v, w] = 0$$

 $A, B \in \mathfrak{h}, s \in S', v, w \in V'$

There is a natural filtration \mathfrak{a}^{\bullet} on \mathfrak{a} , i.e.

$$\mathfrak{a}=\mathfrak{a}^{-2}=\mathfrak{a}_{-2}\oplus\mathfrak{a}_{-1}\oplus\mathfrak{a}_0\supset\mathfrak{a}^{-1}=\mathfrak{a}_{-1}\oplus\mathfrak{a}_0\supset\mathfrak{a}^0=\mathfrak{a}_0\supset\mathfrak{a}^1=0\;.$$

Def. A filtered deformation of $\mathfrak a$ is a Lie superalgebra $\mathfrak g$ with same underlying vector space as $\mathfrak a$ and a new Lie bracket [-,-] which satisfies:

There is a natural filtration \mathfrak{a}^{\bullet} on \mathfrak{a} , i.e.

$$\mathfrak{a}=\mathfrak{a}^{-2}=\mathfrak{a}_{-2}\oplus\mathfrak{a}_{-1}\oplus\mathfrak{a}_0\supset\mathfrak{a}^{-1}=\mathfrak{a}_{-1}\oplus\mathfrak{a}_0\supset\mathfrak{a}^0=\mathfrak{a}_0\supset\mathfrak{a}^1=0\;.$$

Def. A filtered deformation of $\mathfrak a$ is a Lie superalgebra $\mathfrak g$ with same underlying vector space as $\mathfrak a$ and a new Lie bracket [-,-] which satisfies:

- (i) $[\mathfrak{a}_i,\mathfrak{a}_j] \subset \mathfrak{a}_{i+j} \oplus \mathfrak{a}_{i+j+1} \oplus \cdots$,
- (ii) components of $\left[-,-\right]$ of zero degree coincide with original bracket.

There is a natural filtration \mathfrak{a}^{\bullet} on \mathfrak{a} , i.e.

$$\mathfrak{a} = \mathfrak{a}^{-2} = \mathfrak{a}_{-2} \oplus \mathfrak{a}_{-1} \oplus \mathfrak{a}_0 \supset \mathfrak{a}^{-1} = \mathfrak{a}_{-1} \oplus \mathfrak{a}_0 \supset \mathfrak{a}^0 = \mathfrak{a}_0 \supset \mathfrak{a}^1 = 0$$
.

Def. A filtered deformation of $\mathfrak a$ is a Lie superalgebra $\mathfrak g$ with same underlying vector space as $\mathfrak a$ and a new Lie bracket [-,-] which satisfies:

$$[A, B] = AB - BA$$

$$[A, v] = Av + t\delta(A, v)$$

$$[A, s] = As$$

$$[s, s] = \kappa(s, s) + t\gamma(s, s)$$

$$[v, s] = t\beta(v, s)$$

$$[v, w] = t\alpha(v, w) + t^2\rho(v, w)$$

for some maps $\delta:\mathfrak{h}\otimes V'\to\mathfrak{h},\ \gamma:\odot^2S'\to\mathfrak{h},\ \beta:V'\otimes S'\to S',\ \alpha:\Lambda^2V'\to V'$ and $\rho:\Lambda^2V'\to\mathfrak{h}$ subject to the Jacobi identities for all values of the parameter t, which has been introduced to keep track of the filtration degree.

Main Motivations and Questions

Motivations.

- Idea: instead of studying directly bkgds, we set to study filt. def.
- The problem of classifying filt. def. of Z-graded Lie (super)algebras is well-defined mathematically [Sternberg, Guillemin mid '60s] and also subject of recent investigations [Kac, Cantarini, Cheng '00s] and [Kruglikov, The '14].
- According to Klein's Erlangen program, any geometry should be described by its transformation group. We aim to set up a "supergravity Erlangen program", systematising the search for supergravity bkgds using filt. def.

Main Motivations and Questions

Motivations.

- Idea: instead of studying directly bkgds, we set to study filt. def.
- The problem of classifying filt. def. of Z-graded Lie (super)algebras is well-defined mathematically [Sternberg, Guillemin mid '60s] and also subject of recent investigations [Kac, Cantarini, Cheng '00s] and [Kruglikov, The '14].
- According to Klein's Erlangen program, any geometry should be described by its transformation group. We aim to set up a "supergravity Erlangen program", systematising the search for supergravity bkgds using filt. def.

Questions

- Is every filt. def. a Killing superalgebra?
- Any 11-dimensional (M,g) with closed $F \in \Omega^4(M)$ has an associated Killing superalgebra. In supergravity, filt. def. are further constrained?

Spencer cohomology

Filtered deformations are governed by Spencer cohomology, a bi-graded refinement of the usual Chevalley-Eilenberg cohomology of a Lie (super)algebra and its adjoint representation to the case of \mathbb{Z} -graded Lie (super)algebras. The space of q-cochains for Poincaré superalgebra is $C^q(\mathfrak{p}_-,\mathfrak{p})=\mathfrak{p}\otimes\Lambda^q\mathfrak{p}_-^*$, where $\mathfrak{p}_-=\mathfrak{p}_{-2}\oplus\mathfrak{p}_{-1}=V\oplus S$. It decomposes $C^q(\mathfrak{p}_-,\mathfrak{p})=\bigoplus C^{p,q}(\mathfrak{p}_-,\mathfrak{p})$ in components of different $\deg=p$.

	q				
\overline{p}	0	1	2	3	4
0	$\mathfrak{so}(V)$	$S \to S$ $V \to V$	$\odot^2 S \to V$		
2		$V o \mathfrak{so}(V)$	$\Lambda^{2}V \to V$ $V \otimes S \to S$ $\odot^{2}S \to \mathfrak{so}(V)$	$0^3 S \to S$ $0^2 S \otimes V \to V$	$\odot^4 S \to V$
4			$\Lambda^2 V o \mathfrak{so}(V)$	$0^{2}S \otimes V \to \mathfrak{so}(V)$ $\Lambda^{2}V \otimes S \to S$ $\Lambda^{3}V \to V$	$0^4 S \to \mathfrak{so}(V)$ $0^3 S \otimes V \to S$

Spencer cohomology and Killing spinors

Thm[Figueroa-O'Farrill, A.S.] $H^{4,2}(\mathfrak{p}_-,\mathfrak{p})=0$, $H^{2,2}(\mathfrak{p}_-,\mathfrak{p})\simeq \Lambda^4 V$.

We recover the 4-form of supergravity through cohomology! But there is more: the β -component (remember $\beta: V \otimes S \longrightarrow S$) of the Spencer cocycle is

$$\beta(v,s) = v \cdot \varphi \cdot s - 3\varphi \cdot v \cdot s ,$$

where $\varphi \in \Lambda^4 V$. In other words, it indicates what are the relevant Killing spinor eqs.

Rem. The Killing spinor eqs in 11-dimensional supergravity encode *all* the information about bosonic bkgds. Indeed the Clifford trace

$$\sum_{i} e^{i} \cdot \mathcal{R}(e_{i}, -) : TM \longrightarrow \text{End} (S(M))$$

of curvature $\mathcal{R}:\Lambda^2TM\longrightarrow \mathrm{End}\;(S(M))$ of D vanishes iff dF=0 and the field eqs are satisfied [Gauntlett, Pakis '03].

Maximal supersymmetry

We classified maximally supersymmetric filt. def., that is filt. def. $\mathfrak g$ of subalgebras $\mathfrak a=\mathfrak a_{-2}\oplus\mathfrak a_{-1}\oplus\mathfrak a_0$ of $\mathfrak p$ with $\mathfrak a_{-2}=V$, $\mathfrak a_{-1}=S$ and $\mathfrak a_0=\mathfrak h$ subalgebra of $\mathfrak{so}(V)$. The fact that S'=S means we have maximal supersymmetry, whereas V'=V (which is forced) means we are describing (locally) homogeneous geometries. We bootstrapped the computation of $H^{2,2}(\mathfrak a_-,\mathfrak a)$ from $H^{2,2}(\mathfrak p_-,\mathfrak p)$ and obtained:

Thm[Figueroa-O'Farrill, A.S.] The maximally supersymmetric filt. def. are exactly the Killing superalgebras of maximally supersymmetric bkgds and nothing else:

- (i) p itself for Minkowski spacetime;
- (ii) osp(8|4) for $AdS_4 \times S^7$ [Freund, Rubin '80];
- (iii) osp(6,2|4) for $S^4 \times AdS_7$ [Pilch, van Nieuwenhuizen, Townsend '84];
- (iv) the Killing superalgebra of max. susy pp-wave [Kowalski-Glikman '84].

In all cases $\mathfrak{h} = \mathfrak{so}(V) \cap \operatorname{stab}(\varphi)$ where $\varphi \in \Lambda^4 V$.

High supersymmetry

Thm[Figueroa-O'Farrill, A.S.] Let (M,g) be 11-dimensional Lorentzian mnfd with closed $F\in\Omega^4(M)$. If space $\mathfrak{k}_{\bar{1}}$ of Killing spinors has $\dim\mathfrak{k}_{\bar{1}}>16$, then (M,g,F) satisfies the Einstein and Maxwell eqs of supergravity.

High supersymmetry

Thm[Figueroa-O'Farrill, A.S.] Let (M,g) be 11-dimensional Lorentzian mnfd with closed $F\in\Omega^4(M)$. If space $\mathfrak{k}_{\bar{1}}$ of Killing spinors has $\dim\mathfrak{k}_{\bar{1}}>16$, then (M,g,F) satisfies the Einstein and Maxwell eqs of supergravity. Sketch proof. The Jacobi identity in [S'S'V] gives

$$\frac{1}{2}R(v,\kappa(s,s))w = \kappa((X_v\beta)(w,s),s) - \kappa(\beta_v(s),\beta_w(s)) - \kappa(\beta_w\beta_v(s),s) \quad (1)$$

for all $s \in S'$ and $v, w \in V$, for some map $X: V \to \mathfrak{so}(V)$. As $\kappa(S', S') = V$, this fully determines the curvature R and, by a further contraction, the Ricci tensor:

$$\operatorname{Ric}(v, \kappa(s, s)) = \frac{1}{2} F_{ab}^{2} v^{a} \left\langle \Gamma^{b} s, s \right\rangle - \frac{1}{6} \|F\|^{2} \left\langle v \cdot s, s \right\rangle + \frac{1}{6} \left\langle (v \wedge F \wedge F + 2\iota_{v} \delta F - v \wedge dF) \cdot s, s \right\rangle. \tag{2}$$

We then showed that the terms which depend on forms of different degree in

$$\odot^2 S' \subset \odot^2 S = \Lambda^1 V \oplus \Lambda^2 V \oplus \Lambda^5 V \tag{3}$$

satisfy the eqs separately (not immediate: embedding (3) is in general diagonal)

High supersymmetry

The theorem is sharp — there exist (M,g,F) with $\dim \mathfrak{k}_{\bar{1}}=16$ which do not satisfy supergravity eqs. The theorem allows also to establish a reconstruction result for highly supersymmetric bkgds.

Def. A filtered subdeformation \mathfrak{g} of \mathfrak{p} is aligned if $\dim \mathfrak{g}_{\bar{1}} > 16$ and it is constructed out of a closed 4-form $\varphi \in \Lambda^4 V$. It is strongly aligned if in addition $\mathfrak{g}_{\bar{0}} = [\mathfrak{g}_{\bar{1}}, \mathfrak{g}_{\bar{1}}]$.

Thm[Figueroa-O'Farrill, A.S.] Any aligned filtered subdeformation $\mathfrak g$ of $\mathfrak p$ is (a subalgebra of) the Killing superalgebra $\mathfrak k$ of a highly supersymmetric bkgd. In particular Killing superalgebras $\mathfrak k=\mathfrak k_{\bar 0}\oplus\mathfrak k_{\bar 1}$ of highly supersymmetric bgkds, up to local equivalence, are in a one-to one correspondence with maximal aligned filtered subdeformations of $\mathfrak p$, up to isomorphism of filtered subdeformations. The analogous statement holds the Killing ideals $[\mathfrak k_{\bar 1},\mathfrak k_{\bar 1}]\oplus\mathfrak k_{\bar 1}$ generated by the Killing spinors and strongly aligned deformations.

References

- J. Figueroa-O'Farrill, A. S., Spencer cohomology and 11-dimensional supergravity, Commun. Math. Phys. 349 (2017), 627–660.
- J. Figueroa-O'Farrill, A. S., Eleven-dimensional supergravity from filtered subdeformations of the Poincaré superalgebra, J. Phys A: Math. Theor. 49 (2016).
- J. Figueroa-O'Farrill, A. S., On the algebraic structure of Killing superalgebras, preprint arXiv:1608.05915 (2016).

References

- J. Figueroa-O'Farrill, A. S., Spencer cohomology and 11-dimensional supergravity, Commun. Math. Phys. 349 (2017), 627–660.
- J. Figueroa-O'Farrill, A. S., Eleven-dimensional supergravity from filtered subdeformations of the Poincaré superalgebra, J. Phys A: Math. Theor. 49 (2016).
- J. Figueroa-O'Farrill, A. S., On the algebraic structure of Killing superalgebras, preprint arXiv:1608.05915 (2016).
- P. de Medeiros, J. Figueroa-O'Farrill, A. S., Killing superalgebras for Lorentzian four-manifolds, J. High Energy Phys. 6 (2016).

Thanks!