Supernova Neutrino Detectors

Kate Scholberg, Duke University SNOBS, October 2017

Information is in the energy, flavor, time

structure of the burst

What do you want in a detector?

Size	~kton detector mass per 100 events @ 10 kpc
Low energy threshold	~Few MeV if possible
Energy resolution	Resolve features in spectrum
Angular resolution	Point to the supernova! (for directional interactions)
Timing resolution	Follow the time evolution
Low background	BG rate << rate in burst; underground location usually excellent; surface detectors conceivably sensitive
Flavor sensitivity	Ability to tag flavor components
High up-time and longevity	Can't miss a ~1/30 year spectacle!

Note that many detectors have a "day job"...

	Electrons	
	Elastic scattering	
Charged	$\nu + e^- \to \nu + e^-$	
current	^[¬] _{ve} ·····► ▼ e [−]	
Neutral current	ve	
	Useful for pointing	

	Electrons	Protons	
	Elastic scattering	Inverse beta decay	
	$\nu + e^- \to \nu + e^-$	$\bar{\nu}_e + p \to e^+ + n$	
Charged current	^[¬] _{ve} ·····► ▼e [−]	v_{e}^{+} v_{e	
Neutral current	ν e	Elastic scattering v	
	Useful for pointing	very low energy recoils	

	Electrons	Protons	Nuclei	
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$\nu_e + (N, Z) \to e^- + (N - 1, Z + 1)$ $\bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1)$	
Charged current	^[−] _{ve} ·····► √ e [−]	$\overline{v}_{e}^{+} \gamma$	r_{v_e} , $r_{e^{+/-}}$, r_{v_e} , $r_{v_$	
Neutral current	ve	Elastic scattering vp	$ \nu + A \rightarrow \nu + A^* $ deexcitation products $ \sqrt{n} $	
	Useful for pointing	very low energy recoils	$ u + A \rightarrow v + A $ Coherent elastic (CEvNS)	

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	^[−] _{ve} ·····► √ e [−]	$\overline{v}_{e}^{+} \gamma$	r_{v_e} , $r_{e^{+/-}}$, r_{v_e} , $r_{v_$
Neutral current	ν e	Elastic scattering v	$\nu + A \rightarrow \nu + A^*$ deexcitation products
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A $ Coherent elastic (CEvNS)

IBD (electron antineutrinos) dominates for current detectors

Neutrino interaction thresholds

Supernova neutrino detector types

Water Cherenkov detectors

Super-Kamiokande

Mozumi, Japan 22.5 kton fid. volume (32 kton total) ~5-10K events @ 10 kpc (mostly anti-v_e) ~5° pointing @ 10 kpc Future: SK-Gd

Hyper-Kamiokande

- staged 2-module, 374-kton fid. water Cherenkov detector
- 1 module: 40% PMT coverage w/double efficiency

Supernova signal in a water Cherenkov detector

Pointing in Water Cherenkov: Super-K

Neutron tagging in water Cherenkov detectors

$$\bar{\nu}_e + p \to e^+ + n \quad \blacksquare$$

detection of neutron tags event as *electron antineutrino*

- especially useful for DSNB (which has low signal/bg)
- also useful for disentangling flavor content of a burst

(improves pointing, and physics extraction)

R. Tomas et al., PRD68 (2003) 093013 KS, J.Phys.Conf.Ser. 309 (2011) 012028; LBNE collab arXiv:1110.6249 R. Laha & J. Beacom, PRD89 (2014) 063007

"Drug-free" neutron tagging

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

~200 μs thermalization & capture, observe Cherenkov radiation from γ Compton scatters

→ with SK-IV electronics,
~18% n tagging efficiency

SK collaboration, arXiv:1311.3738;

Enhanced performance by doping!

use gadolinium to capture neutrons

(like for scintillator)

J. Beacom & M. Vagins, PRL 93 (2004) 171101

Gd has a huge n capture cross-section: 49,000 barns, vs 0.3 b for free protons

http://snews.bnl.gov/snmovie.html

Long string water Cherenkov detectors

~kilometer long strings of PMTs in very clear water or ice (IceCube/PINGU, ANTARES)

Nominally multi-GeV energy threshold... but, may see burst of low energy \overline{v}_{e} 's as *coincident increase in single PMT count rates* (M_{eff}~ 0.7 kton/PMT)

IceCube collaboration, A&A 535, A109 (2011)

Map overall time structure of burst

L. Koepke talk

Scintillation detectors

Liquid scintillator (C_nH_{2n}) volume surrounded by photomultipliers

- few 100 events/kton (IBD)
- low threshold, good energy resolution
- little pointing capability (light is ~isotropic)

Current and near-future scintillator detectors

KamLAND (Japan) 1 kton

LVD (Italy) 1 kton

NOvA (USA) 14 kton

(on surface, but may be possible to extract counts for known burst)

+ reactor expts

Borexino (Italy) 0.33 kton

SNO+ (Canada) 1 kton

Future detector proposal

JUNO (China) 20 kton

Liquid argon time projection chambers

- fine-grained trackers
- no Cherenkov threshold
- high v_e cross section

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

MicroBooNE (USA) 0.2 kton

SBND

(USA)

երդակունություն

Cross sections in argon

Flavor composition as a function of time

Energy spectra integrated over time

For 40 kton @ 10 kpc, Garching model (no oscillations)

Note that the neutronization burst gets substantially suppressed with flavor transitions

Simple MSW assumption (assume OK at early times)

NMO: $F_{\nu_e} = F_{\nu_x}^0$ IMO: $F_{\nu_e} = \sin^2 \theta_{12} F_{\nu_e}^0 + \cos^2 \theta_{12} F_{\nu_x}^0$

(a robust mass ordering signature!)

"New" NC channel in argon $\nu + {}^{40}\text{Ar} \rightarrow \nu + {}^{40}\text{Ar}^*$ ${}^{40}\mathrm{Ar}^* \to 9.8 \mathrm{MeV} \gamma + {}^{40}\mathrm{Ar}$ Cross section calculation from A. Hayes SNOwGLoBES + LArSoft study by C. Nunez Nice # 1 10 Detector Wire # 2 signature: cluster of blips 10-4 Wire # 3 from Compton 10-5 10-6 scatters 10.7 60 70 80 90 10 Neutrino Energy (MeV) Clock ticks Events per 0.5 MeV 70 Total 60 Assuming drift correction from 50 40 photons, Preliminary 30 should be 20 observable in 10 the spectrum 10 20 30 40 50 60 80 90 100

70

Energy (MeV)

How well can we *tag* interaction channels in argon?

The final state can be complicated... some energy is lost

Modeling is improving, but still need nuclear theory help !

SNO ³He counters + 79 tons of Pb: ~1-40 events @ 10 kpc

J. Rumleskie talk

Coherent Elastic Neutrino Nucleus Scattering (CEvNS)

$$v_x + A \rightarrow v_x + A$$
 C. Horowitz et al., PRD68 (2003) 023005

High x-scn but *very* low recoil energy (10's of keV)

 \Rightarrow observable in dark matter detectors

handful of events per tonne
@ 10 kpc: sensitive to
all flavor components of the flux

Summary of supernova neutrino detectors

Galactic sensitivity

Extragalactic

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10^{6})	Running
Baksan	Scintillator	Russia	0.33	50	Running
HALO	Lead	Canada	0.079	20	Running
Daya Bay	Scintillator	China	0.33	100	Running
NOvA	Scintillator	USA	15	3000	Running
MicroBooNE	Liquid argon	USA	0.17	17	Running
SNO+	Scintillator	Canada	1	300	Under construction
DUNE	Liquid argon	USA	40	3000	Future
Hyper-K	Water	Japan	540	110,000	Future
JUNO	Scintillator	China	20	6000	Future
PINGU/GEN-2	Long string	South pole	(600)	(10 ⁶)	Future

plus reactor experiments, DM experiments...

For supernova neutrinos, the more the merrier!

Comment #1

Interactions with nuclei (cross sections & products) **very poorly understood**... sparse theory & experiment (*only* measurements at better than ~50% level are for ¹²C)

A. Bolozdynya et al., arXiv:1211.5199

Fluence at ~50 m from the stopped pion source amounts to ~ a supernova a day! (or 0.2 microsupernovae per pulse, 60 Hz of pulses)

e+/-

This is an excellent opportunity to study poorly understood neutrino-nucleus interactions in the supernova energy range

NIN measurement in SNS basement

Liquid scintillator surrounded by lead, iron (swappable for other NIN targets) inside water shield

COHERENT Non-CEvNS Detectors ("In-COHERENT")

Sandia Neutron Scatter Camera	Multiplane liquid scintillator	Neutron background	Deployed 2014-2016	
SciBath	WLS fiber + liquid scintillator	Neutron background	Deployed 2015	
Nal[TI]	Scintillating crystal	ν _e CC	High-threshold deployment summer 2016	
Lead Nube	Lead Nube Pb + liquid scintillator		Deployed 2016	
Iron Nube	Fe + liquid scintillator	NINs in iron	Deployed 2017	
MARS	Plastic scintillator and Gd sandwich	Neutron background	Under deployment	
Mini-HALO	Pb + NCDs	NINs in lead	In design	

And many more ideas and activities for Neutrino Alley and beyond...

- Inelastic CC and NC in Ar, Pb, ...
- Other crystal or scint deployments in CsI shield
- Flux normalization using D₂O (well known xscn)
- Ancillary measurements: QF
- Directional detectors
- ...

Comment #2:

we should be thinking about joint unfolding

We have tools (improving) to turn fluxes into estimated signals (individual experiment MC, SNOwGLoBES)

Neutrino fluxes vs E, t

Event rates vs E, t

Subdominant channels are in the mix, and not always easily taggable... how to disentangle?

Summary

Vast information to be had from a core-collapse burst!

- Need energy, flavor, time structure

Global detectors:

- currently ~Galactic sensitivity (SK reaches barely to Andromeda)
- sensitive mainly to the $\overline{\nu_e}$ component of the SN flux
- excellent timing from IceCube
- next generation: v_e + huge statistics

Future:

- we need to measure some x-scns!
- we need nuclear physics!
- we need to understand how to disentangle the truth fluxes

