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EQUATIONS OF MOTION FOR A DENSE NEUTRINO GAS

Explicit time evolution

Drift term due to space inhomogeneities

Force term acting on neutrinos 
(negligible) 

7-dimensional problem never solved in its complete form. Symmetries have been used 
to reduce the complexity of the problem.
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The most general case of self-induced neutrino flavor evolution is described by a set of kinetic
equations for a dense neutrino gas evolving both in space and time. Solutions of these equations
have been typically worked out assuming that either the time (in the core-collapse supernova envi-
ronment) or space (in the early universe) homogeneity in the initial conditions is preserved through
the evolution. In these cases one can gauge away the homogeneous variable and reduce the dimen-
sionality of the problem. In this paper we investigate if small deviations from an initial postulated
homogeneity can be amplified by the interacting neutrino gas, leading to a new flavor instability.
To this end, we consider a simple two flavor isotropic neutrino gas evolving in time, and initially
composed by only νe and ν̄e with equal densities. In the homogeneous case, this system shows a bi-
modal instability in the inverted mass hierarchy scheme, leading to the well studied flavor pendulum
behavior. This would lead to periodic pair conversions νeν̄e ↔ νxν̄x. To break space homogeneity,
we introduce small amplitude space-dependent perturbations in the matter potential. By Fourier
transforming the equations of motion with respect to the space coordinate, we then numerically solve
a set of coupled equations for the different Fourier modes. We find that even for arbitrarily tiny
inhomogeneities, the system evolution runs away from the stable pendulum behavior: the different
modes are excited and the space-averaged ensemble evolves towards flavor equilibrium. We finally
comment on the role of a time decaying neutrino background density in weakening these results.

PACS numbers: 14.60.Pq, 97.60.Bw

I. INTRODUCTION

Neutrino–neutrino interactions in dense neutrino me-
dia are known to produce surprising flavor oscillation ef-
fects, in the form of self-induced conversions, when the
typical neutrino self-interaction potential µ =

√
2GFnν

is comparable with or greater than the vacuum oscilla-
tion frequency ω = ∆m2/2E (see e.g. [1] for a recent re-
view). This situation can be encountered in the early uni-
verse or in core-collapse supernovae (SN), where neutrino
themselves form a background medium for their propa-
gation. Differently from the usual Mykheyeev-Smirnov-
Wolfenstein (MSW) effect [2], associated with the mat-
ter potential λ =

√
2GFne, the self-induced effects do

not change the flavor content of the neutrino ensemble.
Yet, the flavor is exchanged between different momen-
tum modes, leading to peculiar spectral features known
as spectral swap and split [3].

The growth of these effects is associated with insta-
bilities in the flavor space, which are amplified by the
neutrino-neutrino interactions [4, 5]. An example is rep-
resented by the bimodal instability [6] of an isotropic
and homogeneous dense gas of neutrinos and antineutri-
nos in equal amounts. They convert from one flavor to
another in pair production processes νeν̄e ↔ νxν̄x, be-
having as a flavor pendulum even if the mixing angle is
very small [7, 8]. In this case, the vacuum mixing an-
gle acts as a seed triggering the flavor instability. In
non-isotropic neutrino gases, like the case of neutrinos

streaming-off a SN core, the features of the self-induced
effects are more involved, since the current-current na-
ture of the low-energy weak interactions introduces an
angle dependent term (1 − vp · vq), where vp and vq

are neutrino velocities [9, 10]. It has been shown that
this term can lead to a multi-angle instability, which hin-
der the maintenance of the coherent oscillation behavior
for different neutrino modes [10–12]. In particular, in a
symmetric gas of equal neutrino and antineutrino densi-
ties even a very small anisotropy is sufficient to trigger
a run-away towards flavor equipartition [13]. An addi-
tional instability has been recently discovered in the SN
context. Removing the assumption of axial symmetry
in the ν propagation, a multi-azimuthal-angle instability
emerges, even assuming a perfect spherically symmetric
ν emission [14–19].
Symmetries in the neutrino self-induced evolution are

often assumed in order to reduce the complexity of the
problem. Nevertheless, these recent findings question the
validity of these assumptions, since they suggest that (un-
avoidable) small deviations from initial symmetries could
be dramatically amplified by the interacting neutrinos
during the evolution. In absence of collisions, the dy-
namics of the ν space-dependent occupation numbers or
Wigner function ϱp,x(t) with momentum p at position x
is ruled by the kinetic equations [20, 21]

∂tϱp,x + vp ·∇xϱp,x + ṗ ·∇pϱp,x
= −i[Ωp,x, ϱp,x] , (1)
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I. INTRODUCTION

Neutrino–neutrino interactions in dense neutrino me-
dia are known to produce surprising flavor oscillation ef-
fects, in the form of self-induced conversions, when the
typical neutrino self-interaction potential µ =

√
2GFnν

is comparable with or greater than the vacuum oscilla-
tion frequency ω = ∆m2/2E (see e.g. [1] for a recent re-
view). This situation can be encountered in the early uni-
verse or in core-collapse supernovae (SN), where neutrino
themselves form a background medium for their propa-
gation. Differently from the usual Mykheyeev-Smirnov-
Wolfenstein (MSW) effect [2], associated with the mat-
ter potential λ =

√
2GFne, the self-induced effects do

not change the flavor content of the neutrino ensemble.
Yet, the flavor is exchanged between different momen-
tum modes, leading to peculiar spectral features known
as spectral swap and split [3].

The growth of these effects is associated with insta-
bilities in the flavor space, which are amplified by the
neutrino-neutrino interactions [4, 5]. An example is rep-
resented by the bimodal instability [6] of an isotropic
and homogeneous dense gas of neutrinos and antineutri-
nos in equal amounts. They convert from one flavor to
another in pair production processes νeν̄e ↔ νxν̄x, be-
having as a flavor pendulum even if the mixing angle is
very small [7, 8]. In this case, the vacuum mixing an-
gle acts as a seed triggering the flavor instability. In
non-isotropic neutrino gases, like the case of neutrinos

streaming-off a SN core, the features of the self-induced
effects are more involved, since the current-current na-
ture of the low-energy weak interactions introduces an
angle dependent term (1 − vp · vq), where vp and vq

are neutrino velocities [9, 10]. It has been shown that
this term can lead to a multi-angle instability, which hin-
der the maintenance of the coherent oscillation behavior
for different neutrino modes [10–12]. In particular, in a
symmetric gas of equal neutrino and antineutrino densi-
ties even a very small anisotropy is sufficient to trigger
a run-away towards flavor equipartition [13]. An addi-
tional instability has been recently discovered in the SN
context. Removing the assumption of axial symmetry
in the ν propagation, a multi-azimuthal-angle instability
emerges, even assuming a perfect spherically symmetric
ν emission [14–19].
Symmetries in the neutrino self-induced evolution are

often assumed in order to reduce the complexity of the
problem. Nevertheless, these recent findings question the
validity of these assumptions, since they suggest that (un-
avoidable) small deviations from initial symmetries could
be dramatically amplified by the interacting neutrinos
during the evolution. In absence of collisions, the dy-
namics of the ν space-dependent occupation numbers or
Wigner function ϱp,x(t) with momentum p at position x
is ruled by the kinetic equations [20, 21]

∂tϱp,x + vp ·∇xϱp,x + ṗ ·∇pϱp,x
= −i[Ωp,x, ϱp,x] , (1)

Liouville operator Hamiltonian

ννΩ+Ω+Ω=Ω mattvacxp,
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Stationary space evolution (SN neutrinos) 

Numerical approach typically based on the so called “Bulb Model”
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We consider a simplified model for self-induced flavor conversions of a dense neutrino gas in two
dimensions, showing new solutions that spontaneously break the spatial symmetries of the initial
conditions. As a result of the symmetry breaking induced by the neutrino-neutrino interactions,
the coherent behavior of the neutrino gas becomes unstable. This instability produces large spatial
variations in the flavor content of the ensemble. Furthermore, it also leads to the creation of domains
of different net lepton number flux. The transition of the neutrino gas from a coherent to incoherent
behavior shows an intriguing analogy with a streaming flow changing from laminar to turbulent
regime. These finding would be relevant for the self-induced conversions of neutrinos streaming-off
a supernova core.

PACS numbers: 14.60.Pq, 97.60.Bw

I. INTRODUCTION

Neutrino-neutrino interactions in dense neutrino gases
provide a refractive term leading to a non-linear feed-
back in the flavor evolution, when the neutrino interac-
tion potential µ ∼

√
2GFnν is comparable or larger than

the neutrino vacuum oscillation frequency ω = ∆m2/2E.
This effect can lead to a collective behavior of the dense
neutrino ensemble (see [1] for a recent review). Remark-
ably, almost a decade ago it was realized that neutrino-
neutrino interactions dominate the flavor evolution in the
deepest core–collapse supernova (SN) regions producing
self-induced flavor conversions [2–4]. The most important
observable consequence of this type of flavor transitions
would be the swap of the SN νe and ν̄e spectra with that
of non-electron flavor νx and ν̄x in certain energy inter-
vals [5].
Characterizing the SN neutrino flavor dynamics

amounts to follow the spatial evolution of the neutrino
fluxes. For a stationary neutrino emission, the kinetic
equations of the ν space-dependent occupation numbers
ϱp,x with momentum p at position x are [6, 7]

vp ·∇x ϱp,x = −i[Ωp,x, ϱp,x] , (1)

with the Liouville operator in the left-hand side. Ne-
glecting external forces and an explicit time dependence
of the occupation numbers, this operator represents the
drift term proportional to the neutrino velocity vp, due
to particle free streaming. On the right-hand-side the
matrix Ωp,x is the full Hamiltonian containing the vac-
uum, matter and self-interaction terms. In particular, in
non-isotropic neutrino gases, like the case of neutrinos
streaming-off a SN core, the neutrino-neutrino interac-
tion term contains multi-angle effects since the current-
current nature of the low-energy weak interactions intro-

duces an angle dependent term (1−vp ·vq) between two
interacting neutrino modes [2, 8]. This term produces a
net current so that test neutrinos moving in different di-
rections would experience different refractive index. This
in some cases challenges the collective behavior of the fla-
vor evolution observed in an isotropic case, leading to fla-
vor decoherence [9–11]. Multi-angle effects can also lead
to a trajectory-dependent matter term, which if strong
enough suppresses the self-induced conversions [12, 13].

The multi-angle flavor evolution described by the par-
tial differential equations (1) has never been solved
till now in its full complexity. Instead, numerical ap-
proaches have been typically based on the so-called “bulb
model” [2, 4, 11], where it is assumed a spherical sym-
metry about the center of the SN and azimuthal sym-
metry about any radial direction. In this limit Eq. (1)
reduces to an ordinary differential equation problem,
projecting the evolution along the radial direction, i.e.
vp ·∇x → vr d/dr.

Attempts to go beyond the bulb model have been pro-
posed. For example, in [14] it was shown that assuming
that the neutrino ensemble displays self-maintained co-
herence, the problem for generic geometries can be re-
duced to a one-dimensional case along the streamlines
of the overall neutrino flux. However, the existence of a
self-consistent coherent solution does not imply its sta-
bility. Indeed, it has been recently realized that insta-
bilities may grow once one relaxes some symmetries of
the bulb model, since neutrino-neutrino interactions can
lead to spontaneous symmetry breaking effects. In [10] it
was shown that perturbing the symmetry of the initial
neutrino angular distributions one would find a speed-
up in the flavor exchange. Moreover, removing the as-
sumption of axial symmetry in the ν multi-angle term,
a multi-azimuthal-angle instability has been discovered,

Further simplification:  pure radial dynamics —> 

Many numerical investigations were possible within this model



ATTEMPT BEYOND THE “BULB MODEL”

Validity of  bulb model recently questioned removing some of the symmetries…

new  instabilities can be triggered in the flavor evolutions

Axial  symmetry in ν propag. → breaking of the spherical symmetry after the onset of 
oscillations. Matter effects can suppress this effects
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Translational symmetry in time 

Translational symmetry in space 
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even assuming a perfect spherically symmetric ν emis-
sion [15–19]. Furthermore, also space and time homo-
geneity can be broken in a dense neutrino gas, so that it
is not guaranteed that a quasi-stationary neutrino emis-
sion would lead to a stationary solution [20]. Finally,
with a simple toy model it has been recently shown, by
means of a stability analysis of the linearized equations of
motion, that self-induced oscillations can spontaneously
break spatial symmetries [21]. All these findings suggest
that the validity of the bulb model should be critically
reconsidered and that a self-consistent solution of the SN
neutrino flavor evolution can only be achieved by solving
the complete multi-dimensional problem of Eq. (1).
As a further step in clarifying this issue we consider

here the two-dimensional toy model discussed in [21],
i.e. monochromatic neutrino streams emitted in a sta-
tionary way in two directions from an infinite boundary
plane at z = 0 with periodic conditions on x and trans-
lation invariance along the y direction. We assume a
small perturbation for the initial symmetries of the fla-
vor content in both the two emission modes and along
the boundary in the x direction. Despite of its sim-
plicity, this model with perturbed symmetries exhibits
a rich phenomenology. Indeed, solving numerically the
flavor evolution we find that the initial small perturba-
tions are amplified by neutrino interactions, leading to
non-trivial two-dimensional structures in the oscillation
pattern that exhibits large space fluctuations. Any par-
ticular solution which is required to satisfy initial sym-
metries at the boundary is thus, unstable, confirming the
results of [21]. We will show that the neutrino flux tran-
sition from a coherent to incoherent behavior resembles
quite closely the transition from a laminar to turbulent
regime of a streaming flow. This issue will be studied in
more details elsewhere. Finally, also the lepton number
flux would develop a domain structure.

II. A TWO-DIMENSIONAL MODEL

As in [21], neutrinos are emitted from an infinite plane
at z = 0, in two directions

v̂ζ = (vζ , 0, vz) (ζ = L,R) , (2)

where 0 < vz < 1 and vR = −vL =
√

1− v2z . The
flavor evolution occurs for z > 0 in the two-dimensional
plane spanned by the x and z coordinates. We consider
a two-flavor (νe, νx) neutrino ensemble. Expanding all
quantities of Eq. (1) in terms of Pauli matrices σ, one
gets the equations for the L mode

v̂L ·∇xPL(x, z) = [+ωB+ µDR(x, z)]× PL(x, z) ,

v̂L ·∇xPL(x, z) = [−ωB+ µDR(x, z)]× PL(x, z) ,(3)

with ω = ∆m2/2E the vacuum oscillation frequency.
The equations from the R mode can be obtained from
the previous ones using the L ↔ R symmetry.

The sans-serif in Eq. (3) indicates three-dimensional
vectors in flavor space, e.g. B = (B1, B2, B3). The dif-
ferential operator at left-hand-side reads

v̂L ·∇x = vL∂x + vz∂z . (4)

The PL,R (PL,R) functions are the neutrino (antineu-
trino) polarization vectors in flavor space for the L,R
modes, defined from the occupation numbers as in [11],
i.e. ϱL,R = 1/2[Fνe + Fνx + (Fν̄e − Fν̄x)PL,R · σ] and
ϱL,R = 1/2[Fν̄e + Fν̄x + (Fν̄e − Fν̄x)PL,R · σ], where Fν

are the total neutrino fluxes of the different species. We
define as usual DL,R = PL,R − PL,R. The unit vector B
points in the mass eigenstate direction in flavor space,
such that B · e3 = − cos θ, where θ is the vacuum mixing
angle. For simplicity we neglect a possible matter effect,
assuming that its only role would be to reduce the ef-
fective in-medium mixing angle, θ ≪ 1 [3]. Finally, the
neutrino self-interaction term is given by [11]

µ =
√
2GF [F

0
ν̄e − F 0

ν̄x ](1− v̂L · v̂R) , (5)

expressed in terms of the antineutrino fluxes F 0
ν̄ at

the boundary. Since in our model the neutrino tra-
jectories intersect at a fixed angle, the previous equa-
tion would correspond to the “single-angle” approxima-
tion [9]. Therefore, multi-angle effects do not play a role
in this case.
One can define a conserved “lepton current” Lµ =

(L0,L) whose components are (see [22])

L0 = DL · B+ DR · B , (6)

L = v̂L(DL · B) + v̂R(DR · B) , (7)

where L is a two-dimensional vector in the (x, z) plane,

and DL,R · B ≃ P 3
L,R − P

3
L,R. In the following we will

normalize Lµ to the number of modes NL,R = 2. It is
straightforward to show from Eq. (3) that L satisfies a
continuity equation

∂tL0 +∇x · L = ∇x · L = 0 , (8)

where first equality follows from the assumption of a sta-
tionary solution. Eq. (8) generalizes the lepton-number
conservation law of the one dimensional case [3].
As first exploited in [20] (see also [21]) in the context of

multi-dimensional neutrino oscillations, the partial differ-
ential equation problem like of Eq. (3) can be reduced to
a tower of ordinary differential equations for the Fourier
modes defined as

PL(R),k(z) =

∫ +∞

−∞

dx PL(R)(x, z)e
−ikx , (9)

and similarly for the antineutrino polarization vectors
PL,R. In the following, for simplicity we will consider
a monochromatic perturbation in the x direction for
the neutrino polarization vectors at the boundary at

For the L mode: (analogous for the R mode: L <—> R symmetry )

)1(
2
1

σρ ⋅+= Pp Two-flavor polarization vectors

E
m
2

2Δ
=ω Vacuum oscillation frequency

θcosˆ3 −=⋅eB Mass eigenstate direction in flavor space
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means of a stability analysis of the linearized equations of
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break spatial symmetries [21]. All these findings suggest
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vor content in both the two emission modes and along
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even assuming a perfect spherically symmetric ν emis-
sion [15–19]. Furthermore, also space and time homo-
geneity can be broken in a dense neutrino gas, so that it
is not guaranteed that a quasi-stationary neutrino emis-
sion would lead to a stationary solution [20]. Finally,
with a simple toy model it has been recently shown, by
means of a stability analysis of the linearized equations of
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break spatial symmetries [21]. All these findings suggest
that the validity of the bulb model should be critically
reconsidered and that a self-consistent solution of the SN
neutrino flavor evolution can only be achieved by solving
the complete multi-dimensional problem of Eq. (1).
As a further step in clarifying this issue we consider

here the two-dimensional toy model discussed in [21],
i.e. monochromatic neutrino streams emitted in a sta-
tionary way in two directions from an infinite boundary
plane at z = 0 with periodic conditions on x and trans-
lation invariance along the y direction. We assume a
small perturbation for the initial symmetries of the fla-
vor content in both the two emission modes and along
the boundary in the x direction. Despite of its sim-
plicity, this model with perturbed symmetries exhibits
a rich phenomenology. Indeed, solving numerically the
flavor evolution we find that the initial small perturba-
tions are amplified by neutrino interactions, leading to
non-trivial two-dimensional structures in the oscillation
pattern that exhibits large space fluctuations. Any par-
ticular solution which is required to satisfy initial sym-
metries at the boundary is thus, unstable, confirming the
results of [21]. We will show that the neutrino flux tran-
sition from a coherent to incoherent behavior resembles
quite closely the transition from a laminar to turbulent
regime of a streaming flow. This issue will be studied in
more details elsewhere. Finally, also the lepton number
flux would develop a domain structure.

II. A TWO-DIMENSIONAL MODEL

As in [21], neutrinos are emitted from an infinite plane
at z = 0, in two directions

v̂ζ = (vζ , 0, vz) (ζ = L,R) , (2)

where 0 < vz < 1 and vR = −vL =
√

1− v2z . The
flavor evolution occurs for z > 0 in the two-dimensional
plane spanned by the x and z coordinates. We consider
a two-flavor (νe, νx) neutrino ensemble. Expanding all
quantities of Eq. (1) in terms of Pauli matrices σ, one
gets the equations for the L mode

v̂L ·∇xPL(x, z) = [+ωB+ µDR(x, z)]× PL(x, z) ,

v̂L ·∇xPL(x, z) = [−ωB+ µDR(x, z)]× PL(x, z) ,(3)

with ω = ∆m2/2E the vacuum oscillation frequency.
The equations from the R mode can be obtained from
the previous ones using the L ↔ R symmetry.

The sans-serif in Eq. (3) indicates three-dimensional
vectors in flavor space, e.g. B = (B1, B2, B3). The dif-
ferential operator at left-hand-side reads

v̂L ·∇x = vL∂x + vz∂z . (4)

The PL,R (PL,R) functions are the neutrino (antineu-
trino) polarization vectors in flavor space for the L,R
modes, defined from the occupation numbers as in [11],
i.e. ϱL,R = 1/2[Fνe + Fνx + (Fν̄e − Fν̄x)PL,R · σ] and
ϱL,R = 1/2[Fν̄e + Fν̄x + (Fν̄e − Fν̄x)PL,R · σ], where Fν

are the total neutrino fluxes of the different species. We
define as usual DL,R = PL,R − PL,R. The unit vector B
points in the mass eigenstate direction in flavor space,
such that B · e3 = − cos θ, where θ is the vacuum mixing
angle. For simplicity we neglect a possible matter effect,
assuming that its only role would be to reduce the ef-
fective in-medium mixing angle, θ ≪ 1 [3]. Finally, the
neutrino self-interaction term is given by [11]

µ =
√
2GF [F

0
ν̄e − F 0

ν̄x ](1− v̂L · v̂R) , (5)

expressed in terms of the antineutrino fluxes F 0
ν̄ at

the boundary. Since in our model the neutrino tra-
jectories intersect at a fixed angle, the previous equa-
tion would correspond to the “single-angle” approxima-
tion [9]. Therefore, multi-angle effects do not play a role
in this case.
One can define a conserved “lepton current” Lµ =

(L0,L) whose components are (see [22])

L0 = DL · B+ DR · B , (6)

L = v̂L(DL · B) + v̂R(DR · B) , (7)

where L is a two-dimensional vector in the (x, z) plane,

and DL,R · B ≃ P 3
L,R − P

3
L,R. In the following we will

normalize Lµ to the number of modes NL,R = 2. It is
straightforward to show from Eq. (3) that L satisfies a
continuity equation

∂tL0 +∇x · L = ∇x · L = 0 , (8)

where first equality follows from the assumption of a sta-
tionary solution. Eq. (8) generalizes the lepton-number
conservation law of the one dimensional case [3].
As first exploited in [20] (see also [21]) in the context of

multi-dimensional neutrino oscillations, the partial differ-
ential equation problem like of Eq. (3) can be reduced to
a tower of ordinary differential equations for the Fourier
modes defined as

PL(R),k(z) =

∫ +∞

−∞

dx PL(R)(x, z)e
−ikx , (9)

and similarly for the antineutrino polarization vectors
PL,R. In the following, for simplicity we will consider
a monochromatic perturbation in the x direction for
the neutrino polarization vectors at the boundary at
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that the validity of the bulb model should be critically
reconsidered and that a self-consistent solution of the SN
neutrino flavor evolution can only be achieved by solving
the complete multi-dimensional problem of Eq. (1).
As a further step in clarifying this issue we consider

here the two-dimensional toy model discussed in [21],
i.e. monochromatic neutrino streams emitted in a sta-
tionary way in two directions from an infinite boundary
plane at z = 0 with periodic conditions on x and trans-
lation invariance along the y direction. We assume a
small perturbation for the initial symmetries of the fla-
vor content in both the two emission modes and along
the boundary in the x direction. Despite of its sim-
plicity, this model with perturbed symmetries exhibits
a rich phenomenology. Indeed, solving numerically the
flavor evolution we find that the initial small perturba-
tions are amplified by neutrino interactions, leading to
non-trivial two-dimensional structures in the oscillation
pattern that exhibits large space fluctuations. Any par-
ticular solution which is required to satisfy initial sym-
metries at the boundary is thus, unstable, confirming the
results of [21]. We will show that the neutrino flux tran-
sition from a coherent to incoherent behavior resembles
quite closely the transition from a laminar to turbulent
regime of a streaming flow. This issue will be studied in
more details elsewhere. Finally, also the lepton number
flux would develop a domain structure.

II. A TWO-DIMENSIONAL MODEL

As in [21], neutrinos are emitted from an infinite plane
at z = 0, in two directions

v̂ζ = (vζ , 0, vz) (ζ = L,R) , (2)

where 0 < vz < 1 and vR = −vL =
√

1− v2z . The
flavor evolution occurs for z > 0 in the two-dimensional
plane spanned by the x and z coordinates. We consider
a two-flavor (νe, νx) neutrino ensemble. Expanding all
quantities of Eq. (1) in terms of Pauli matrices σ, one
gets the equations for the L mode

v̂L ·∇xPL(x, z) = [+ωB+ µDR(x, z)]× PL(x, z) ,

v̂L ·∇xPL(x, z) = [−ωB+ µDR(x, z)]× PL(x, z) ,(3)

with ω = ∆m2/2E the vacuum oscillation frequency.
The equations from the R mode can be obtained from
the previous ones using the L ↔ R symmetry.

The sans-serif in Eq. (3) indicates three-dimensional
vectors in flavor space, e.g. B = (B1, B2, B3). The dif-
ferential operator at left-hand-side reads

v̂L ·∇x = vL∂x + vz∂z . (4)

The PL,R (PL,R) functions are the neutrino (antineu-
trino) polarization vectors in flavor space for the L,R
modes, defined from the occupation numbers as in [11],
i.e. ϱL,R = 1/2[Fνe + Fνx + (Fν̄e − Fν̄x)PL,R · σ] and
ϱL,R = 1/2[Fν̄e + Fν̄x + (Fν̄e − Fν̄x)PL,R · σ], where Fν

are the total neutrino fluxes of the different species. We
define as usual DL,R = PL,R − PL,R. The unit vector B
points in the mass eigenstate direction in flavor space,
such that B · e3 = − cos θ, where θ is the vacuum mixing
angle. For simplicity we neglect a possible matter effect,
assuming that its only role would be to reduce the ef-
fective in-medium mixing angle, θ ≪ 1 [3]. Finally, the
neutrino self-interaction term is given by [11]

µ =
√
2GF [F

0
ν̄e − F 0

ν̄x ](1− v̂L · v̂R) , (5)

expressed in terms of the antineutrino fluxes F 0
ν̄ at

the boundary. Since in our model the neutrino tra-
jectories intersect at a fixed angle, the previous equa-
tion would correspond to the “single-angle” approxima-
tion [9]. Therefore, multi-angle effects do not play a role
in this case.
One can define a conserved “lepton current” Lµ =

(L0,L) whose components are (see [22])

L0 = DL · B+ DR · B , (6)

L = v̂L(DL · B) + v̂R(DR · B) , (7)

where L is a two-dimensional vector in the (x, z) plane,

and DL,R · B ≃ P 3
L,R − P

3
L,R. In the following we will

normalize Lµ to the number of modes NL,R = 2. It is
straightforward to show from Eq. (3) that L satisfies a
continuity equation

∂tL0 +∇x · L = ∇x · L = 0 , (8)

where first equality follows from the assumption of a sta-
tionary solution. Eq. (8) generalizes the lepton-number
conservation law of the one dimensional case [3].
As first exploited in [20] (see also [21]) in the context of

multi-dimensional neutrino oscillations, the partial differ-
ential equation problem like of Eq. (3) can be reduced to
a tower of ordinary differential equations for the Fourier
modes defined as

PL(R),k(z) =

∫ +∞

−∞

dx PL(R)(x, z)e
−ikx , (9)

and similarly for the antineutrino polarization vectors
PL,R. In the following, for simplicity we will consider
a monochromatic perturbation in the x direction for
the neutrino polarization vectors at the boundary at

We assume a monochromatic perturbation (with wave-number k0=2π/λ0) in the 
translational symmetry along x at z=0 : 
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FIG. 1: Three dimensional evolution of the νe flavor content
ϱee in the x-z plane, and its map on the bottom plane.

z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
d

dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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FIG. 2: Map of the lepton number L0 in the x-z plane.

Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability
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FIG. 1: Three dimensional evolution of the νe flavor content
ϱee in the x-z plane, and its map on the bottom plane.

z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
d

dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability

3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1
 1.1

 0
 2

 4
 6

 8
 10

 12

 0.2
 0.4

 0.6
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1.1

ρee

z
x [2π/k0]

ρee

FIG. 1: Three dimensional evolution of the νe flavor content
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z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
d

dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability

(        1) pure flavour state
unperturbed value Perturbation



SOLVING THE PROBLEM IN FOURIER SPACE
The partial differential equations can be transformed into a tower of ordinary 
differential equations for the Fourier modes coupled through the interaction term
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even assuming a perfect spherically symmetric ν emis-
sion [15–19]. Furthermore, also space and time homo-
geneity can be broken in a dense neutrino gas, so that it
is not guaranteed that a quasi-stationary neutrino emis-
sion would lead to a stationary solution [20]. Finally,
with a simple toy model it has been recently shown, by
means of a stability analysis of the linearized equations of
motion, that self-induced oscillations can spontaneously
break spatial symmetries [21]. All these findings suggest
that the validity of the bulb model should be critically
reconsidered and that a self-consistent solution of the SN
neutrino flavor evolution can only be achieved by solving
the complete multi-dimensional problem of Eq. (1).
As a further step in clarifying this issue we consider

here the two-dimensional toy model discussed in [21],
i.e. monochromatic neutrino streams emitted in a sta-
tionary way in two directions from an infinite boundary
plane at z = 0 with periodic conditions on x and trans-
lation invariance along the y direction. We assume a
small perturbation for the initial symmetries of the fla-
vor content in both the two emission modes and along
the boundary in the x direction. Despite of its sim-
plicity, this model with perturbed symmetries exhibits
a rich phenomenology. Indeed, solving numerically the
flavor evolution we find that the initial small perturba-
tions are amplified by neutrino interactions, leading to
non-trivial two-dimensional structures in the oscillation
pattern that exhibits large space fluctuations. Any par-
ticular solution which is required to satisfy initial sym-
metries at the boundary is thus, unstable, confirming the
results of [21]. We will show that the neutrino flux tran-
sition from a coherent to incoherent behavior resembles
quite closely the transition from a laminar to turbulent
regime of a streaming flow. This issue will be studied in
more details elsewhere. Finally, also the lepton number
flux would develop a domain structure.

II. A TWO-DIMENSIONAL MODEL

As in [21], neutrinos are emitted from an infinite plane
at z = 0, in two directions

v̂ζ = (vζ , 0, vz) (ζ = L,R) , (2)

where 0 < vz < 1 and vR = −vL =
√

1− v2z . The
flavor evolution occurs for z > 0 in the two-dimensional
plane spanned by the x and z coordinates. We consider
a two-flavor (νe, νx) neutrino ensemble. Expanding all
quantities of Eq. (1) in terms of Pauli matrices σ, one
gets the equations for the L mode

v̂L ·∇xPL(x, z) = [+ωB+ µDR(x, z)]× PL(x, z) ,

v̂L ·∇xPL(x, z) = [−ωB+ µDR(x, z)]× PL(x, z) ,(3)

with ω = ∆m2/2E the vacuum oscillation frequency.
The equations from the R mode can be obtained from
the previous ones using the L ↔ R symmetry.

The sans-serif in Eq. (3) indicates three-dimensional
vectors in flavor space, e.g. B = (B1, B2, B3). The dif-
ferential operator at left-hand-side reads

v̂L ·∇x = vL∂x + vz∂z . (4)

The PL,R (PL,R) functions are the neutrino (antineu-
trino) polarization vectors in flavor space for the L,R
modes, defined from the occupation numbers as in [11],
i.e. ϱL,R = 1/2[Fνe + Fνx + (Fν̄e − Fν̄x)PL,R · σ] and
ϱL,R = 1/2[Fν̄e + Fν̄x + (Fν̄e − Fν̄x)PL,R · σ], where Fν

are the total neutrino fluxes of the different species. We
define as usual DL,R = PL,R − PL,R. The unit vector B
points in the mass eigenstate direction in flavor space,
such that B · e3 = − cos θ, where θ is the vacuum mixing
angle. For simplicity we neglect a possible matter effect,
assuming that its only role would be to reduce the ef-
fective in-medium mixing angle, θ ≪ 1 [3]. Finally, the
neutrino self-interaction term is given by [11]

µ =
√
2GF [F

0
ν̄e − F 0

ν̄x ](1− v̂L · v̂R) , (5)

expressed in terms of the antineutrino fluxes F 0
ν̄ at

the boundary. Since in our model the neutrino tra-
jectories intersect at a fixed angle, the previous equa-
tion would correspond to the “single-angle” approxima-
tion [9]. Therefore, multi-angle effects do not play a role
in this case.
One can define a conserved “lepton current” Lµ =

(L0,L) whose components are (see [22])

L0 = DL · B+ DR · B , (6)

L = v̂L(DL · B) + v̂R(DR · B) , (7)

where L is a two-dimensional vector in the (x, z) plane,

and DL,R · B ≃ P 3
L,R − P

3
L,R. In the following we will

normalize Lµ to the number of modes NL,R = 2. It is
straightforward to show from Eq. (3) that L satisfies a
continuity equation

∂tL0 +∇x · L = ∇x · L = 0 , (8)

where first equality follows from the assumption of a sta-
tionary solution. Eq. (8) generalizes the lepton-number
conservation law of the one dimensional case [3].
As first exploited in [20] (see also [21]) in the context of

multi-dimensional neutrino oscillations, the partial differ-
ential equation problem like of Eq. (3) can be reduced to
a tower of ordinary differential equations for the Fourier
modes defined as

PL(R),k(z) =

∫ +∞

−∞

dx PL(R)(x, z)e
−ikx , (9)

and similarly for the antineutrino polarization vectors
PL,R. In the following, for simplicity we will consider
a monochromatic perturbation in the x direction for
the neutrino polarization vectors at the boundary at
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z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
d

dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability
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z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
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dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
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∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability
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z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
d

dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability
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z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
d

dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability
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z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
d

dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

x [2π/k0]

 0

 2

 4

 6

 8

 10

 12

z

FIG. 2: Map of the lepton number L0 in the x-z plane.

Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability
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z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains
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dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability

Solution in real space by inverse Fourier transform ( , ) ( ) ikx
kP x z dkP z e

+∞

−∞

= ∫

pure flavour state
unperturbed value Perturbation

We assume a monochromatic perturbation (with wave-number k0=2π/λ0) in the 
translational symmetry along x at z=0 : 
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z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
d

dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability
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z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
d

dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability
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z = 0. Since we start with a pure flavor state, we as-
sume P 1

L,R(x, 0) = P 2
L,R(x, 0) = 0 and

P 3
L,R(x, 0) = ⟨P 3

L,R(x, 0)⟩+ ϵ cos(k0x) , (10)

where this latter component of the polarization vector is
proportional to the flavor content of the ensemble. The
function ⟨P 3

L,R(x, 0)⟩ indicates the unpertubed value of
the polarization vectors, while k0 is the wave-number of
the perturbation and ϵ ≪ µ,ω its small amplitude. It is
easy to see that in this case, only higher harmonics of the
fundamental mode with kn = nk0 are excited. Defining
PL,n = k0PL,kn

/(2π), from Eq. (3) one obtains

vz
d

dz
PL,n(z) = −iuLknPL,n + ωB× PL,n

+ µ
+∞
∑

j=−∞

DR,n−j × PL,j . (11)

An analogous set of coupled ordinary differential equa-
tions can be written for the R mode and for the antineu-
trino polarization vectors. It is enough to follow the evo-
lution for positive modes, n ≥ 0, since the PL,R(x, z) and
PL,R(x, z) are real functions and therefore

P
∗

(L,R),n = P(L,R),−n . (12)

Once the evolution of the harmonic modes is obtained
from Eq. (17), the polarization vector in configuration
space can be obtained by inverse Fourier transform.

III. NUMERICAL EXAMPLES

To illustrate the behavior of the self-induced flavor con-
versions in our two-dimensional toy model, we consider a
gas initially composed by only νe and ν̄e. We normalize
the polarization vectors to the ν̄e number density and we
assume an excess of νe over ν̄e, i.e. F 0

νe/F
0
ν̄e = 1 + α.

If the translational symmetry is assumed, i.e. ϵ = 0 in
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Eq. (10), and the L and Rmodes are prepared identically,
it is well known that the system is stable in normal mass
hierarchy (∆m2 > 0), while in inverted mass hierarchy
(∆m2 < 0) it exhibits a bimodal instability and behaves
as a flavor pendulum, leading to periodic pair conversions
νeν̄e ↔ νxν̄x, that conserve the lepton number L0 = α
of Eq. (15) [3]. More recently, it has been shown that if
the L ↔ R symmetry is perturbed the system becomes
unstable also in normal hierarchy, with a similar pendu-
lum behavior [16]. Our further step is to perturb also the
translational symmetry at the boundary.
We fix in Eq. (3) µ = 10, ω = 1, θ = 10−3, and

we consider the normal mass hierarchy case (the result
would be similar for the inverted mass hierarchy). We
take as asymmetry parameter α = 0.3. We assume
vR = vz =

√
2/2. Perturbation in the L ↔ R symmetry

are introduced by a 1% difference in the initial conditions
between these modes. Furthermore, to perturb the trans-
lational symmetry along the x direction, we assume in
Eq. (10) ϵ = 0.01, and we take as perturbation frequency
k0 = 0.2

√
2ωµ, where the square-root expression is the

proper frequency of the unperturbed flavor pendulum [3].
Correspondingly, P 3

L,1(0) = P 3
R,1(0) = ϵ (and analogously

for antineutrinos), while the higher order harmonics are
initially vanishing. We follow the evolution of the first
N = 600 Fourier modes.
In Fig. 1 we show the flavor evolution of νe flavor con-

tent ϱee(x, z), in the x-z plane summed over the L and
R contributions and normalized to NR,L = 2. We see
that till z ≃ 2.5 the flavor evolution shows a transla-
tional symmetry, being uniform in x direction. The fla-
vor content presents the known pendular nutations in z
direction, observed in the one dimensional evolution [16].
Contrarily to what previously assumed, this coherent be-
havior is not stable. Indeed, at z ≃ 2.5 the transla-
tional symmetry is broken. Then, ϱee develops large
variations in the x direction at length scales that be-
comes smaller and smaller increasing the distance from
the boundary. Furthermore, also the L ↔ R symme-
try is broken, since P 3

L(x, z) and P 3
R(x, z) present large

differences (not shown), in agreement with the stability
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analysis of [21]. The two-dimensional map of the func-
tion ϱee(x, z) further clarifies the effect of the breaking of
the translational symmetry. Till the symmetry is unbro-
ken all the neutrinos oscillate in phase and the surfaces of
equal phase are planes parallel to the radiating surface at
z = 0. Then, when the instabilities develop these planes
of common phase are broken and the coherent behavior
of the oscillations is lost.
In Fig. 2 we represent the lepton density L0 of Eq. (15)

in the x-z plane. Notice that as soon as the translational
instability develops, lepton number shows a non trivial
domain structure and that self-induced conversions lead
to large space variations of the initial asymmetry α.
In order to understand the origin of this flavor dy-

namics, in Fig. 3 we show a contour plot representing
the evolution of the different Fourier modes |PR,n(z)|
(in logarithmic scale) in the plane of n-z. The behav-
ior of |PL,n(z)| would be similar (not shown). We realize
that the breaking of the translational symmetry corre-
sponds to the growth of the n > 0 modes occurring at
z > 2. This dynamics can be seen as a cascade pro-
cess in the Fourier space, where a flavor wave caused
by the flavor pendulum diffuses to higher harmonics (i.e.
to smaller scales) as soon as the Fourier modes are ex-
cited by the non-linear interactions between the different
modes. Note the analogy of this process with the multi-
angle decoherence associated with a diffusion of excita-
tions in the multipole space [9]. Correspondingly, in the
flavor evolution one observes the developments of spa-
tial variations in the x directions at smaller and smaller
scales. In the example we are studying, at z = 12 about
the first 300 harmonics are significantly excited. Indeed,
the number of harmonics that one follows determine the
range of validity of the numerical simulation. We checked
that the number of excited harmonics is sensitive to the
neutrino-neutrino interaction potential µ, since this fac-
tor determines the strength of the terms responsible for
the growth of the modes in the second line of Eq. (17).
The growth of the harmonics is also enhanced with the
initial flavor asymmetry α. Indeed, in the sum at right-
hand-side of Eq. (17) the term D(L,R),0 increases with
the initial flavor asymmetry, pumping the higher order
harmonics. We comment that in realistic cases (e.g. for
supernova neutrinos) one typically has a declining neu-
trino potential µ. In this situation one would expect a
cut-off in the number of excited modes in function of the
distance from the boundary.
The multi-angle extension of the results discussed here

are presented in Appendix A.
The behavior of the neutrino gas in our model has a

nice analogy with the transition between laminar and
turbulent behavior of a streaming fluid (see, e.g., [23]).
In this respect, it is useful to define an average neutrino
velocity for the neutrino fluid at a point x = (x, z). Con-
sidering for example the νe flux, one has

⟨v̂e⟩x =
ϱee,Lv̂L + ϱee,Rv̂R

ϱee,L + ϱee,R
. (13)
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FIG. 3: Contour plot of the first 600 Fourier mode |PR,n| (in
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Till the L ↔ R symmetry is unbroken,we have ⟨v̂e⟩x ≃
vz. Then, when a L–R asymmetry with variations in the
x direction is produced, the average velocity starts to
acquire a transverse component in the x direction. The
“streamlines” of the neutrino flux are the solutions of

dx

ds
=

⟨v̂e⟩x
|⟨v̂e⟩x|

= F̂e,x , (14)

where s is a parameter along the line (see [14]).

In Fig. 4 we show the streamlines defined in Eq. (14) (in
vertical direction). One clearly sees that the transition
between the coherent to incoherent flavor behavior ob-
served in Fig. 1 corresponds to the change from a laminar
to a turbulent regime. As soon as the translational sym-
metry is broken, the streamlines become irregular and
are no longer parallel to the z directions. Moreover, they
exhibit large variations, as in the turbulent motion in a
fluid, and tend to converge in preferred directions.

The behavior we found has a fascinating similarity with
the non-linear instabilities of fluid flows, described by the
Navier-Stokes equation, see e.g. [24, 25], as shown in the
Appendix B.

Symmetry unbroken:
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analysis of [21]. The two-dimensional map of the func-
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z = 0. Then, when the instabilities develop these planes
of common phase are broken and the coherent behavior
of the oscillations is lost.
In Fig. 2 we represent the lepton density L0 of Eq. (15)
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domain structure and that self-induced conversions lead
to large space variations of the initial asymmetry α.
In order to understand the origin of this flavor dy-

namics, in Fig. 3 we show a contour plot representing
the evolution of the different Fourier modes |PR,n(z)|
(in logarithmic scale) in the plane of n-z. The behav-
ior of |PL,n(z)| would be similar (not shown). We realize
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sponds to the growth of the n > 0 modes occurring at
z > 2. This dynamics can be seen as a cascade pro-
cess in the Fourier space, where a flavor wave caused
by the flavor pendulum diffuses to higher harmonics (i.e.
to smaller scales) as soon as the Fourier modes are ex-
cited by the non-linear interactions between the different
modes. Note the analogy of this process with the multi-
angle decoherence associated with a diffusion of excita-
tions in the multipole space [9]. Correspondingly, in the
flavor evolution one observes the developments of spa-
tial variations in the x directions at smaller and smaller
scales. In the example we are studying, at z = 12 about
the first 300 harmonics are significantly excited. Indeed,
the number of harmonics that one follows determine the
range of validity of the numerical simulation. We checked
that the number of excited harmonics is sensitive to the
neutrino-neutrino interaction potential µ, since this fac-
tor determines the strength of the terms responsible for
the growth of the modes in the second line of Eq. (17).
The growth of the harmonics is also enhanced with the
initial flavor asymmetry α. Indeed, in the sum at right-
hand-side of Eq. (17) the term D(L,R),0 increases with
the initial flavor asymmetry, pumping the higher order
harmonics. We comment that in realistic cases (e.g. for
supernova neutrinos) one typically has a declining neu-
trino potential µ. In this situation one would expect a
cut-off in the number of excited modes in function of the
distance from the boundary.
The multi-angle extension of the results discussed here

are presented in Appendix A.
The behavior of the neutrino gas in our model has a

nice analogy with the transition between laminar and
turbulent behavior of a streaming fluid (see, e.g., [23]).
In this respect, it is useful to define an average neutrino
velocity for the neutrino fluid at a point x = (x, z). Con-
sidering for example the νe flux, one has

⟨v̂e⟩x =
ϱee,Lv̂L + ϱee,Rv̂R

ϱee,L + ϱee,R
. (13)
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Till the L ↔ R symmetry is unbroken,we have ⟨v̂e⟩x ≃
vz. Then, when a L–R asymmetry with variations in the
x direction is produced, the average velocity starts to
acquire a transverse component in the x direction. The
“streamlines” of the neutrino flux are the solutions of

dx

ds
=

⟨v̂e⟩x
|⟨v̂e⟩x|

= F̂e,x , (14)

where s is a parameter along the line (see [14]).

In Fig. 4 we show the streamlines defined in Eq. (14) (in
vertical direction). One clearly sees that the transition
between the coherent to incoherent flavor behavior ob-
served in Fig. 1 corresponds to the change from a laminar
to a turbulent regime. As soon as the translational sym-
metry is broken, the streamlines become irregular and
are no longer parallel to the z directions. Moreover, they
exhibit large variations, as in the turbulent motion in a
fluid, and tend to converge in preferred directions.

The behavior we found has a fascinating similarity with
the non-linear instabilities of fluid flows, described by the
Navier-Stokes equation, see e.g. [24, 25], as shown in the
Appendix B.
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analysis of [21]. The two-dimensional map of the func-
tion ϱee(x, z) further clarifies the effect of the breaking of
the translational symmetry. Till the symmetry is unbro-
ken all the neutrinos oscillate in phase and the surfaces of
equal phase are planes parallel to the radiating surface at
z = 0. Then, when the instabilities develop these planes
of common phase are broken and the coherent behavior
of the oscillations is lost.
In Fig. 2 we represent the lepton density L0 of Eq. (15)

in the x-z plane. Notice that as soon as the translational
instability develops, lepton number shows a non trivial
domain structure and that self-induced conversions lead
to large space variations of the initial asymmetry α.
In order to understand the origin of this flavor dy-

namics, in Fig. 3 we show a contour plot representing
the evolution of the different Fourier modes |PR,n(z)|
(in logarithmic scale) in the plane of n-z. The behav-
ior of |PL,n(z)| would be similar (not shown). We realize
that the breaking of the translational symmetry corre-
sponds to the growth of the n > 0 modes occurring at
z > 2. This dynamics can be seen as a cascade pro-
cess in the Fourier space, where a flavor wave caused
by the flavor pendulum diffuses to higher harmonics (i.e.
to smaller scales) as soon as the Fourier modes are ex-
cited by the non-linear interactions between the different
modes. Note the analogy of this process with the multi-
angle decoherence associated with a diffusion of excita-
tions in the multipole space [9]. Correspondingly, in the
flavor evolution one observes the developments of spa-
tial variations in the x directions at smaller and smaller
scales. In the example we are studying, at z = 12 about
the first 300 harmonics are significantly excited. Indeed,
the number of harmonics that one follows determine the
range of validity of the numerical simulation. We checked
that the number of excited harmonics is sensitive to the
neutrino-neutrino interaction potential µ, since this fac-
tor determines the strength of the terms responsible for
the growth of the modes in the second line of Eq. (17).
The growth of the harmonics is also enhanced with the
initial flavor asymmetry α. Indeed, in the sum at right-
hand-side of Eq. (17) the term D(L,R),0 increases with
the initial flavor asymmetry, pumping the higher order
harmonics. We comment that in realistic cases (e.g. for
supernova neutrinos) one typically has a declining neu-
trino potential µ. In this situation one would expect a
cut-off in the number of excited modes in function of the
distance from the boundary.
The multi-angle extension of the results discussed here
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 How to get from toy models to real SNe? 

(Neutrino momentum distribution not limited to "outward" direction; Important "halo" flux even at large 
distance; Large 3 D effects (in toy model symmetric boundary is assumed) 

 Which is the outcome of self-induced flavor conversions? 

( Probably spectral swaps and splits are possible only in bulb model; Is flavor decoherence generic in the 
presence of inhomogeneities?) 

Which is the experimental strategy to test this possible outcome? 

(Till now most of pheno  studies focussed on signatures of swaps and splits. 
Still lacking studies on how to test the flavor equilibrium, i.e. equal nu flavor fluxes) 

Which is the impact on SN physics? 

( Are possible self-induced flavor conversions below the shock-wave?, If yes, does it help the shock 
revival? How to test in schematic way in SN simulations?) 
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FIG. 5: Multi-angle flavor evolution: Two-dimensional evolu-
tion of the ν̄e flavor content ϱ̄ee in the x-z plane, and its map
on the bottom plane assuming the translational invariance
along the x-direction.

This example is intended to capture a fundamental fea-
ture of the non-isotropic neutrino emission from a super-
nova core. For this reason we consider the same case of
the work, assuming that each point along the boundary
emits N = 200 angular modes with emission angles ϑα

equally distributed in the range [0,π]. We checked that
the behavior of the flavor conversions in qualitatively sim-
ilar further increasing the number of emission modes. In
Fig. 5 we consider a case in which the translational in-
variance along the x-direction is assumed. We realize
that instead of the periodic flavor conversions observed
expected in the single-angle case one now finds a flavor
decoherence with ϱ̄ee(x, z) ≃ 0.5 as soon as flavor conver-
sions start at z >∼ 6. This case has been widely studied
in [9] where it has been realized that in the presence of
a constant neutrino potential, the multi-angle decoher-
ence is unavoidable in both normal and inverted mass
hierarchy.
We show now how this result is affected by the break-

ing of the translational invariance. At this regard, in
Fig. 6 we consider the multi-angle versions of the flavor
evolution shown for the single-angle case in Fig. 1 of the
main text. We realize that the map of the ϱ̄ee(x, z) is
rather different with respect to the corresponding one in
the single angle case. In particular, when flavor conver-
sions start they quickly lead to a flavor equilibrium with
ϱ̄ee(x, z) ≃ 0.5 across the plane. The flavor variations
along the x direction are smoothed with respect to the
single-angle case being at most ∼ 20%. From this figure
one realizes that the output of the flavor evolution for a
constant µ is the multi-angle decoherence, as also found
in the one-dimensional models [9].
In Fig. 7 we show the evolution of the lepton numeber

L0 in the x-z plane. With respect to the corresponding
single-angle case [Fig. 2 of the main text] we realize that
the spatial variations in L0 are ∼ 0.3. Then, they are
strongly reduced with respect to the single-angle case.
However, also in this case we can have the formation of
domain of lepton number with opposite sign.
Finally, in Fig. 8 we compare the evolution of the dif-

ferent Fourier modes |Pn(z)| (summed over the emission
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FIG. 7: Multi-angle flavor evolution: Map of the lepton num-
ber L0.
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FIG. 8: Multi-angle flavor evolution: Contour plot of the first
600 Fourier mode |Pn| (in logarithmic scale) in the plane n-z.

angles) in the plane of n-z, for the case discussed above.
We realize that the number of excited Fourier modes is
strongly reduced (by an order of magnitude) with re-
spect to the corresponding single-angle case [see Fig. 3
in the main text]. The reason is that when the deco-
herence quickly starts the length of |P0| is significantly
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In Fig. 7 we show the evolution of the lepton numeber

L0 in the x-z plane. With respect to the corresponding
single-angle case [Fig. 2 of the main text] we realize that
the spatial variations in L0 are ∼ 0.3. Then, they are
strongly reduced with respect to the single-angle case.
However, also in this case we can have the formation of
domain of lepton number with opposite sign.
Finally, in Fig. 8 we compare the evolution of the dif-

ferent Fourier modes |Pn(z)| (summed over the emission
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FIG. 8: Multi-angle flavor evolution: Contour plot of the first
600 Fourier mode |Pn| (in logarithmic scale) in the plane n-z.

angles) in the plane of n-z, for the case discussed above.
We realize that the number of excited Fourier modes is
strongly reduced (by an order of magnitude) with re-
spect to the corresponding single-angle case [see Fig. 3
in the main text]. The reason is that when the deco-
herence quickly starts the length of |P0| is significantly
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of the velocities                                      , whose components are
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IV. CONCLUSIONS

We presented the results of a study of self-induced fla-
vor conversions in a simple two-dimensional model. As
predicted from the stability analysis performed in [21],
we find that the self-interacting neutrino gas can break
the spatial symmetries of the initial conditions and the
neutrino flavor content achieves large space variations.
This implies that the coherent behavior of the neutrino
gas is unstable under small spatial inhomogeneities. This
process also leads to the formation of domains of different
net lepton number L0.
There is a close analogy between the symmetries of

the planar two-dimensional model considered in our work
and the spherical SN case. Indeed, the translational sym-
metry in our model corresponds to the spherical symme-
try of the bulb-model and the L-R symmetry is equiva-
lent to the axial symmetry in the spherical case. Never-
theless, our toy model is much simpler than any realistic
SN neutrino case, since we are neglecting multi-angle ef-
fects, continuous energy spectra, ordinary matter effects
and declining neutrino densities. All these effects would
add additional complications and numerical challenges.
However, if our results would apply also to the SN case
this would radically change the current description of the
self-induced flavor conversions, and would have interest-
ing phenomenological consequences, like e.g., the gener-
ation of a self-induced direction-dependent asymmetry
in the lepton number flux. These intriguing possibili-
ties call for further efforts to go beyond the bulb model.
This challenge would be quite demanding in terms of new
computig time and/or novel approaches.
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Appendix A. Multi-angle case

In the model considered in our work we have taken
neutrinos to be emitted from the boundary with only two
emission modes L and R. In this Section we generalize
the model to a multi-angle case. As will will see the flavor
evolution present substantial differences already without

the breaking of the translational symmetry. Indeed, in
the single-angle case one would observe periodic flavor
conversions, while in the multi-angle case the emission
from an infinite plane would lead to flavor decoherence.
Therefore, in comparison with the flavor evolution of SN
neutrinos, our single-angle model has to be taken as rep-
resentative of a case in which flavor conversions exhibits a
“quasi-single angle” behavior [11], while the multi-angle
case would represent a realization of the multi-angle de-
coherence [9]. As we will see, the effect of the breaking
of translational symmetry in the two cases produces re-
markable differences. Indeed, the large fluctuations of the
flavor content found in the single-angle case are smeared-
out by the multi-angle effects.

Equations of motion

With respect to the model considered before we assume
α = 1, . . .N neutrino emission modes labeled in terms of
the velocities v̂α = (vx,α, 0, vz,α), whose components are
vx,α = cosϑα and vz,α = sinϑα where the emission angles
ϑα ∈ [0,π]. The equations of motion for the polarization
vectors of the N emission modes are

v̂α ·∇xPα(x, z) = [+ωB

+ µ
N
∑

β=1

(1− v̂α · v̂β)Dβ ]× Pα(x, z),

v̂α ·∇xPα(x, z) = [−ωB

+ µ
N
∑

β=1

(1− v̂α · v̂β)Dβ ]× Pα(x, z) .

The lepton number in this case is defined as

L0 =
N
∑

α=1

Dα · B , (15)

L =
N
∑

α=1

v̂α(Dα · B) , (16)

where Dα ·B ≃ P 3
α −P

3
α. The equations for the different

Fourier modes [as in Eq. (11) of the main text] are

vz,α
d

dz
Pα,n(z) = −ivα,xknPα,n + ωB× Pα,n

+ µ
+∞
∑

j=−∞

N
∑

β=1

(1− v̂α · v̂β)Dβ,n−j × Pα,j .

(17)

Numerical examples

In this Section we show how the presence of multi-
angle effects modifies the previous single-angle results.
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Numerical examples

In this Section we show how the presence of multi-
angle effects modifies the previous single-angle results.

Modification with respect to the single-angle case:

Flavor equilibrium with   ee(x,z) ≃ 0.5 across the plane. 

The flavor variations along the x direction are smoothed 

with respect to the single-angle case being at most ∼ 20% 
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FIG. 5: Multi-angle flavor evolution: Two-dimensional evolu-
tion of the ν̄e flavor content ϱ̄ee in the x-z plane, and its map
on the bottom plane assuming the translational invariance
along the x-direction.

This example is intended to capture a fundamental fea-
ture of the non-isotropic neutrino emission from a super-
nova core. For this reason we consider the same case of
the work, assuming that each point along the boundary
emits N = 200 angular modes with emission angles ϑα

equally distributed in the range [0,π]. We checked that
the behavior of the flavor conversions in qualitatively sim-
ilar further increasing the number of emission modes. In
Fig. 5 we consider a case in which the translational in-
variance along the x-direction is assumed. We realize
that instead of the periodic flavor conversions observed
expected in the single-angle case one now finds a flavor
decoherence with ϱ̄ee(x, z) ≃ 0.5 as soon as flavor conver-
sions start at z >∼ 6. This case has been widely studied
in [9] where it has been realized that in the presence of
a constant neutrino potential, the multi-angle decoher-
ence is unavoidable in both normal and inverted mass
hierarchy.
We show now how this result is affected by the break-

ing of the translational invariance. At this regard, in
Fig. 6 we consider the multi-angle versions of the flavor
evolution shown for the single-angle case in Fig. 1 of the
main text. We realize that the map of the ϱ̄ee(x, z) is
rather different with respect to the corresponding one in
the single angle case. In particular, when flavor conver-
sions start they quickly lead to a flavor equilibrium with
ϱ̄ee(x, z) ≃ 0.5 across the plane. The flavor variations
along the x direction are smoothed with respect to the
single-angle case being at most ∼ 20%. From this figure
one realizes that the output of the flavor evolution for a
constant µ is the multi-angle decoherence, as also found
in the one-dimensional models [9].
In Fig. 7 we show the evolution of the lepton numeber

L0 in the x-z plane. With respect to the corresponding
single-angle case [Fig. 2 of the main text] we realize that
the spatial variations in L0 are ∼ 0.3. Then, they are
strongly reduced with respect to the single-angle case.
However, also in this case we can have the formation of
domain of lepton number with opposite sign.
Finally, in Fig. 8 we compare the evolution of the dif-

ferent Fourier modes |Pn(z)| (summed over the emission
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FIG. 8: Multi-angle flavor evolution: Contour plot of the first
600 Fourier mode |Pn| (in logarithmic scale) in the plane n-z.

angles) in the plane of n-z, for the case discussed above.
We realize that the number of excited Fourier modes is
strongly reduced (by an order of magnitude) with re-
spect to the corresponding single-angle case [see Fig. 3
in the main text]. The reason is that when the deco-
herence quickly starts the length of |P0| is significantly

Spatial variation of L0 reduced Number of excited Fourier modes reduced
reason: when the decoherence quickly starts the length of |P0| is significantly 

shortened, reducing the growth of the higher order harmonics 


