Scintillator-based Detectors and Low Background Detectors

Shun Zhou (IHEP, Beijing)

Workshop on Supernova Neutrino Observations: What Can We Learn? What Should We Do? MITP, Mainz, 12.10.2017

Current & Future Scintillator-based Detectors

LVD, 1 kt

KamLAND, 1 kt

Borexino, 0.3 kt

Daya Bay, 0.16 kt

JUNO, 20 kt

MiniBooNE, 0.7 kt

Baksan, 0.33 kt

LENA, 50 kt

The JUNO Experiment

The JUNO Experiment

- 20 kiloton LS detector
- 3% energy resolution@ 1 MeV
- 700 m underground
- 18,000 20" +25,000 3" PMTs
- 53 km to the NPPs

	KamLAND	Borexino	JUNO
LS mass	1 kt	0.3 kt	20 kt
Energy Resolution	6%/√E	5%/√E	3%/√ E
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

3

JUNO Collaboration

Russia (3)

JINR Dubna

INR Moscow

MSU Moscow

Slovakia (1)

Comenius U

72 institutes 553 members

EUROPE(30)

Italy (8)

INFN Catania

INFN-Frascati

INFN-Ferrara

INFN-Milano

INFN-Bicocca

INFN-Padova

INFN-Perugia

INFN-Roma3

ASIA(37)

BNU

CQU

CIAE

U. of S. China

UNU

Thailand SUT Thailand CU Thailand NARIT Pakistan PINST

AMERICA (5)

PUCC Chile UTFSM Chile Maryland U (2 groups) **UEL Brazil**

B. Clerbaux @NuFact17

Armenia (1) **YPI Erevan** Belgium (1) **ULB Brussels** Czech (1) Charles U. Finland (1) U. Oulu France (6) **APC** Paris **CENBG** France **CPPM** Marseille **IPHC Strasbourg** LLR Paris Subatech Nantes Germany (7) FZ Julich **RWTH** Aachen **TUM Munich U** Hamburg **IKP FZI Jülich U** Mainz **U** Tuebingen Latvia (1)

IECS Riga

JUNO Timescale

SN Models & Neutrino Spectra

SN Neutrino Event Rates

SN Neutrinos @ LS Detectors

8

Reaction channel	Interaction type	Sensitive to	• Elastic v-p scatteri	ng important			
$\overline{ u}_e + p ightarrow e^+ + n$	СС	$\overline{ u}_e$	Advantage of LS: lo	ow threshold			
$oldsymbol{ u}+oldsymbol{p} ightarrowoldsymbol{ u}+oldsymbol{p} ightarrowoldsymbol{p}$	NC	$ u_x$	Beacom, Farr, Vogel, Pl	RD, 02;			
$ u + e^- ightarrow v + e^-$	CC+NC	ν_e	Dasgupta, Beacom, PRD, 11				
$\overline{\mathbf{v}}_{e}$ + ¹² C \rightarrow e^{+} + ¹² B	СС	$\overline{ u}_e$	Event spectra @ JUNO	KRJ-para. with			
(14.39 MeV, 20 ms)			Lu, Li, Zhou, PRD, 16	(12, 14, 16) MeV			
$ u_e + {}^{12}\text{C} \rightarrow e^- + {}^{12}\text{N} $ (17.34 MeV, 11 ms)	CC	ν_e		12 C NC, $E_v^{th} = 15.1 \text{ MeV}$			
$\mathbf{v} + {}^{12}\mathbf{C} \rightarrow \mathbf{v} + {}^{12}\mathbf{C}^*$	NC	$ u_{\chi}$	10^{-1}	$E_{\nu}^{\text{13}} \text{C NC}, \qquad \text{IBD}, E_{\nu}^{\text{th}} = 1.8 \Lambda_{e_{\nu}}$			
Natural abundance of ¹ Fukugita <i>et al</i> ., PLB, 90;	¹³ C is about 1.1% ; <mark>Suzuki <i>et al</i>., PR</mark>	E ^q qN/qE ^q	$10^{3} \qquad \qquad \overset{\nu_{\mathcal{P}}}{\underset{\text{v-e ES}}{\overset{\text{ES}}{=}}} \qquad \qquad E_{v}^{\text{th}} = 3.7 \text{ MeV}$	MeN			
Reaction channel	Interaction type	Sensitive to	10	14.4 MeV			
$\overline{\nu}_e + {}^{13}\mathbf{C} \rightarrow e^+ + {}^{13}\mathbf{B}$	CC	$\overline{\nu}_e$	$1 = \frac{1}{E_{\rm V}} = 17.3 \frac{Me}{128} \frac{1}{128} $				
v_e + ¹³ C $\rightarrow e^-$ + ¹³ N	CC	ν_e	0.1				
\mathbf{v} + ¹³ \mathbf{C} \rightarrow \mathbf{v} + ¹³ \mathbf{C} *	NC	$\boldsymbol{\nu}_{\chi}$	0.2 1 E _d [MeV	10 20 50 /]			

SN Neutrinos @ LS Detectors

9

Channel Type		-	Number of SN Neutrino Events at JUNO			Detection channels	ν Flavors	Efficiency	Backgrounds	Systematics		
Channel	тур	e	No Oscillations	Normal Ordering	Inverted Ordering	IBD	$\overline{ u}_e$	95%	None	Detection	2%	
$\overline{\nu}_e + p \rightarrow e^+ + n$	CC		4573	4775	5185	¹² C-CC	\overline{v} and v	90%	None	Detection	2%	
			1578	1578	1578		ν_e and ν_e	3070	None	Detection	270	
	FS	$ u_e$	107	354	278					Detection	2%	
$\nu + p \rightarrow \nu + p$	ĿЭ	$\overline{ u}_e$	179	214	292	$p \mathrm{ES}$	$\overline{\nu}_e, \nu_e \text{ and } \nu_x$, 99 %	$e \mathrm{ES}$	Cross section	20%	
		$ u_x$	1292	1010	1008					k_{B}	3%	
			314	316	316	$e \mathrm{ES}$	$\overline{\nu}_e, \nu_e \text{ and } \nu_x$	99%	13 N-CC+IBD+pES	Detection	2%	
$\nu_e + e \rightarrow \nu_e + e$	ES	$ u_e$	157	159	158			100%	e ES + IBD	Detection	2%	
	10	$\overline{ u}_e$	61	61	62	13 N-CC	$ u_e$			Cross sostion	2007	
		$ u_x$	96	96	96					Cross section	20%	
$\nu_e + {\rm ^{12}C} \rightarrow e^- + {\rm ^{12}N}$	CC		43	134	106	12C-NC	\overline{u} u and u	and $v = 100\%$	<i>e</i> FS+IBD	Detection	2%	
$\overline{\overline{\nu}_e + {}^{12}\mathrm{C}} \rightarrow e^+ + {}^{12}\mathrm{B}$	CC		86	98	126		ν_e, ν_e and ν_x	10070		Cross section	20%	
			352	352	352	13 C N C	_ 1	$_e, \nu_e \text{ and } \nu_x = 100\%$	100% $eES+IBD$	Detection	2%	
$u \pm {}^{12}C \rightarrow u \pm {}^{12}C^*$	NC	$ u_e$	27	76	61	¹⁵ C-NC	ν_e, ν_e and ν_x			Cross section	20%	
$\nu + 0 \rightarrow \nu + 0$	NO	$\overline{ u}_e$	43	50	65	• IBD for \overline{v}	+ sub-	leadin	a effects fro	om ¹² C C		
		$ u_x$	282	226	226		e Sub	icuum	g chects ht			
$\nu_e + {\rm ^{13}C} \rightarrow e^- + {\rm ^{13}N}$	CC		19	29	26	• Elastic v-	e scatte	ring fo	or v_e + ¹² C C	C		
		$3/2^{-}(5/2^{-})$) 23(15)	23(15)	23(15)	• Flastic v-	n scatte	rina fa	or $v_{\rm e}$ + eFS			
130 130*	NC	$ u_e$	3(1)	4(3)	4(2)		p scatte					
$\nu + \cdots = \nu + \cdots = \nu$	ne	$\overline{ u}_e$	3(2)	4(2)	4(3)	• A global	A global analysis of all reaction channels?					
		$ u_x$	17(12)	15(10)	15(10)	¹⁵⁽¹⁰⁾ Laha <i>et al.</i> , 1412.8425: Lu <i>et al.</i> , PRD, 2016						

SN Neutrinos @ LS Detectors

Test of Energy Equipartition Hypothesis

Including only the MSW matter effects in the SN

Lu, Li, Zhou *et al.*, PRD, 2016

8.0

1.0

0.0

Total Gravitational Binding Energy

• Conservatively assuming an uncertainty of 20% for the ν-p cross section (a few% ?)

• Possible to relax the constraint on the spectral index (important for <E>, not for E_{tot}?)

Unfolding of SN Neutrino Spectra

Dasgupta, Beacom, PRD, 11 Li², Wen, Zhou, 17, to appear luence [cm⁻²MeV @10 kpc 10**Reconstruct all SN spectra in** True spectrum Fluence $dF_{v_x^{-1}}/dE [10^9 cm^{-2} MeV^{-1}]$ $\langle E_{v_v} \rangle = 19 \text{ MeV}$ a single LS detector (JUNO) MB, $\langle E_{v_v} \rangle = 18 \text{ MeV}$ Full consideration of detector $\mathcal{E}_{v_v} = 5\%$ more response (e.g., E resolution) Reconstruction • SVD w. proper regularizations -10F**@LENA** 35 40 45 50 55 25 30 20 60 **@1 kpc** cm⁻²MeV $\times 10^{12}$ fluence [cm⁻²MeV⁻ @0.2 kpc 0.8 0.6 0.6 0.5 Residual 0.4 100.2 0.0 -0.5 30 50 60 70 80 202030 55 25 30 20 35 45 50 55 40 Neutrino Energy E [MeV] E_v [MeV] E_{v} [MeV]

Elastic v-p Scattering in LS Detectors

Beacom, Farr, Vogel, PRD, 02; Dasgupta, Beacom, PRD, 11; Lu, Li, Zhou, PRD, 16; Li et al., to appear

Quenching effects on the proton recoil energy $T_p \le 2 E^2/m_p$

Elastic v-p scattering important

Borexino & JUNO: Radioactivity Backgrounds

A wonderful experience with Borexino

Isotope	Specification for LS	Achieved after filling (2007 - 2010)	After additional purification
²³⁸ U	$\leq 10^{-16} \text{ g/g}$	$(5.3 \pm 0.5) \cdot 10^{-18} \text{ g/g}$	$< 0.8 \cdot 10^{-19} \text{ g/g}$
²³² Th	$\leq 10^{-16} \text{ g/g}$	$(3.8 \pm 0.8) \cdot 10^{-18} \text{ g/g}$	$< 1.2 \cdot 10^{-18} \text{ g/g}$
¹⁴ C/ ¹² C	≤ 10 ⁻¹⁸	$(2.69 \pm 0.06) \cdot 10^{-18} \text{ g/g}$	unchanged
⁴⁰ K	$\leq 10^{-18} \text{ g/g}$	$\leq 0.4 \cdot 10^{-18} \text{ g/g}$	unchanged
⁸⁵ Kr	$\leq 1 \text{ cpd}/100 \text{ t}$	$(30 \pm 5) \text{ cpd}/100 \text{ t}$	≤ 5 cpd/100 t
³⁹ Ar	$\leq 1 \text{ cpd}/100 \text{ t}$	<< ⁸⁵ Kr	<< ⁸⁵ Kr
²¹⁰ Po	not specified	~ (70) 1 dpd/100 t	unchanged
²¹⁰ Bi	not specified	(20) 70 dpd/100 t	(20 ± 5) cpd/100 t

Signals and Background for Reactor Neutrinos @JUNO

Selection	IBD efficiency	IBD	Geo-vs	Accidental	⁹ Li/ ⁸ He	Fast n	(α,n)
-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4		77	0.1	0.05
Energy cut	97.8%			410			
Time cut	99.1%	73	1.3		71	(non	dava
Vertex cut	98.7%			1.1		(per	day)
Muon veto	83%	60	1.1	0.9	1.6		
Combined	73%	60	3.8				

Background > 0.2 MeV for SN @ 10 kpc

Channel	R	eactor	Geo-Neutrino			
IBD (10 s)	0.01		0.0002			
Channel		⁸⁵ Kr		²¹⁰ Bi (²¹⁰ Pb)		
ePS (10 s)		10		70		

Beta decays of ¹⁴C dominate < 0.2 MeV

JUNO: SN Neutrino Trigger

Request for the DAQ @ JUNO

A slide from L.J. Wen (in JUNO Collaboration)

Further Discussions

- Difficult to have a detector solely for the detection of SN neutrino burst, since we do not know when and where a star will explode (strong motivations from important physics?).
- Give the priority to DSNB (a topic for tomorrow), a guaranteed source of SN neutrinos. We have SK with Gd doping, but JUNO (available within 3 years) also has a good chance.

Syst. uncertainty BG	J.	5 %	20%		
$\langle E_{\bar{\nu}_{e}} \rangle$	rate only	spectral fit	rate only	spectral fit	
$12\mathrm{MeV}$	2.3σ	2.5σ	2.0σ	2.3σ	
$15{ m MeV}$	3.5σ	3.7σ	3.2σ	3.3σ	
$18{ m MeV}$	4.6σ	4.8σ	4.1σ	4.3σ	
$21{ m MeV}$	5.5σ	5.8σ	4.9σ	5.1σ	

Neutrino Physics with JUNO, JPG, 16

- Fine with detectors, which take SN neutrino detection as a second physics goal. For JUNO, neutrino mass ordering fixed within 6 yrs, precision measurements <1% within 3yrs. Then, what we should do with JUNO? (Neutrinoless Double-Beta Decays? Solar or SN neutrinos?)
- Dark matter detectors, which will never see any signals of DM, could be further used as SN neutrino detectors?