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Supernova explosion
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Explosion of a massive
6 − 8 M� star

Collapse of degenerate core.
Bounce and Shock.

Stalled shock and accretion

Explosion!

Talk by Dighe, HRI (2016).



Flavor Oscillations in dense media: Collective effects

Neutrino oscillation usually involves two kinds of terms:
1 Evolution due to vacuum oscillation term (ω ≡ ∆m2/2E).
2 MSW potential term (matter effects ≡ λ)

High neutrino density causes an MSW-like potential (≡ µ). Leads
to self-interactions. µ� ω.
Pantaleone (1992)

Causes collective oscillations → large flavor conversions even for
tiniest mixing angle.

Bipolar oscillations ∝ √ωµ . Intuitive understanding through
pendulum analogy.
Hannestad et. al. (2007)

Fast oscillations ∝ µ. Even for ω = 0.
Sawyer (2016), Raffelt et. al. (2016), Dasgupta, Mirizzi and MS (2016).
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Polarization vector picture

Neutrino flavor density matrix %ex = 〈νe|νx〉.

Define P = (Re (%ex) , Im (%∗
ex) , %ee − %xx) . z-component of P

encodes flavor information. P(0) = P(0) = (0, 0, 1).

EOMs

Ṗp =
(
ωpB + λL +Hνν

p

)
×Pp,

Ṗp =
(
−ωpB + λL +Hνν

p

)
×Pp ,

where

B = (sin 2ϑ0, 0,− cos 2ϑ0) for a vacuum mixing angleϑ0 ,

L = (0, 0, 1) ,

Hνν
p = µ

∫
d3q

(2π)3 (1− ~vp. ~vq)(Pq −Pq) .
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Bipolar Oscillations

Coherent νeν̄e ↔ νxν̄x
oscillations.

Can be mapped to a pendulum
in flavor space.

Depending on mass hierarchy,
pendulum can be inverted
(unstabe) or stable.

Hannestad et. al. (2007)
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Talk by Raffelt, JIGSAW, 2007.
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Fast Oscillations

Simplest system which shows
fast conversions, in absence of
any spatial inhomogeneities.

Only exists in the left-right
symmetry breaking solution.

Conversions obtained for
c ≡ cos θ > 0.
Raffelt et. al. (2016)

Is a classical analogy possible?

θ θ

PL ≡ νe

PL ≡ νe

PR ≡ νe

PR ≡ νe
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Eqn. of motion
Redefine the basis:

Q ≡
(
PL + PR

)
+
(

PL + PR

)
− 2ω

µ(3−c)B ,

D ≡
(
PL + PR

)
−
(

PL + PR

)
,

X ≡
(
PL −PR

)
+
(

PL −PR

)
,

Y ≡
(
PL −PR

)
−
(

PL −PR

)
.

The EoMs:

Q̇ = µ

2 (3− c) D×Q +µ

2 (1 + c) X×Y ,

Ḋ = ωB×Q ,

Ẋ =
[
ω

(3 + c

3− c

)
B + µ cQ

]
×Y + µD×X ,

Ẏ =
[
ω

( 2
3− c

)
B− µ

2 (1− c)Q
]
×X + µ

2 (3 + c) D×Y .
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Exactly and approximately conserved quantities

Clearly, |P| is conserved. So is flavor lepton number, given by
B ·D. Exactly conserved.

In the fast conversion limit ω/µ→ 0, extra conserved quantities,
involving Q, D, X and Y.

Reduces the 12-variable problem to a 3-variable problem involving
Q.

Leads to a closed form EoM for Q.
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Fast conversion: The quartic potential

The closed equation for Q :

Q̈ = −µ2 c (1− c)
[
|Q0|2 −Q ·Q

]
Q ,

where |Q0| is the length of Q at time t = 0.
The corresponding Lagrangian

LQ = 1
2 |Q̇|

2 − µ2 c (1− c)
[
|Q0|2 −

Q ·Q
2

]Q ·Q
2 .

Qx, Qy ≈ 0, motion primarily governed by Qz. Clearly, motion in
a quartic potential.
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Fast oscillation as motion in the quartic potential

The analytic potential

V (Qz) = µ2 c (1−c)
[
|Q0|2−

Q2
z

2

]
Q2
z

2

Unstable for c > 0.

LSA gives non-zero instability
growth rate κ only for
c ≡ cos θ > 0.
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0

-4 -2 0 2 4

-5

0

5

Qz

V(Qz)

Manibrata Sen (TIFR) SNOBS 2017, Mainz 11/10/2017 9 / 13



Time-period of the fast oscillations

Three timescales in the problem. All vary as 1/µ.
Use energy conservation to get

Tfast = 2
∫ Qmin

z

Qmax
z

dQz√
2
(
E − V (Qz)

) .
Tonset and Twait depend logarithmically on subleading O(ω/µ)
terms.
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Varying neutrino density: Adiabatic Invariance

Can extend argument for a varying neutrino density, for e.g.,
µ(t) = µ0(1 + t/100).
Use adiabatic invariance → action remains constant, while energy
and time period changes.
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Varying neutrino density: Adiabatic Invariance

Can calculate Tfast for varying µ using adiabatic invariance.
Excellent agreement with numerics.
Details of motion captured in phase-plot.
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Conclusions

Simplest homogeneous system showing fast conversion ≡ particle rolling
down a quartic potential. A classical analogue indeed exists!

Potential well if cos θ > 0. Potential barrier if cos θ < 0. Explains
angular dependence of fast oscillations in such systems.

Explain the time period of fast oscillation analytically, both for constant
and varying µ.

Subleading terms important for onset and waiting period.

Above analysis for zero neutrino-antineutrino asymmetry. Can extend to
non-zero asymmetry. Analogous to the presence of external electric and
magnetic fields.

Thank You!
Manibrata Sen (TIFR) SNOBS 2017, Mainz 11/10/2017 13 / 13


