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EQUATIONS OF MOTION FOR A DENSE NEUTRINO GAS

Otop,x T Vp - VxOpx + P Opx = —i[ﬂp,m Qp,X]

Liouville operator Hamiltonian

Oropx —  Explicit time evolution

Vp - VxOpx Drift term due to space inhomogeneities

p-Vpopx —— Force term acting on neutrinos
o (negligible)
QP,X - Qvac T Qmatt + vi

7-dimensional problem never solved 1n its complete form. Symmetries have been used
to reduce the complexity of the problem.



TIME HOMOGENEITY

% +Vp .prp,x = _i[gp,x’ pp,x]

Stationary space evolution (SN neutrinos)

Numerical approach typically based on the so called “Bulb Model”

Further simplification: pure radial dynamics —>  vp - Vx — v, d/dr

Many numerical investigations were possible within this model



ATTEMPT BEYOND THE “BULB MODEL”

Validity of bulb model recently questioned removing some of the symmetries...

=P ncw Instabilities can be triggered 1n the flavor evolutions

MAA instability

é){al symmetry in v propag. — breaking of the spherical symmetry after the onset of
oscillations. Matter effects can suppress this effects

Raffelt, Sarikas & Seixas, 1305.7140; Duan, 1309.7377,
Chackraborty & Mirizzi 1308.5255;
Chackraborty, Mirizzi, Saviano and Seixas, 1402.1767 ...

Breaking of space-time symmetries by self-intercating v

Translational syarmetry in time  Mangano, Mirizzi, Saviano, 1403.1892

/LH/ Dasgupta & Mirizzi, 1509.03171...

Translation mmetry in space Duan & Shalgar, 1412.7097; Mirizzi, Mangano, Saviano, 1503.03485,
Mirizzi, 1506.06805,; Chakraborty, Hansen, Izaguirre , Raffelt, 1507.07569



SPACE INHOMOGENEITIES: EoM FOR THE 2D MODEL

v evolving in the plane (x,z) emitted from an infinite plane at z=0,
in only two directions (L and R). Excess of v, over v, (=a)

VC:(UCa()aUZ) (¢ =L, R)
0 < v, <1

For the L mode: (analogous for the R mode: L <—> R symmetry )

v - VxPr(z,2) = [+wB+ puDg(x,2)] x Pr(x,2)

ve - VxPr(z,z) = |[—wB+ uDg(z, 2)] X Pr(z, 2)
: zati Drr=Prgr—P
P, = E(1 +P-0) Two-flavor polarization vectors LR —VFLR L.R
Am’ S
Ww=— Vacuum oscillation frequency
2F
B-é, =—cosf Mass eigenstate direction 1n flavor space

1w=vV2Gp|F ,96 — F ,Qm](l — VI -VR) wv-v potential (FO flux at the boundary)



SOLVING THE PROBLEM IN FOURIER SPACE

The partial differential equations can be transformed into a tower of ordinary
differential equations for the Fourier modes coupled through the interaction term

+-00 .
PL(R),k(Z) :/ dx PL(R)(.CC,Z)EB_ka

— OO




SOLVING THE PROBLEM IN FOURIER SPACE

The partial differential equations can be transformed into a tower of ordinary
differential equations for the Fourier modes coupled through the interaction term

— OO

—+ o0
PL(R),k(Z) :/ dx PL(R)(Q%Z)6

—ikx

We assume a monochromatic perturbation (with wave-number ky=2m/A,) 1n the

translational symmetry along x at z=0 :

Pf)R(x, 0) = <P§’R(x, 0)) 4 € cos(kox)

7 N

unperturbed value ~ Perturbation (e < 1)

P} p(x,0) = Pf p(x,0) =0

pure flavour state



SOLVING THE PROBLEM IN FOURIER SPACE

The partial differential equations can be transformed into a tower of ordinary
differential equations for the Fourier modes coupled through the interaction term

+00 .
PL(R),k(Z) :/ dx PL(R)(.CC,Z)EB_ka

— OO

We assume a monochromatic perturbation (with wave-number ky=2m/A,) 1n the
translational symmetry along x at z=0 :

PZ%,R(xv O) — <PZ%,R(:E7 O)> T+ ECO\S(/{()CE) PI%,R('% O) — PI%,R(xv O) =0

/ x fl tat
unperturbed value  Perturbation (e < 1) purc Iavour state

Non-linear interaction:

+00
d
UZEPL,n(z) = —iurk,Prn+wBxPr, * # Z Drn—j X PLj
J=—00
400 kn — ’n/k()

Solution in real space by inverse Fourier transform P (x , Z ) = f dkPk ( Z)e ihox
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2D FLAVOR EVOLUTION IN THE PLANE

AXIAL < L-R
N I

SPHERICAL <= TRANSLATIONAL

TRANSLATIONAL

ok S
| T N

[

Evolution uniform in the x direction.

0.6

Coherent behavior along x direction.




2D FLAVOR EVOLUTION IN THE PLANE

AXIAL < L-R
SPHERICAL < TRANSLATIONAL

y(

Pee TRANSLATIONAL

ceoppoPo0
| T N

[

Evolution uniform in the x direction.

0.6

Coherent behavior along x direction.

}A =10, w =1, a = 0.3 ko = 0.2,/ 2wu

TRANsy(fIONAL (€ = 0.01)
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Large variations in the x direction at Pee
smaller and smaller scales.
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Planes of common phase broken.

Coherent behavior of oscillation lost.



LEPTON NUMBER

Map of L,

Large space variations of
the initial v-v asymmetry a

O 0.1 0.2 0.3 C.4 0.5 0.6 0.7 0.8 0.9 1

X [21/K,]
TRANS}A%ION AL - L, shows a non-trivial domain structure
with different net lepton number flux

Lepton current L' =(L,,L) Continuity equation

Lo = Dr-B+Dr-B, wp Lo+ Vi L=ViL=0
L = v.(Dz-B)+vgr(Dgr-B)



GROWTH OF FOURIER MODES

Evolution of different Fourier modes
in the plane n-z

0 lOO 200 300 400 500 6OO
n

Growth of n > 0 modes 1n Fourier space.
TRANSLATIONAL Cascade process. Flavor wave diffuses to

higher harmonics (smaller scales)



ANALOGY WITH A TURBULENT FLUID

: A Qee,L‘AfL - Qee,R‘AfR . dx o <Ve>x 3
v, average velocity: (Ve)x = v, streamlines —— = AN Fe x
e/ X

4+
Oee, L Oce,R L2 f
LO K%

8 i8S
i
TRAN%TIONAL: (Ve )x starts to acquire a transverse  * ¢ El\% 2

Symmetry unbroken: (Ve)x ~Uz

A\

component in the x direction 4

Streamlines 1rregular, no longer || z and large variations - T

fluid streamlines
flow direction

laniinar  trbulent > Analogy between the behaviour of v gas in this model and
- NP4 the behaviour of a streaming fluid:

transition btw the coherent — incoherent behaviour of the v
. oscillations
&

. transition btw the laminar — turbulent behaviour of a fluid.
(Non-linear Navier-Stokes equations)




OPEN ISSUES

How to get from toy models to real SNe?

(Neutrino momentum distribution not limited to "outward" direction; Important "halo" flux even at large
distance; Large 3 D effects (in toy model symmetric boundary 1s assumed)

Which is the outcome of self-induced flavor conversions?

( Probably spectral swaps and splits are possible only in bulb model; Is flavor decoherence generic in the
presence of inhomogeneities?)

Which is the experimental strategy to test this possible outcome?

(Till now most of pheno studies focussed on signatures of swaps and splits.

Still lacking studies on how to test the flavor equilibrium, i.e. equal nu flavor fluxes)

Which is the impact on SN physics?

( Are possible self-induced flavor conversions below the shock-wave?, If yes, does it help the shock
revival? How to test in schematic way in SN simulations?)



Thank You



Spatial Symmetry Breaking (SSB)

_ . < _ Linearized stability analysis for
:" - :e colliding-beam model
) : Duan & Shalgar, arXiv:1412.7097
a=0.5 K™ [y

* Instability footprint shifted
to larger neutrino density p
for larger wave number k

* For any neutrino density,
unstable for some k-range

* No flavor-stable conditions
exist for homogeneous
neutrino gas
(no “sleeping top” regime)

\ Wave number

0 20 40 60 80 100
plw

Effective neutrino density

From Georg’s presentation



Small-Scale Instabilities

p(km™)
10° 102 10 1 0.1
' 4 . --\- ™ rl"-- ™ F'L' ™ F"-- ™ 2 Ly
104 Sh6Ck\ = = T b
wave S, S o

N
~
~
~

* Small-scale modes “fill in”
the stability footprint -
for large neutrino density

* Largest-scale mode is
“most dangerous” to
cross SN density profile 0.1

50 100 300 500 1000
r (km)

Chakraborty, Hansen, lzaguirre & Raffelt,

From Georg’s presentation



MULTI-ANGLE CASE

With respect to the model considered before we assume o =1, . . . N neutrino emission modes labeled in terms
of the velocities Vo, = (Vz.0, 0,0 o) , whose components are  Vz,o = C0sU, and v, o = sinv,

Modification with respect to the single-angle case:

1.1
Flavor equilibrium with U..(x,z) = 0.5 across the plane. .
-y L Pee ¢
The flavor variations along the x direction are smoothed =S o
0.5
with respect to the single-angle case being at most ~ 20% 0 s
Multi-angle decoherence 8
0
0.4
s 10 x [2:/k,]
Z 16 18 20
Spatial variation of Lo reduced Number of excited Fourier modes reduced
20 0.7 reason: when the decoherence quickly starts the length of IP(Ql is significantly
18 0.6 shortened, reducing the growth of the higher order harmonics
16 log.q P,
14 20 ¢ L0 0
17 ig -0.5
-1
z10 14 15
° 12 | 2
° z10 25
4 8 ; 3
: 6 a5
0 -0. 4 ; -4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 s
x [2m/k,] o




