Fast flavor conversions - a classical picture !
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Flavor Oscillations in dense media: Collective effects

e Neutrino oscillation usually involves two kinds of terms:

@ Evolution due to vacuum oscillation term (w = Am?/2FE).
© MSW potential term (matter effects = \)

e High neutrino density causes an MSW-like potential (= p). Leads
to self-interactions. p > w.

Pantaleone (1992)

e Causes collective oscillations — large flavor conversions even for
tiniest mixing angle.

e Bipolar oscillations « ,/wp . Intuitive understanding through
pendulum analogy.

Hannestad et. al. (2007)

o Fast oscillations o« u. Even for w = 0.

Sawyer (2016), Raffelt et. al. (2016), Dasgupta, Mirizzi and MS (2016).
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Polarization vector picture

e Neutrino flavor density matrix ge; = (Ve|vs).

o Define P = (Re (0ez),Im (0},), 0ce — 0zz) . z-component of P
encodes flavor information. P(0) = P(0) = (0,0, 1).

e EOMs
Pp = (wpB+ AL+ H") x Py,
P, = (—wpB+AL+HY) x Py,
where
B = (sin2dy,0,—cos2¥y) for a vacuum mixing angle J ,
L = (0,0,1),

v dgq a7 P
HG" = M/ (2m)3 (1 = vp.vg)(Pq — Pg) .
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Bipolar Oscillations

o Coherent v, <> v, 1, ko ﬂﬂﬂﬂﬂﬂf

o
@

oscillations. s
e Can be mapped to a pendulum oL - - = -
. wt
m ﬂaVOI' Spa'ce' Pendulum in Flavor Space
. . Pl s
@ Depending on mass hierarchy, ISR DD ?
Nutation
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Talk by Raffelt, JIGSAW, 2007.
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Fast Oscillations

@ Simplest system which shows
fast conversions, in absence of
any spatial inhomogeneities.

PLEVe - -
@ Only exists in the left-right g
symmetry breaking solution.

e Conversions obtained for
c=cosf > 0.

Raffelt et. al. (2016)
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o Is a classical analogy possible?
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Eqn. of motion

Redefine the basis:

Q = (PL‘f‘PR)'f‘(FL‘f'FR)_H(?iC)B)
D = (P.+Pg)— (PL+Pgr),
X = (PL—PR)—{—(?L—?R),
Y = (P,—Pg) - (P.-Pg).
The EoMs:

Q = g(S—c)DxQ+g(l+C)XxY,

D = wBxQ,

X = [w<§+f>B+,mQ}xY+quX,

. 9 , ,

Y = [w< >B/1(1C)Q}XX+/1(3+C)DXY.

3—c 2 2
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Exactly and approximately conserved quantities

e Clearly, |P| is conserved. So is flavor lepton number, given by
B - D. Ezxactly conserved.

e In the fast conversion limit w/u — 0, extra conserved quantities,
involving Q, D, X and Y.

o Reduces the 12-variable problem to a 3-variable problem involving

Q.
e Leads to a closed form EoM for Q.
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Fast conversion: The quartic potential

@ The closed equation for Q :
Q=-pcl-o|ll-a-q|a.

where |Qo| is the length of Q at time ¢ = 0.

@ The corresponding Lagrangian

Lo=31QP - we- gl - 23| L2,

2

° ., Qy =~ 0, motion primarily governed by Q.. Clearly, motion in
a quartic potential.
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Fast oscillation as motion in the quartic potential

@ The analytic potential

e Unstable for ¢ > 0.

e LSA gives non-zero instability
growth rate k only for
c=cosf > 0.
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Time-period of the fast oscillations

e Three timescales in the problem. All vary as 1/pu.
@ Use energy conservation to get

len

Qmax / E V Qz

@ Tonset and Tyt depend logarithmically on subleading O(w/u)

Tfast

terms.
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Varying neutrino density: Adiabatic Invariance

e Can extend argument for a varying neutrino density, for e.g.,
u(t) = o1+ £/100).

e Use adiabatic invariance — action remains constant, while energy
and time period changes.
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Varying neutrino density: Adiabatic Invariance

o Can calculate T, for varying p using adiabatic invariance.
Excellent agreement with numerics.

@ Details of motion captured in phase-plot.
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Conclusions

@ Simplest homogeneous system showing fast conversion = particle rolling
down a quartic potential. A classical analogue indeed exists!

@ Potential well if cosf > 0. Potential barrier if cos < 0. Explains
angular dependence of fast oscillations in such systems.

@ Explain the time period of fast oscillation analytically, both for constant
and varying p.

@ Subleading terms important for onset and waiting period.

@ Above analysis for zero neutrino-antineutrino asymmetry. Can extend to
non-zero asymmetry. Analogous to the presence of external electric and
magnetic fields.

Thank You!
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