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Selected examples of microphysics that may
impact the neutrino signals from a galactic
core collapse SN

|. Equation of state

2. Neutrino opacities



Equation of state (EOS)

- Is a large table with many different parts that extends over many decades
in density p, temperature T, and proton fraction Y. EOS includes:

- P=P(p, T, Yp) and other thermodynamic functions E, S, p...

- Composition Y;=Yi(p, T,Yp) for many species i [often p, n, “He,A].
Important for neutrino V interactions.

- EOS and v opacities should be consistent.

- Attractive strong interactions at just below nuclear density lead to
correlations between nucleons that enhance vector response Sy.

- Effective mass M* in EOS gives density of states for vV opacities.

- Spin dependent interactions in EOS important for axial response Sa,
but poorly constrained (Skyrme forces can have ferromagnetic phases)



EOS and Neutron Star radii

- Two very different radii: Neutron star
radius RNns and Proto-neutron star RpnNs

- Rns: radius of cold, beta equilibrated NS.

s irrelevant for SN dynamics during first

second because star is hot and lepton rich.

Rns determines binding E of NS and total
E radiated in V. Etotat ~ 0.6 GM2/Rns

Rns determined by P of cold EOS at ~ 2po.

Presently Rns=10 to 14 km. Optimistic:

assume by next galactic SN that Rns
known to 10% from X-rays (NICER) or
Gravitational Waves (GW).

Neutron star interior

composition explorer (NICER),
aims to determine Rns from
curvature of space implied by X-
ray light curve. Launched to
space station June 3,2017.



Total E in Neutrinos

- Constrains distance to SN, mass of new NS,
cooling by new particles such as axions, Observation of v-nucleus elastic
sterile neutrinos ... scattering from Csl at SNS

- Can we measure Ewo: to 10%? Or better?

- Option |:Individual flavors. Measure anti-Ve
very well in Super-K..., measure V. well in
DUNE. Constrain Vx via theory or indirect

5 15 25 35 45

observations such as '*O(v,V’'y). Good Number of photo electrons
statistics, but some systematic errors. ' | vu' v, '-ve |
I prompt n

- Option 2: flavor independent neutral
current detector. V-nucleus elastic
scattering in dark matter detectors has very
large yield of tens of events per ton
(for SN at 10 kpc). Clean systematics, Arrival time Us
independent of (active) V oscillations, but
may have limited statistics.
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D. Akimov et al, Science, Aug. 3



Proto-neutron star radius Rpns

- Rens = radius of neutrinosphere around
warm, lepton rich, proto-NS, and is very
important for SN dynamics.

- Depends on thermal/ degeneracy pressure
of leptons. Not so sensitive to strong
interactions at high density.

- Smaller Rpns gives deeper gravitational well

so that accretion powers larger Vv
luminosities, to re-energize shock.

- Faster transport of heat, lepton #, out of
star can lead to faster contraction of Rpns.

- Also converting some electrons to muons
reduces lepton pressure and Rpns.
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RpNs Vs time after core bounce
in 2D SN simulations by Bolig
et al, arXiv:1706.04630



SN Quantum Numbers

Neutron Star

# nu radiated
Baryon #

Electron #
Muon #
Tau #
Strangeness

* Deleptonization: During SN electron # of 1097 is radiated.
 Muonization: During SN muon # of minus105° is radiated.
 Tau #: Produce equal numbers of nu-tau, anti-nu-tau.

However anti-nu_tau leave faster because of weak
magnetism leaving star nu-tau rich [PLB 443 (1998) 58].



Macroscopic next generation matter
and the changing of the generations

- A SN contains astronomical numbers of 2nd and third
generation particles. It may be uniquely sensitive to new
flavor physics.

- Example: muon to electron conversion: HJ+A —> e+A
could increase the role of muons.



Neutrino Opacities



V interactions in SN matter

Ve+ N —>p + e (Charged current capture rxn)

v + N—> v + N (Neutral current elastic scattering,
important opacity source for mu and tau v)

- Neutrino-nucleon neutral current cross section in SN is
modified by axial or spin response Sa, and vector
response Sy, of the medium.
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- Responses Sp, Svy—> | in free space. Normally Sa
dominates because of 3g,2 factor.



Neutrinosphere as unitary gas

- Much of the action in SN at low densities near neutrinosphere at n ~
no/ |00 (nuclear density no).

- Average distance between two neutrons near neutrinosphere is less than
NN scattering length.

< |9 fm >  nn scattering length
+— 85 fm — Average distance between two neutrons at no/100
<—> |.4 fm Range of NN force

- Unitary gas is a system with near infinite scattering length and near zero
effective range. Neutrinosphere is close to a unitary gas.

- Because of the long scattering length one can have important correlations
in a unitary gas even at low densities.

- Two neutrons are correlated into spin zero Sp state that reduces spin
response Sa<lI.



Can the spin response of a unitary
gas help a supernova to explode!

- Well posed question.

- Helpful to think of neutrinos interacting with a unitary
gas as a special reference system for nuclear matter.
Better to model neutrinosphere region as a unitary
gas instead of a free (Fermi) gas as is often done.

- Many theoretical results for a unitary gas and many
experimental results for cold atoms.

- Spin response <| reduces scattering opacity.

- Effect may be important even at low ~10!2 g/cm?3
densities because of the large scattering length.

- Probably helps 2D (and 3D?) simulations explode
perhaps somewhat earlier???




Dynamic Spin Response of a Strongly Interacting Fermi Gas
[S. Hoinka, PRL 109, 050403]
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Sa(k,w) is solid line and squares while dashed Iine is Sv(k,w).
Static structure factors: Sv(k) =JdwSv(k,w), Sa(k) =JdwSa(k,w)



Virial Expansion for Unitary
Gas

- In high T and or low density [imit, expand P in powers
of fugacity z=Exp[chemical pot/T]

4
T , - zdP
P:FZlan In’_sz
- Long wavelength response:
Sv(q = 0) = T/(dP/dn)r = (dn/dz)/n,

1 + 4zby + 92°bs + 1623by4
1 + 2zby + 3Z2b3 + 423b,

Sv(g—0) =

22 o,

- Axial response: Sa(g — 0) = n 9z — 22)
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Axlal Response In Virial Expansion

- At low densities nand or
high temperatures T one
can expand equation of
state in powers of the
fugacity z=e#T with u the
chemical potential.

- Generalize to partially spin
polarized gas to determine
long wavelength limit of
axial response:

Sa~ 1+ A3 ba

with bs 2nd viral coefficient
for spin polarization gas.

- bais about -0.64 from
observed nucleon-nucleon
elastic scattering phase
shifts.
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In Phys. Rev. C 95 (2017) 025801 we provide a
simple fit Saf(n, T,Yy), valid for all densities, that
reproduces viral result at low densities and a common
Random Phase Approximation model at high
densities. Fit can easily be used in SN simulation.



4th order Unitary results




S, Sy

Unitary gas response
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Preliminary 2D SN simulations by

s 255 | Evan O’Connor and Sean Couch for

s el 12 to 25 M stars explode earlier
(lighter color) if correlations (Sa<l)
included.

Sensitivity of SN dynamics motivates
better treatments of neutrino
interactions in SN matter.
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Sv and coherent
neutrino-pasta
scattering

arXiv: 1611.10226




SN S|gnal at IO I<pc in Super-K
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* Neutrino-pasta coherent scattering slows neutrino diffusion and leads to
a significant increase in counts at late times (>10 sec after core collapse)
compared to a simulation without pasta. Important to observe
neutrinos for as long as possible, helped by large Hyper-K statistics.



Neutrino-nucleon elastic scattering

- Multi-D SN simulations sensitive to ~ 10% changes in V-
nucleon neutral current cross sections.

- Spin correlations between nucleons, from interactions
with large scattering lengths, reduce neutral current
opacities even at low neutrinosphere densities.

- These correlations can be calculated accurately with
model independent virial expansions.



Neutrino-proton elastic scattering
experiment at the SNS!?

- Can one measure V-p elastic scattering cross sections to ~10%
in lab with (~ 30 MeV) neutrinos from pion decay at rest?

- This cross section is important for SN simulations.
- Constrain strange quark contributions to nucleon spin.

- Constrain nonstandard neutrino interactions that could impact
SN dynamics.

- Note V-p primarily involves axial currents and may provide

complementary constraints to V-A elastic scattering which
probes vector currents.



SN neutrinos and r-process nucleosynthesis

Possible site of r-process (makes Au, Pt,
U,...) is the neutrino driven wind in SN.

Ratio of neutrons to protons in wind set
by capture rates that depend on neutrino
and anti-neutrino energies.

Ve+n—p+e Detp—n+er

Measure difference in average energy of
antineutrinos and neutrinos. If
large, wind will be neutron rich. If it is
small, wind will be proton rich and likely a
problem for r-process.

Composition (Ye) of wind depends on
anti-neutrino energy (Y-axis) [results
from ~20 SN1987A events shown] and
energy of neutrinos (X-axis). Energy of
neutrinos, not yet measured, depends on
properties of n rich gas (nu-sphere).
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SN simulations find too few neutrons
for main or 3rd peak (Au, actinides)
r-process. SN likely make lighter r-
process nuclei.

Learn about impact of neutrinos on
nucleosynthesis from a galactic SN.
Neutrinos may be important in other
r-process sites.
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